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Abstract

The relationship between singular vectors in Rn and homogeneous dynamics has been well known ever
since Dani’s original paper on the subject in 1985 [1]. However, all work published on the subject has been
focused towards a 1-dimensional homogeneous system. In this paper, we summarize some key results of
the 1-dimensional case and examine similar results in two main higher-dimensional generalizations. The
paper concludes with an extension of the work to approximation with weights.

1 Diophantine Approximation and Singular Vectors

The field of Diophantine approximation is the study of how well real vectors can be approximated by rational
vectors. The results of the field would be indispensable without Dirichlet’s Approximation Theorem:

Theorem 1.1 (Dirichlet’s Approximation Theorem). For any real vector x ∈ Rn and any Q ∈ N, there
exists p ∈ Zn and q ∈ N such that

∥qx− p∥ ≤ 1

Q1/n
q ≤ Q

Throughout this paper, ∥·∥ is taken to be the max-norm of the respective dimension.

Proof. Construct the set

S =

{
(q, p1, . . . , pn) ∈ Rn+1 : −Q− 1

2
≤ q ≤ Q+

1

2
, |qxi − pi| ≤

1

Q1/n
; i = 1, . . . , n

}
The volume of S is 2n+1 + 2n

Q > 2n+1. Thus, by Minkowski’s Theorem, there is a non-trivial point in S
with integral coordinates. Since S is symmetric, we choose the point such that q > 0. Thus, for this point,
which we shall label (q,p), we see that q ≤ Q and

∥qx− p∥ = max
i=1,...,n

|qxi − pi| ≤
1

Q1/n

There is an equivalent way of writing Theorem 1.1 using what is called the transference principle :

Theorem 1.2 (Transferred Dirichlet’s Approximation Theorem). For any real vector x ∈ Rn and any
Q ∈ N, there exists p ∈ Z and q ∈ Zn such that

|q · x+ p| ≤ 1

Qn
∥q∥ ≤ Q

Importantly, Theorems 1.1 and 1.2 give soft upper bounds on the quality of the approximation. We
would like to explore vectors for which we can improve this approximation arbitrarily well: singular vectors.
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Definition 1.1. A vector x ∈ Rn is singular1 if for any ϵ > 0, there exists Qϵ ≥ 0 such that for all Q ≥ Qϵ,
there are infinitely many q ∈ N and p ∈ Zn such that

∥qx− p∥ ≤ ϵ

Q1/n
q ≤ Q

Using the transference principle, Definition 1.1 can be written as

Definition 1.2. A vector x ∈ Rn is singular if for any ϵ > 0, there exists Qϵ ≥ 0 such that for all Q ≥ Qϵ,
there are infinitely many q ∈ Zn and p ∈ Z such that

|q · x+ p| ≤ ϵ

Qn
∥q∥ ≤ Q

The set of singular vectors in Rn, denoted Sing (n), is known to be a set of measure zero [1]. Despite this
set being rather small, it is not obvious what all the elements of Sing (n) are for a given n. This issue will
be the main focus of this paper.

Another way to measure how well we can improve Theorems 1.1 and 1.2 is by increasing the exponent
on the denominator. By increasing the exponent in the denominator, the maximum error bound becomes
much smaller, yielding a better approximation.

Definition 1.3. The uniform exponent of x ∈ Rn, denoted ω̂ (x), is the supremum of γ > 0 such that

∥qx− p∥ ≤ 1

Qγ
q ≤ Q

Similarly, we can define the dual uniform exponent of x ∈ Rn, denoted ω̂∗ (x), is the supremum of
γ > 0 such that

|q · x+ p| ≤ 1

Qγ
∥q∥ ≤ Q

Using Theorems 1.1 and 1.2, we see that

ω̂ (x) ≥ 1

n
ω̂∗ (x) ≥ n

If these are instead strict inequalities, we refer to x as very singular. Clearly, a very singular number
is also singular.

As we shall see in Theorem 3.2, rational numbers behave differently than irrational numbers in the realm
of Diophantine Approximation. To generalize this difference to higher dimensions, we need to define what
it means for a vector to be “irrational”:

Definition 1.4. A vector x ∈ Rn is totally irrational if 1, x1, . . . , xn are all linearly independent over Q.

It can be shown that if x is not totally irrational, then

ω̂ (x) ≥ 1

n− 1
ω̂∗ (x) = ∞

implying that x is singular. However, for n ≥ 2, there exist totally irrational x ∈ Sing (n). We will prove
this fact later in this paper.

We can already generalize our work thus far to more general error bounds. If φ : R+ → R+ is a
non-increasing function, then we can generalize Definition 1.1 (and all of our work thus far) as follows:

Definition 1.5. A vector x ∈ Rn is φ-singular if for any ϵ > 0, there exists Qϵ ≥ 0 such that for all
Q ≥ Qϵ, there are infinitely many q ∈ N and p ∈ Zn such that

∥qx− p∥ ≤ ϵφ (Q) q ≤ Q
1The notion of “singular” extends beyond just vectors. See [1] for the generalization to singular matrices.
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2 Trajectories in the Space of Unimdoular Lattices

For n ≥ 2, we denote by Ln the space of unimodular lattices in Rn. It is known that we can identify Ln

with the space SLn (R) / SLn (Z) since the correspondence g SLn (Z) ↔ gZn for g ∈ SLn (R) is a well-defined
bijection. Notably, this space is not compact, which begs the question of what it means for a sequence to
diverge in this space.

Proposition 2.1 (Mahler Compactness Criterion). If {gi} is a sequence in SLn (R), then the sequence
{gi SLn (Z)} diverges (or alternatively has no limit points in SLn (R) / SLn (Z)) if and only if for any neigh-
borhood Ω of 0 in Rn, there exists I such that for all i ≥ I, gi (Zn) ∩ Ω ̸= {0}.

One sequence in SLn (R) of particular importance is elements of the following form

Dt =

(
e−t 0n−1×1

01×n−1 et/(n−1)In−1×n−1

)
where 0j×k is j × k matrix with all zero entries and Ij×j is the j × j identity matrix. Note that t is taken
to be a non-negative real number.

An important feature of elements g ∈ SLn (R) is that they can be decomposed as below:

g =

(
A B

01×n−1 C

)(
1 0n−1×1

x In−1×n−1

)
σ

where A ∈ R, B is a n−1×1 real matrix, C is an n−1×n−1 real matrix, x ∈ Rn−1, and σ is a permuttion
matrix except for signs. This decomposition allows us to simplify our trajectories in Ln:

Theorem 2.1. For g ∈ SLn (R), the trajectory {Dtg SLn (Z)}, or when written in a decomposed form{
Dt

(
A B

01×n−1 C

)(
1 0n−1×1

x In−1×n−1

)
σ SLn (Z)

}
, diverges if and only if

{
Dt

(
1 0n−1×1

x In−1×n−1

)
SLn (Z)

}
di-

verges.

Proof. First, σ ∈ SLn (Z), so there is no harm in absorbing it into the SLn (Z) term. Next, let us examine

the trajectory of

{
Dt

(
A B

01×n−1 C

)
D−t

}
. We see that

Dt

(
A B

01×n−1 C

)
D−t =

(
A e−tn+1

n B
01×n−1 C

)

Taking the limit t → ∞, we see that

{
Dt

(
A B

01×n−1 C

)
D−t

}
is bounded. We can then rewrite

Dt

(
1 0n−1×1

x In−1×n−1

)
SLn (Z) as

(
Dt

(
A B

01×n−1 C

)
D−t

)(
Dt

(
1 0n−1×1

x In−1×n−1

)
SLn (Z)

)
for all t ≥ 0, from

which the claim is immediate.

A particularly interesting class of divergent trajectories are degenerate divergent trajectories.

Definition 2.1. Let {gt} be a 1-parameter subgroup of SLn (R) and Λ ∈ Ln such that {gt (Λ)} is divergent.
If there exists a non-zero subgroup Σ of Λ such that the volume of the fundamental domain of gt (Σ) vanishes
as t → ∞, we say that {gt (Λ)} is degenerate. Divergent trajectories without this property we refer to as
non-degenerate.

Proposition 2.2. Let {gt} be a 1-parameter subgroup in SLn (R) and let Λ ∈ SLn (R) / SLn (Z). Then
{gt (Λ)} is a degenerate divergent trajectory if and only if there exists g ∈ SLn (R) and 1 ≤ p ≤ n − 1 such
that gZn = Λ and

∧p
(gtg) (e1 ∧ · · · ∧ ep) → 0 as t → ∞, where e1, . . . , en are the standard basis vectors of

Rn.
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Proof. Let Σ0 be the subgroup generated by e1, . . . ep and Σ = g (Σ0). Then,∥∥∥∥∥
p∧
(gtg) (e1 ∧ · · · ∧ ep)

∥∥∥∥∥ = |det gtg| → 0

for a suitable norm on the space of exteriors.
Now suppose that there exists Σ ⊂ Λ such that the volume of the fundamental domain of gt (Σ) goes

to zero as t → ∞. Let S be the largest subgroup of
∧

generating the same subspace. We assume there is
a basis v1, . . . vn of Λ such that v1, . . . , vp form a basis of Σ. Up to the sign of the basis vectors, we may
assume there exists g ∈ SLn (R) such that g (ei) = vi for i = 1, . . . n. Now g has the required properties.

3 Using Trajectories to Show Singularity

Using Theorem 2.1, we can focus our efforts on trajectories of the form

{
Dt

(
1 0n−1×1

x In−1×n−1

)
SLn (Z)

}
for

x ∈ Rn−1. A consequence of this is a strong theorem.

Theorem 3.1 (Dani Correspondence). The trajectory

{
Dt

(
1 0n−1×1

x In−1×n−1

)
SLn (Z)

}
diverges if any only

if x is singular.

Proof. Assume that x ∈ Rn−1 is singular. Then for any δ > 0, let Bδ be the ball of radius δ centered at the
origin in Rn with respect to ∥·∥. By Proposition 2.1, it is enough to show that for any δ > 0, there exists

T ≥ 0 such that for all t ≥ T , Bδ ∩
{
Dt

(
1 0n−1×1

x In−1×n−1

)
SLn (Z)

}
̸= {0}.

Now fix δ ∈ (0, 1) and choose ϵ < δn. Since x is singular, we know there exists Qϵ such that for all
Q ≥ Qϵ, there exists infinitely many q ∈ N and p ∈ Zn−1 such that

∥qx− p∥ ≤ ϵ

Q1/(n−1)
q ≤ Q

Let q,p satisfy the above conditions. We see that∥∥∥∥Dt

(
1 0n−1×1

x In−1×n−1

)
SLn (Z)

∥∥∥∥ =

∥∥∥∥( e−t 0n−1×1

01×n−1 et/(n−1)In−1×n−1

)(
1 0n−1×1

x In−1×n−1

)(
q
−p

)∥∥∥∥
=

∥∥∥∥( e−tq
et/(n−1) (qx− p)

)∥∥∥∥
= max

(∣∣e−tq
∣∣ ,∥∥∥et/(n−1) (qx− p)

∥∥∥)
≤ max

(
e−tQ, et/(n−1) ϵ

Q1/(n−1)

)

If we want to bound the last inequality above by δ, we see that t ∈
(
ln Q

δ , (n− 1) ln δQ1/(n−1)

ϵ

)
:= IQ.

For Q large, we see that since ϵ < δn, IQ and IQ+1 overlap. Thus, the interval
⋃
IQ has a subinterval [T,∞)

such that for t ∈ [T,∞), Bδ ∩
{
Dt

(
1 0n−1×1

x In−1×n−1

)
SLn (Z)

}
̸= {0}.

If alternatively x is not singular, then there exists ϵ > 0 and a sequence Qi such that for infinitely many
q ∈ N and p ∈ Zn−1

∥qx− p∥ > ϵ

Q
1/(n−1)
i

q ≤ Qi
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Construct a sequence ti such that Qi < eti < Qi

ϵ . Then we see that for q ≤ Qi,

eti/(n−1) ∥qx− p∥ > eti/(n−1) ϵ

Q
1/(n−1)
i

> ϵ

and for q > Qi,

e−tiq > e−tiQi > ϵ

Thus, Bϵ ∩
{
Dt

(
1 0n−1×1

x In−1×n−1

)
SLn (Z)

}
= {0}, implying that the trajectory is not divergent.

Corollary 3.1. Given Λ ∈ Ln such that {DtΛ} is divergent, that same trajectory is degenerate as well if
and only if Λ∩ {v ∈ Rn : Dt (v) → 0 as t→ ∞} ≠ {0}. If every nonzero element of Λ is of the form

∑
piei

where ei are the standard basis vectors in Rn and pn ̸= 0, then for any x1, . . . , xn−1 ∈ Λ, x1 ∧ · · · ∧ xn−1 is

not in
{
v1 ∧ · · · ∧ vn−1 ∈

∧n−1 Rn :
∧n−1

Dt

(
v1 ∧ · · · ∧ vn−1

)
→ 0 as t→ ∞

}
unless it is zero. In light of

Theorem 3.1, we see that this only happens if x is not totally irrational.

Theorem 3.2. The only singular real numbers are the rationals.

Proof. By Corollary 3.1 we know that x ∈ Q implies x ∈ Sing (1). So, we need only check irrational
x. Assume there exists x ∈ R \ Q singular and let rn

sn
for rn ∈ Z and sn ∈ N be a sequence of best

approximations of x. That means that for a given large n there is no s ∈ N and r ∈ Z such that 1 ≤ s < sn
and |sx− r| < |snx− rn|. We also know that |snx− rn| > 1

2sn+1
. If we set Q = sn+1, then since x is

singular, |snx− rn| ≤ ϵ
Q for some ϵ > 0. This implies that ϵ

Q > 1
2Q or equivalently ϵ > 1

2 . But if this holds
for all n large, then x cannot be singular.

The results of Theorem 3.2 do not extend to Sing (n) for n ≥ 2, as we shall see. But first, some quick
notation.

If m = (m0, . . . ,mn) ∈ Zn+1 is a primitive vector, then we let Am denote the hyperplane

Am :=

{
x ∈ Rn :

n∑
i=1

mixi = m0

}

We also define

|Am| := ∥m1, . . . ,mn∥

Let Φ : Zn \ {0} → R+ be a proper function, i.e.

{q ∈ Zn \ {0} : Φ (q) ≤ C} is finite for any C > 0

We also use ⟨x⟩ to be the distance from x ∈ R to the closest integer. This is equivalent to |qx− p|
without specifying particular q, p. If instead we were in the transferred case, ⟨q · x⟩ for q ∈ Zn and x ∈ Rn

is equivalent to |q · x− p| without specifying p.
Given Φ, we define the irrationality measure

ψΦ,x (Q) = min
q∈Zn\{0},Φ(q)≤Q

⟨q · x⟩

Note that in the case Φ = ∥·∥,

ω̂∗ (x) = sup

{
γ : lim sup

Q→∞
Qγψ∥·∥,x (Q) <∞

}
With these tools, we are now ready to prove the foundational theorem of this paper.
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Theorem 3.3. Let S ⊂ Rn be a nonempty locally closed subset, let L = {L1, L2, . . .} and L′ = {L′
1, L

′
2, . . .}

be disjoint collections of distinct closed subsets of S, each of which is contained in a rational affine hyperplane
in Rn, and for each i let Ai be a rational affine hyperplane containing Li. Assume the following hold:

a)
⋃

i Li ∪
⋃

j L
′
j = {x ∈ S : x is contained in a rational affine hyperplane}

b) For each i, T > 0, Li =
⋃

|Aj |>T Li ∩ Lj

c) For each i and for any finite subsets of indices F, F ′ with i /∈ F , Li = Li \
(⋃

k∈F Lk ∪
⋃

k′∈F ′ L′
k′

)
d)
⋃

i Li is dense in S

Then for an arbitrary proper function Φ : Zn/ {0} → R+ and any non-increasing function φ : R+ → R+,
there exists uncountably many totally irrational x ∈ S such that ψΦ,x (Q) ≤ φ (Q) for all large enough Q.

Proof. Let

B := {x ∈ S : ∃Q0 s.t. ∀Q ≥ Q0, ψΦ,x (Q) ≤ φ (Q) and x is totally irrational}

Suppose for the sake of contradiction that B is at most countably infinite. We can then write B =
{b1,b2, . . .} (in the case that B is finite, then this is just a finite list). Let W be an open subset of Rn such
that S = S ∩W. Put U0 = W, q0 = 0, p0 = 0, i0 = 0, and Φ (0) = 0. We will see that for each ν ∈ N there
is a bounded open set Uν ⊆ W and an index iν ∈ N such that with the notation (pν ,qν) = miν the following
conditions are satisfied:

1) ∅ ≠ S ∩ Uν ⊂ Uν−1

2) iν > iν−1, Φ (qν) > Φ (qν−1) for all ν ∈ N

3) For all k < ν, Uν is disjoint from Lk ∪ L′
k ∪ {bk}

4) For all ν ∈ N and x ∈ Uν we have

|qν−1 · x− pν−1| < φ (Φ (qν))

5) For all ν ∈ N, Uν ∩ Liν ̸= ∅

To see this suffices, take a point

x ∈ S ∩
⋂
ν

Uν =
⋂
ν

S ∩ Uν

This intersection is nonempty since the right-hand side is by condition 1) an intersection of nonempty nested
compact sets, and the equality follows that for ν ≥ 2, the sets Uν are contained in W. We will reach a
contradiction by showing that both x ∈ B and x /∈ B. By condition 3), x is not equal to any of the bi,
and hence x /∈ B. Also by condition 3), x is not contained in any of the sets in the collections L,L′ and
thus by hypothesis a) x is totally irrational. The function φ (Q) is non-increasing by assumption, and so is
the irrationality measure function Q 7→ ψΦ,x (Q), as follows from its definition. The properness condition
guarantees that Φ (qν) → ∞ as ν → ∞. By condition 2), for any Q ≥ Q0 := Φ (q1), there is ν with
Q ∈ [Φ (qν) ,Φ (qν+1)] and by condition 4) we have

ψΦ,x (Q) ≤ ψΦ,x (Φ (qν)) ≤ ⟨qν · x⟩ ≤ |qν · x− pν | < φ (Φ (qν+1)) ≤ φ (Q)

which shows that x ∈ B.
Now we shall construct our sequences such that conditions 1) through 5) hold. Let ν = 1. Choose

i1 := min {i ∈ N : Li ̸= ∅}, which must exist by hypothesis d). Define U1 to be some open set containing a
point in Li1 such that U1 ⊂ W. We see that conditions 1), 3), and 5) follow immediately from this choice. If
p1,q1 are the elements of the primitive vector corresponding to Ai1 , then conditions 2) and 4) hold as well.
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Now suppose we have constructed Uk, ik for k = 1, . . . , ν. Let i = iν . By condition 5), for k = ν we
have Uk ∩ Li ̸= ∅. By hypothesis b), there is an infinite subsequence of indices j such that |Aj | → ∞ as
j → ∞ and Uk ∩ Li ∩ Lj ̸= ∅. For each such j, let Aj = Amj

with mj =
(
p′j ,q

′
j

)
. Then by the definition

of |Aj |, along this subsequence
∥∥q′

j

∥∥ → ∞. Thus, by the properness of Φ, we can choose j > i such that

Φ
(
q′
j

)
> Φ (qν). If we set iν+1 := j, this ensures that condition 2) holds for ν + 1.

Next, let x′ ∈ Uν ∩ Li ∩ Lj . Since x′ ∈ Li, we see that qν · x′ = pν . By continuity, we choose a small
neighborhood V ⊂ Uν of x′ such that for all x ∈ V

|qν · x− pν | < ψ (Φ (qν+1))

Thus, condition 4) holds for ν + 1.
Since x′ ∈ Lj , we must have V ∩ Liν+1

̸= ∅. Thus by hypothesis c), there exists x′′ such that

x′′ ∈ Lj ∩ V \
⋃

k<ν+1

(Lk ∪ L′
k′ ∪ {bk})

Further, we can take a neighborhood Uν+1 of x′′ such that Uν+1 ⊂ Uν and

Uν+1 ∩
⋃

k<ν+1

(Lk ∪ L′
k′ ∪ {bk}) = ∅

Consequently, conditions 1), 3), and 5) now hold. Thus concludes the induction and this proof.

Corollary 3.2. For S ⊂ Rn (n ≥ 2) and L,L′ satisfying Theorem 3.3, if we choose Φ = ∥·∥ and φ (Q) = 1
Qn ,

there exists an uncountable number of totally-irrational vectors x ∈ Sing (n).

4 Expanding the Trajectories

4.1 Maximal Diagonal Trajectories

We are now ready to explore generalizations of this work to a n-parameter driving matrix:

Dt = diag
(
e
∑n

i=1 ti , e−t1 , . . . , e−tn
)

where the ti are taken to be independent of each other. Based on our previous work, we should expect
(and will soon prove) that there is a relationship between this driving matrix and singular vectors, for some
new definition of singular. But to redefine singular, we must first have a new version of Theorem 1.1:

Theorem 4.1. For any real vector x ∈ Rn and any Q1, . . . , Qn ∈ N, there exists p ∈ Z and q1, . . . , qn ∈ Z
such that ∣∣∣∣∣−p+

n∑
i=1

qixi

∣∣∣∣∣ ≤
n∏

i=1

1

Qi
|q1| ≤ Q1, . . . , |qn| ≤ Qn (1)

Proof. Suppose Q1 = . . . = Qn = 1. Then we can apply Theorem 1.2 and we are done.
Now assume some Qi ̸= 1. Construct the set

S =

{
(q1, . . . , qn, p) ∈ Rn+1 : −Qi −

1

2
≤ qi ≤ Qi +

1

2
for i = 1, . . . , n,

∣∣∣∣∣−p+
n∑

i=1

qixi

∣∣∣∣∣ ≤
n∏

i=1

1

Qi

}
The volume of S is greater than 2n+1. Thus, by Minkowski’s Theorem, there is a non-trivial point in S

with integral coordinates. Since S is symmetric, we choose the point such that one of q1, . . . , qn > 0. Thus,
for this point, which we shall label (q1, . . . , qn, p), we see that qi ≤ Qi, and∣∣∣∣∣−p+

n∑
i=1

qixi

∣∣∣∣∣ ≤
n∏

i=1

1

Qi
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Remark 4.1. The proof of Theorem 4.1 shows that if Qj > 1 for some j = 1, . . . , n then one of the qis is
strictly positive.

As highlighted in the proof of Theorem 4.1, this setup looks very similar Theorem 1.2: If we set q =
(q1, . . . , qn) ∈ Zn, then Theorem 4.1 becomes

Theorem 4.2. For any real vector x ∈ R2 and any Q1, . . . , Qn ∈ N, there exists p ∈ Z and q ∈ Zn such
that

|q · x+ p| ≤
n∏

i=1

1

Qi
|q1| ≤ Q1, . . . , |qn| ≤ Qn

Definition 4.1. The collection (x1, . . . , xn) is singular if for any ϵ > 0, there exists (Q1)ϵ , . . . , (Qn)ϵ ≥ 0
such that for all Qi ≥ (Qi)ϵ for i = 1, . . . , n, there are infinitely many q1, . . . , qn ∈ N and p ∈ Z such that∣∣∣∣∣−p+

n∑
i=1

qixi

∣∣∣∣∣ ≤ ϵ∏n
i=1Qi

q1 ≤ Q1, . . . , qn ≤ Qn

Now having properly redefined what it means for a vector to be singular, we can now show the relationship
between this new definition and our new driving matrix:

Theorem 4.3. Let x = (x1, . . . , xn). The trajectory

{
Dt

(
1 x

01×n In×n

)
SLn+1 (Z)

}
diverges if any only if

the collection (x1, . . . , xn) is singular.

Note that the middle matrix is transposed to the way it was presented in Section 2. This is merely a
change in convention and still allows us to apply the results from Sections 2 and 3 to this new trajectory.

Proof. Assume that the collection (x1, . . . , xn) is singular. Then for any δ > 0, let Bδ be the ball of radius δ
centered at the origin in Rn+1 with respect to ∥·∥. By Proposition 2.1, it is enough to show that for any δ > 0,

there exists T1 . . . , Tn ≥ 0 such that for all ti ≥ Ti for i = 1, . . . , n, Bδ ∩
{
Dt

(
1 x

01×n In×n

)
SLn+1 (Z)

}
̸=

{0}.
Now fix δ ∈ (0, 1) and choose ϵ < δn+1. Since the collection (x1, . . . , xn) is singular, we know there exists

(Q1)ϵ , . . . , (Qn)ϵ such that for all Qi ≥ (Qi)ϵ for i = 1, . . . , n, there exists infinitely many q1, . . . , qn ∈ N and
p ∈ Zn such that ∣∣∣∣∣−p+

n∑
i=1

qixi

∣∣∣∣∣ ≤ ϵ∏n
i=1Qi

q1 ≤ Q1, . . . , qn ≤ Qn

Let q1, . . . , qn, p satisfy the above conditions. We see that

∥∥∥∥Dt

(
1 x

01×n In×n

)
SLn+1 (Z)

∥∥∥∥ =

∥∥∥∥∥∥∥∥∥diag
(
e
∑n

i=1 ti , e−t1 , . . . , e−tn
)(

1 x
01×n In×n

)
−p
q1
...
qn


∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥


e
∑n

i=1 ti (−p+
∑n

i=1 qixi)
e−t1q1

...
e−tnqn


∥∥∥∥∥∥∥∥∥

= max

(∣∣∣∣∣e∑n
i=1 ti

(
−p+

n∑
i=1

qixi

)∣∣∣∣∣ , ∣∣e−t1q1
∣∣ , . . . , ∣∣e−tnqn

∣∣)

≤ max

(
ϵe

∑n
i=1 ti∏n

i=1Qi
, e−t1Q1, . . . , e

−tnQn

)

8



If we want to bound the last inequality above by δ, we see that (t1, . . . , tn) must lie within the simplex

with vertices
(
ln Q1

δ , . . . , ln
Qn

δ

)
and

(
ln Q1

δ , . . . , ln
Qi−1

δ , ln δnQi

ϵ , ln Qi+1

δ , . . . , ln Qn

δ

)
for i = 1, . . . , n, which

we shall denote as ∆Q1,...,Qn
. For Q1, . . . Qn large, we see that since ϵ < δn+1, ∆Q1,...,Qn

overlaps with
∆Q1,...,Qi−1,Qi+1,Qi+1,...,Qn for all i = 1, . . . n. Thus, the subset of Rn

⋃
∆Q1,...,Qn has diverging trajectory

with initial point (T1, . . . , Tn) such that for (t1, . . . , tn) along this trajectory, Bδ∩
{
Dt

(
1 x

01×n In×n

)
SLn+1 (Z)

}
has a non-zero element.

If alternatively the collection (x1, . . . , xn) is not singular, then there exists ϵ > 0 and sequences (Q1)j , . . . , (Qn)j
such that for infinitely many q1, . . . , qn ∈ N and p ∈ Z

∣∣∣∣∣−p+
n∑

i=1

qixi

∣∣∣∣∣ > ϵ∏n
i=1 (Qi)j

q1 ≤ (Q1)j , . . . , qn ≤ (Qn)j

Construct sequence (t1)j , . . . , (tn)j such that (Qi)j < e(ti)j <
(Qi)j

ϵ for all i = 1, . . . , n. Then we see that
for a given i ∈ {1, . . . , n}, qi ≤ (Qi)j ,

e
∑n

i=1(ti)j

∣∣∣∣∣−p+
n∑

i=1

qixi

∣∣∣∣∣ > e
∑n

i=1(ti)j
ϵ∏n

i=1 (Qi)j
> ϵ

and for qi > (Qi)j ,

e−(ti)jq > e−(ti)j (Qi)j > ϵ

Thus, Bϵ ∩
{
Dt

(
1 x

01×n In×n

)
SLn+1 (Z)

}
= {0}, implying that the trajectory is not divergent.

We can further generalize our work from the previous section to show that there exists an uncountable
number of totally irrational singular vectors.

Theorem 4.4. Let S ⊂ R2 be a nonempty locally closed subset, let L = {L1, L2, . . .} and L′ = {L′
1, L

′
2, . . .}

be disjoint collections of distinct closed subsets of S, each of which is contained in a rational affine hyperplane
in R2, and for each i let Ai be a rational affine hyperplane containing Li. Assume the following hold:

a)
⋃

i Li ∪
⋃

j L
′
j = {x ∈ S : x is contained in a rational affine hyperplane}

b) For each i, T > 0, Li =
⋃

|Aj |>T Li ∩ Lj

c) For each i and for any finite subsets of indices F, F ′ with i /∈ F , Li = Li \
(⋃

k∈F Lk ∪
⋃

k′∈F ′ L′
k′

)
d)
⋃

i Li is dense in S

Then for arbitrary proper functions Φ1,Φ2 : Zn/ {0} → R+ and any non-increasing function φ : R+ ×
R+ → R+, there exists uncountably many totally irrational pairs (x, y) ∈ S such that

ψΦ1,Φ2,x,y (Q,R) := min
q,r∈Z2\{0},Φ1(q)≤Q,Φ2(r)≤R

⟨qx+ ry⟩ ≤ φ (Q,R)

for all large Q,R.

Remark 4.2. We know by Theorem 4.3 that singularity is related to Dt. Importantly, the dimension of
{Dt : t ∈ Rn} is the same as the real rank of SLn+1 (R), which is also equal to the rational rank of SLn+1 (R).
Due to results in [4], we should expect there to be regions of the root system for which there are no divergent
trajectories. Thus, some work must be done to show that our choice of S and L,L′ guarantees that we are
not in those corresponding regions.
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Proof. Let t := t1 and s := t2 (for ease of readability). We find the root system corresponding to Dt to be

2t+ s

s− t

−2t− s

t− s

t+ 2s

−t− 2s

Thus the orthogonal root system is

s

t

−s

−t t+ s

−t− s

For reasons that will be clear soon, let us work in the region of the root system such that s > ϵt and
t > ϵs for some ϵ ∈ (0, 1):

2t+ s

s− t

−2t− s

t− s

t+ 2s

−t− 2s

We also know from Theorem 4.3 that there is a relationship between t, s and Q1, Q2. For given large
Q1, Q2 ∈ N and δ ∈ (0, 1), we know that the trajectory of t, s can be taken to pass through the point(
ln Q1

δ , ln
Q2

δ

)
. This implies the relation e−tQ1 = e−sQ2. But our region in the root system implies that

Qϵ
1 < Q2 < Q

1/ϵ
1 , as shown in the region below:

Q2 = Qϵ
1

Q2 = Q
1/ϵ
1

Q1

Q2

Q

Importantly, this shaded region is infinite and has a boundary well-suited for this proof. We shall denote
this region as Q.

Let

B := {(x, y) ∈ S : ∃Q0, R0 s.t. ∀Q ≥ Q0, R ≥ R0, ψΦ1,Φ2,x,y (Q,R) ≤ φ (Q,R) and (x, y) is totally irrational}

10



Suppose for the sake of contradiction that B is at most countably infinite. We can then write B =
{b1,b2, . . .} (in the case that B is finite, then this is just a finite list). Let W be an open subset of R2 such
that S = S ∩ W. Put U0 = W, q0 = 0, r0 = 0, p0 = 0, i0 = 0, Φ1 (0) = 0, and Φ2 (0) = 0. We will see
that for each ν ∈ N there is a bounded open set Uν ⊆ W and an index iν ∈ N such that with the notation
(pν , qν , rν) = miν the following conditions are satisfied:

1) ∅ ≠ S ∩ Uν ⊂ Uν−1

2) iν > iν−1, Φ1 (qν) > Φ1 (qν−1), Φ2 (rν) > Φ2 (rν−1) for all ν ∈ N

3) For all k < ν, Uν is disjoint from Lk ∪ L′
k ∪ {bk}

4) For all ν ∈ N and (x, y) ∈ Uν we have

|xqν−1 + yrν−1 − pn−1| < φ (Φ1 (qν) ,Φ2 (rν))

5) For all ν ∈ N, Uν ∩ Liν ̸= ∅

To see this suffices, take a point

(x, y) ∈ S ∩
⋂
ν

Uν =
⋂
ν

S ∩ Uν

This intersection is nonempty since the right-hand side is by condition 1) an intersection of nonempty
nested compact sets, and the equality follows that for ν ≥ 2, the sets Uν are contained in W. We will
reach a contradiction by showing that both (x, y) ∈ B and (x, y) /∈ B. By condition 3), (x, y) is not
equal to any of the bi, and hence (x, y) /∈ B. Also by condition 3), (x, y) is not contained in any of
the sets in the collection {L1, . . .} , {L′

1, . . .} and thus by hypothesis a) (x, y) is totally irrational. The
function φ (Q,R) is non-increasing in both parameters by assumption, and so is the irrationality measure
function (Q,R) 7→ ψΦ1,Φ2,x,y (Q,R), as follows from its definition. The properness condition guarantees
that Φ1 (qν) → ∞,Φ2 (rν) → ∞ as ν → ∞. By condition 2), for any Q ≥ Q0 := Φ1 (q1), there is ν with
Q ∈ [Φ1 (qν) ,Φ1 (qν+1)] and there exists R ∈ [Φ2 (rν) ,Φ2 (rν+1)]. By condition 4) for those Q,R we have

ψΦ1,Φ2,x,y (Q,R) ≤ ψΦ1,Φ2,x,y (Φ1 (qν) ,Φ2 (rν))

≤ ⟨qνx+ rνy⟩
≤ |qνx+ rνy − pν |
< φ (Φ1 (qν+1) ,Φ2 (rν+1))

≤ φ (Q,R)

which shows that (x, y) ∈ B.
Now we shall construct our sequences such that conditions 1) through 5) hold. Let ν = 1. Choose

i1 := min {i ∈ N : Li ̸= ∅, (qi, ri) ∈ Q}, which must exist by hypothesis d). Define U1 to be some open set
containing a point in Li1 such that U1 ⊂ W. We see that conditions 1) through 5) follow immediately from
this choice.

Now suppose we have constructed Uk, ik for k = 1, . . . , ν. Let i = iν . By condition 5), for k = ν we have
Uk ∩ Li ̸= ∅. By hypothesis b) and d), there is an infinite subsequence of indices j such that |Aj | → ∞ as
j → ∞, Uk ∩ Li ∩ Lj ̸= ∅, and (qj , rj) ∈ Q. For each such j, let Aj = Amj with mj =

(
p′j , q

′
j , r

′
j

)
. Then by

the definition of |Aj |, along this subsequence q′j → ∞ or r′j → ∞. Thus, by the properness of Φ1,Φ2 and the

geometry of Q, we can choose j > i such that Φ1

(
q′j
)
> Φ1 (qν) and Φ2

(
r′j
)
> Φ2 (rν). If we set iν+1 := j,

this ensures that condition 2) holds for ν + 1.
Next, let (x′, y′) ∈ Uν ∩ Li ∩ Lj . Since (x′, y′) ∈ Li, we see that qνx

′ + rνy
′ = pν . By continuity, we

choose a small neighborhood V ⊂ Uν of (x′, y′) such that for all (x, y) ∈ V

|qνx+ rνy − pν | < ψ (Φ1 (qν+1) ,Φ2 (rν+1))

Thus, condition 4) holds for ν + 1.
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Since (x′, y′) ∈ Lj , we must have V ∩ Liν+1 ̸= ∅. Thus by hypothesis c), there exists (x′′, y′′) such that

(x′′, y′′) ∈ Lj ∩ V \
⋃

k<ν+1

(Lk ∪ L′
k′ ∪ {bk})

Further, we can take a neighborhood Uν+1 of (x′′, y′′) such that Uν+1 ⊂ Uν and

Uν+1 ∩
⋃

k<ν+1

(Lk ∪ L′
k′ ∪ {bk}) = ∅

Consequently, conditions 1), 3), and 5) now hold. Thus concludes the induction and this proof.

Corollary 4.1. For S, L, L′, and Ai satisfying Theorem 4.4, if we choose Φ1 = Φ2 = ∥·∥ and φ (Q,R) = 1
QR ,

there exists an uncountable number of singular pairs (x, y) that are totally irrational.

Remark 4.3. If we took Q to be any larger, we would have a problem. In the limit δ → 0, we could have
trajectories of (q, r) in Q such that no matter how much one parameter increased, the other could remain
the same. This would prohibit us from evolving the qν , rν properly. Any region in our root system containing
points outside of the Weyl Chamber bounded between 2t+ s and t+ 2s, we either find the same issues, find
that one of t, s is negative, or we find that Q is finite if it exists at all. Of course, we could work in subsets of
Q, but Q is the maximal subset of the root system for which we can guarantee the existence of unaccountably
many non-obvious singular vectors.

Remark 4.4. The ideas of Theorem 4.4 generalize to higher dimensions. However, the root system of these
higher-dimensional driving matrices is much more complicated and this complication would detract from the
main idea of the proof.

4.2 Sub-maximal Diagonal Trajectories

In subsection 4.1 we assumed that the ti were independent of each other. Now let us suppose that some ti
are identical. Let a1, . . . , ak ∈ N such that

∑k
i=1 ai = n for k ≤ n. Then we construct the weighted driving

matrix

Da1,...,ak
:= diag

e∑k
i=ℓ aℓtℓ , e−t1 , . . . , e−t1︸ ︷︷ ︸

a1 times

, . . . , e−tk , . . . , e−tk︸ ︷︷ ︸
ak times


Since our driving matrix is “submaximal”, then we should also expect our assortment of Qi to also be

“submaximal”. If we think about the case in Section 2, that was the case that a1 = n and no other a1 exist.
Similarly, Q1 = Q and no other Qi exist. Thus, we must change what we mean for a vector to be singular.

Theorem 4.5. For any real vector x ∈ Rn and any Q1, . . . , Qk ∈ N, with k ≤ n there exists p ∈ Z and
q1, . . . , qn ∈ Z such that∣∣∣∣∣−p+

n∑
i=1

qixi

∣∣∣∣∣ ≤
k∏

ℓ=1

1

Qaℓ

ℓ

|q1| , . . . , |qa1
| ≤ Q1, . . . , |qn+1−ak

| , . . . , |qn| ≤ Qk

The proof of Theorem 4.5 is so similar to its related proofs that we shall omit it. Theorem 4.5 naturally
leads to the new definition of singular:

Definition 4.2. The collection (x1, . . . , xn) is singular if for any ϵ > 0, there exists (Q1)ϵ , . . . , (Qk)ϵ ≥ 0
for k ≤ n such that for all Qℓ ≥ (Qℓ)ϵ for ℓ = 1, . . . , k, there are infinitely many q1, . . . , qn ∈ N and p ∈ Z
such that

∣∣∣∣∣−p+
n∑

i=1

qixi

∣∣∣∣∣ ≤ ϵ∏k
ℓ=1Q

aℓ

ℓ

q1, . . . , qa1
≤ Q1, . . . , qn+1−ak

, . . . , qn ≤ Qk
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Now all that needs to be constructed is an anologue of Theorem 3.1.

Theorem 4.6. Let x = (x1, . . . , xn). The trajectory

{
Da1,...,ak

(
1 x

01×n In×n

)
SLn+1 (Z)

}
diverges if any

only if the collection (x1, . . . , xn) is singular.

Proof. Assume that the collection (x1, . . . , xn) is singular. Then for any δ > 0, let Bδ be the ball of radius δ
centered at the origin in Rn+1 with respect to ∥·∥. By Proposition 2.1, it is enough to show that for any δ > 0,

there exists T1 . . . , Tk ≥ 0 such that for all tℓ ≥ Tℓ for ℓ = 1, . . . , k, Bδ∩
{
Da1,...,ak

(
1 x

01×n In×n

)
SLn+1 (Z)

}
̸=

{0}.
Now fix δ ∈ (0, 1) and choose ϵ < δn+1. Since the collection (x1, . . . , xn) is singular, we know there

exists (Q1)ϵ , . . . , (Qk)ϵ for k ≤ n such that for all Qℓ ≥ (Qℓ)ϵ for ℓ = 1, . . . , k, there exists infinitely many
q1, . . . , qn ∈ N and p ∈ Zn such that

∣∣∣∣∣−p+
n∑

i=1

qixi

∣∣∣∣∣ ≤ ϵ∏k
ℓ=1Q

aℓ

ℓ

q1, . . . , qa1 ≤ Q1, . . . , qn+1−ak
, . . . , qn ≤ Qk

Let q1, . . . , qn, p satisfy the above conditions. We see that

∥∥∥∥Da1,...,ak

(
1 x

01×n In×n

)
SLn+1 (Z)

∥∥∥∥ =

∥∥∥∥∥∥∥∥∥diag
e∑k

ℓ=1 aℓtℓ , t1, . . . , t1︸ ︷︷ ︸
a1 times

, . . . , tk, . . . , tk︸ ︷︷ ︸
ak times

( 1 x
01×n In×n

)
−p
q1
...
qn


∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥


e
∑k

ℓ=1 aℓtℓ (−p+
∑n

i=1 qixi)
e−t1q1

...
e−tkqn


∥∥∥∥∥∥∥∥∥

= max

(∣∣∣∣∣e∑k
ℓ=1 aℓtℓ

(
−p+

n∑
i=1

qixi

)∣∣∣∣∣ , ∣∣e−t1q1
∣∣ , . . . , ∣∣e−tkqn

∣∣)

≤ max

(
ϵe

∑k
ℓ=1 aℓtℓ∏k

ℓ=1Q
aℓ

ℓ

, e−t1Q1, . . . , e
−tkQk

)

If we want to bound the last inequality above by δ, we see that (t1, . . . , tk) must lie within the simplex

in Rk with vertices
(
ln Q1

δ , . . . , ln
Qk

δ

)
and

(
ln Q1

δ , . . . , ln
δ(n+1−aℓ)/aℓQℓ

ϵ1/aℓ
, . . . , ln Qk

δ

)
for ℓ = 1, . . . , k, which

we shall denote as ∆Q1,...,Qk
. For Q1, . . . Qk large, we see that since ϵ < δn+1, ∆Q1,...,Qk

overlaps with
∆Q1,...,Qℓ−1,Qℓ+1,Qℓ+1,...,Qk

for all ℓ = 1, . . . , k. Thus, the subset of Rk
⋃

∆Q1,...,Qk
has diverging trajectory

with initial point (T1, . . . , Tk) such that for (t1, . . . , tk) along this trajectory, Bδ∩
{
Da1,...,ak

(
1 x

01×n In×n

)
SLn+1 (Z)

}
̸=

{0}.
If alternatively the collection (x1, . . . , xn) is not singular, then there exists ϵ > 0 and sequences (Q1)j , . . . , (Qk)j

such that for infinitely many q1, . . . , qn ∈ N and p ∈ Z

∣∣∣∣∣−p+
n∑

i=1

qixi

∣∣∣∣∣ > ϵ∏k
ℓ=1 (Qℓ)

aℓ

j

q1, . . . , qa1 ≤ (Q1)j , . . . , qn+1−ak
, . . . , qn ≤ (Qk)j

Construct sequence (t1)j , . . . , (tk)j such that (Qℓ)j < e(tℓ)j <
(Qℓ)j

ϵ for all ℓ = 1, . . . , k. Then we see that
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for a given i ∈ {1, . . . , n}, and corresponding m ∈ (1, . . . , k), if qi ≤ (Qm)j ,

e
∑k

ℓ=1 aℓ(tℓ)j

∣∣∣∣∣−p+
n∑

i=1

qixi

∣∣∣∣∣ > e
∑k

ℓ=1 aℓ(tℓ)j
ϵ∏k

ℓ=1 (Qℓ)
aℓ

j

> ϵ

and for qi > (Qm)j ,

e−(tm)jqi > e−(tm)j (Qm)j > ϵ

Thus, Bϵ ∩
{
Da1,...,ak

(
1 x

01×n In×n

)
SLn+1 (Z)

}
= {0}, implying that the trajectory is not divergent.

We conclude this section with the generalization of our proof that uncountably many totally irrational
singular vectors exist.

Theorem 4.7. Let S ⊂ Rn be a nonempty locally closed subset, let L = {L1, L2, . . .} and L′ = {L′
1, L

′
2, . . .}

be disjoint collections of distinct closed subsets of S, each of which is contained in a rational affine hyperplane
in Rn, and for each i let Ai be a rational affine hyperplane containing Li. Assume the following hold:

a)
⋃

i Li ∪
⋃

j L
′
j = {x ∈ S : x is contained in a rational affine hyperplane}

b) For each i, T > 0, Li =
⋃

|Aj |>T Li ∩ Lj

c) For each i and for any finite subsets of indices F, F ′ with i /∈ F , Li = Li \
(⋃

m∈F Lm ∪
⋃

m′∈F ′ L′
m′

)
d)
⋃

i Li is dense in S

Then for arbitrary proper functions Φ1, : Za1/ {0} → R+, . . . ,Φk : Zak/ {0} → R+, and any non-
increasing function φ : Rk

+ → R+, there exists uncountably many totally irrational x ∈ S such that for
all large enough Q1, . . . , Qk,

ψΦ1,...,Φk,x (Q1, . . . , Qk) := min
q1∈Za1\{0},...,qk∈Zak\{0}

Φ1(q1)≤Q1,...,Φk(qk)≤Rk

⟨q · x⟩ ≤ φ (Q1, . . . , Qk)

where q := (q1, . . . ,qk).

Proof. Let

B :=

{
x ∈ S :

∃ (Q1)0 , . . . , (Qk)0 s.t. ∀Qℓ ≥ (Qℓ)0 for ℓ = 1, . . . , k,
ψΦ1,...,Φk,x (Q1, . . . , Qk) ≤ φ (Q1, . . . , Qk) and x is totally irrational

}
Suppose for the sake of contradiction that B is at most countably infinite. We can then write B =

{b1,b2, . . .} (in the case that B is finite, then this is just a finite list). Let W be an open subset of Rn such
that S = S ∩W. Put U0 = W, (q1)0 = 0, . . . , (qk)0 = 0, p0 = 0, i0 = 0, and Φℓ (0) = 0 for ℓ = 1, . . . , k. We
will see that for each ν ∈ N there is a bounded open set Uν ⊆ W and an index iν ∈ N such that with the
notation (pν , (q1)ν , . . . , (qk)ν) = (pν ,qν) = miν the following conditions are satisfied:

1) ∅ ≠ S ∩ Uν ⊂ Uν−1

2) iν > iν−1, Φℓ ((qℓ)ν) > Φℓ

(
(qℓ)ν−1

)
for all ν ∈ N and ℓ = 1, . . . k

3) For all m < ν, Uν is disjoint from Lm ∪ L′
m ∪ {bm}

4) For all ν ∈ N and x ∈ Uν we have

|qν−1 · x− pν−1| < φ (Φ1 ((q1)ν) , . . . ,Φk ((qk)ν))
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5) For all ν ∈ N, Uν ∩ Liν ̸= ∅

To see this suffices, take a point

x ∈ S ∩
⋂
ν

Uν =
⋂
ν

S ∩ Uν

This intersection is nonempty since the right-hand side is by condition 1) an intersection of nonempty nested
compact sets, and the equality follows that for ν ≥ 2, the sets Uν are contained in W. We will reach a
contradiction by showing that both x ∈ B and x /∈ B. By condition 3), x is not equal to any of the bi, and
hence x /∈ B. Also by condition 3), x is not contained in any of the sets in the collections L,L′ and thus
by hypothesis a) x is totally irrational. The function φ (Q1, . . . , Qk) is non-increasing by assumption, and
so is the irrationality measure function Q1, . . . , Qk 7→ ψΦ1,...,Φk,x (Q1, . . . , Qk), as follows from its definition.
The properness condition guarantees that Φℓ ((qℓ)ν) → ∞ as ν → ∞ for each ℓ = 1, . . . , k. By condition
2), for any Q1 ≥ (Q1)0 := Φ1 ((q1)1)

2, there is ν with Q1 ∈
[
Φ1 ((q1)ν) ,Φ1

(
(q1)ν+1

)]
and after choosing

Qℓ ∈
[
Φℓ ((qℓ)ν) ,Φℓ

(
(qℓ)ν+1

)]
for ℓ = 2, . . . k by condition 4) we have

ψΦ1,...,Φk,x (Q1, . . . , Qk) ≤ ψΦ1,...,Φk,x (Φ1 ((q1)ν) , . . . ,Φk ((qk)ν))

≤ ⟨qν · x⟩
≤ |qν · x− pν |
< φ

(
Φ1

(
(q1)ν+1

)
, . . . ,Φk

(
(qk)ν+1

))
≤ φ (Q1, . . . , Qk)

which shows that x ∈ B.
Now we shall construct our sequences such that conditions 1) through 5) hold. Let ν = 1. Choose

i1 := min {i ∈ N : Li ̸= ∅}, which must exist by hypothesis d). Define U1 to be some open set containing a
point in Li1 such that U1 ⊂ W. We see that conditions 1), 3), and 5) follow immediately from this choice.
If p1, (q1)1 , . . . , (qk)1 are the elements of the primitive vector corresponding to Ai1 , then conditions 2) and
4) hold as well.

Now suppose we have constructed Um, im for m = 1, . . . , ν. Let i = iν . By condition 5), for m = ν we
have Um ∩ Li ̸= ∅. By hypothesis b), there is an infinite subsequence of indices j such that |Aj | → ∞ as

j → ∞ and Um∩Li∩Lj ̸= ∅. For each such j, let Aj = Amj
with mj =

(
p′j , (q

′
1)j , . . . , (q

′
k)j

)
. Then by the

definition of |Aj |, along this subsequence
∥∥∥((q′

1)j , . . . , (q
′
k)j

)∥∥∥ → ∞. If we employ a trick similar to that

of Theorem 4.4, (i.e. restrict our root system as to construct an appropriately concave subset Q of Rk), we

can ensure that restricting
(
(q′

1)j , . . . , (q
′
k)j

)
to Q forces (q′

1)j , . . . , (q
′
k)j → ∞. Thus, by the properness

of Φ1, . . . ,Φk, we can choose j > i such that Φ1

(
(q′

1)j

)
> Φ1 ((q1)ν) , . . . ,Φk

(
(q′

k)j

)
> Φk ((qk)ν). If we

set iν+1 := j, this ensures that condition 2) holds for ν + 1.
Next, let x′ ∈ Uν ∩ Li ∩ Lj . Since x′ ∈ Li, we see that qν · x′ = pν . By continuity, we choose a small

neighborhood V ⊂ Uν of x′ such that for all x ∈ V

|qν · x− pν | < ψ
(
Φ1

(
(q1)ν+1

)
, . . . ,Φk

(
(qk)ν+1

))
Thus, condition 4) holds for ν + 1.

Since x′ ∈ Lj , we must have V ∩ Liν+1
̸= ∅. Thus by hypothesis c), there exists x′′ such that

x′′ ∈ Lj ∩ V \
⋃

m<ν+1

(Lm ∪ L′
m′ ∪ {bm})

Further, we can take a neighborhood Uν+1 of x′′ such that Uν+1 ⊂ Uν and

Uν+1 ∩
⋃

m<ν+1

(Lm ∪ L′
m′ ∪ {bm}) = ∅

2Note that this is referring to the vector (q1)ν for ν = 1, not a component of a vector.
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Consequently, conditions 1), 3), and 5) now hold. Thus concludes the induction and this proof.

Corollary 4.2. For S, L, L′, and Ai satisfying Theorem 4.7, if we choose Φ1 = · · · = Φk = ∥·∥ and

φ (Q1, . . . , Qk) =
∏k

ℓ=1
1
Qℓ

, there exists an uncountable number of singular pairs (x1, . . . , xn) that are totally
irrational.

4.3 Weighted Approximation

The results of Theorems 3.3, 4.4, and 4.7 are rather general, leaving our desired results as corollaries. In
fact, the generality of the Φi allow us to expand our results to quasinorms. Let us first set

s = (s1, . . . , sn) ∈ (0, 1)
n

n∑
i=1

si = 1

and define

ρ := max
1≤i≤n

si δ := min
1≤i≤n

si

We can then define the s-quasinorm ∥·∥s on Rn as

∥x∥s = max
1≤i≤n

|xi|1/si

We see that the max-norm that we have been working with thus far is the n-th root of the
(
1
n , . . . ,

1
n

)
-

quasinorm. This also lends to new versions of the weighted uniform exponent. The weighted uniform
exponent for weights s is the suprememum of all γ such that

∥qx∥s ≤ Q−nγ 0 ≤ q ≤ Q

has a solution q ∈ N for all large Q. We can also naturally extend our work using the transference principle
to the dual uniform exponent. We see that for x totally irrational,

ω̂∗
s ≥ n

1

n
≤ ω̂s ≤

1

ρn

We could replace any of the Φi in Theorems 3.3, 4.4, and 4.7 with these quasinorms to prove that under
the correct conditions, there is an uncountable number of totally irrational, singular vectors in Rn with
respect to any quasinorm.
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