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1 Introduction

Understanding the effects of exposing cancer cells to changes to its microenvi-
ronment, including the presence of medical drugs and other cell populations, is
an important tool for investigating malignancy in cancers and the efficacy of
anticancer therapeutics. The ability to quantify various aspects of the growth
of cancer and of the interactions between cancer and its microenvironment aids
in our understanding of cancer growth dynamics. In this paper, we implement
the tools of ordinary differential equation (ODE) modeling and parameter ex-
traction to interpret data from experiments that study the effect that changes
in the microenvironment have on cancer growth.

ODE modeling is a useful tool for analyzing the growth dynamics of various
cell populations present in cancer growth experiments. These models consist
of one or more ODEs, each of which describes the growth dynamics of a single
population. The ODEs contain a number of unspecified parameters which, along
with the initial value of each cell population, can be varied to fit the solution
of the model equations to experimental data. The model ODEs are constructed
by setting the rate of change of each cell population to a sum of terms each
describing a feature of the growth dynamics of that population, such as the
rates of growth, apoptosis, and killing by other cells.

In most cases, we can draw a direct connection between the value of a pa-
rameter and a biologically significant quantity, such as the growth rate of a
cell population. Determining values of model parameters that yield a satisfac-
tory agreement between the model solution and experimental data allows us to
quantify important aspects of the underlying cell growth dynamics that are not
immediately measurable from the data.

In this paper we develop a method to determine the parameter values of an
arbitrary ODE model given experimental data which yield the best agreement
between the model solution and the data. We then apply this method to two
ODE models aimed at describing the growth dynamics of MB49 mouse bladder



cancer, a cell line used extensively to study bladder cancer in in vivo and wn
vitro experiments, under various experimental conditions.

The first model consists of a single ODE describing the exponential growth
of healthy cancer cells. This model is applied to data from experiments that
track the growth of cancer cells expressing different levels of an immunogenic
antigen while being exposed to different dosages of an anticancer drug. We use
this model alongside experimental data to quantify the growth rate of various
cell lines, allowing us to investigate the effects of drug dosage and antigenicity
on cancer cell growth.

The second model consists of a system of ODEs describing the interactions
between cancer cells and T cells, incorporating phenomena such as the immune
response of T cells and T-cell exhaustion. The binding of antigens to T-cell
receptors triggers an immune response that incites T cells to kill cancer cells.
T-cell exhaustion refers to the incapacitation of T cells in response to chronic
exposure to antigens.

We run tests confirming that this model is structurally identifiable. This
allows us to asses the extent to which, given a sufficiently good initial guess, we
can theoretically extract the value of each model parameter from data. However,
to gain information about the practical identifiability of the model, we investi-
gate the model using the tools of Bayesian inference. By studying this model in
a Bayesian framework, we gain information about the practical identifiability of
several model parameters (i.e., to what extent we can use experimental data to
determine the values of the parameters) and about correlations between certain
parameters.

2 Methods

2.1 A Method of Extracting the Best-Fit Parameter Val-
ues from Experimental Data

Past research suggests that exponential growth is a reasonable model of in vitro
cancer cell population growth before carrying capacity effects become significant.
We construct a simple ODE model describing the exponential growth of a cancer
cell population consisting of a single ODE, namely

L'=rL (1)

where L denotes the size of the cancer cell population in confluence. Conflu-
ence refers to the percentage of a culture dish that is covered by cells and is
understood to be directly proportional to the cell population. The solution to
Eq. (1) depends on the values of two parameters: the growth rate r and the
initial confluence value L.

Consider the synthetic data set plotted in blue in each panel of Figure 1.
Given this data, we are interested in determining the values of r» and L that
yield the best agreement between the solution to Eq. (1) and the data. Figure
1 showcases varying levels of agreement between the solution to Eq. (1) (red)



2l (a) 1 (b)

Confluence (%)
Confluence (%)

0 1 2 3 4 5 0 1 2 3 4 5
Time (hrs.) Time (hrs.)

w2} (©)

Confluence (%)

Time (hrs.)

Figure 1: Three realizations of the solution to Eq. (1) (red) overlaid with data
(blue). (a): The chosen value of the growth rate r is too small, and the chosen
initial value Lg is too large. (b): r is too large, and Ly is too small. (¢): The
values of r and Ly yield a satisfactory level of agreement between the model
solution and the data.

and the data (blue). In Figure 1(a), the chosen value of the growth rate r is too
small, and the chosen initial value Ly is too large. In Figure 1(b), r is too large,
and Lg is too small. In Figure 1(c), the values of r and Lg yield a satisfactory
level of agreement between the model solution and the data.

To quantify how well the solution to an ODE model agrees with data, we use
a variation on the method of least squares. We construct objective functions
which, given a set of parameter values, compute the sum of the square of the
Euclidean norm of the error between the model solution and the data for each
state variable over all data points. The first objective function computes the
sum of the square of the absolute error between the model solution and the
data over all data points (see Eq. (2)), whereas the second objective function
computes the sum of the square of the relative error (relative to the data value)
over all data points (see Eq. (3)). Note that the division in Eq. (3) is performed
element-wise. The functional forms of both versions of the objective function



are listed in Eq. (2)-(3).
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where (t1,y1), (t2,¥2),-- ., (tm,¥m) is the data and f(¢;p1,pe,...,pn) is the
solution to the model with parameters py,ps, ..., p, at time ¢.

The differences in the functional forms of Eq. (2) and Eq. (3) affect cer-
tain features of the model solutions generated with the parameter values that
minimize their respective objective function. We find that the parameter val-
ues generated by minimizing Eq. (2) yield a model solution that favors fitting
data points at larger confluences at the cost of a worse fit for data points at
smaller confluences (see Figure 2(a)). On the other hand, the values generated
by minimizing Eq. (3) yield a solution that favors fitting data points at smaller
confluences over those with larger confluences (see Figure 2(b)).

We claim that both realizations of the model solution in Figure 2 are satis-
factory, agreeing sufficiently well with the data. In general, we expect that if an
ODE model captures the underlying growth dynamics observed in experimen-
tal data sufficiently well, then choosing the parameter values p1, po, ..., p, that
minimize the value of either Eq. (2) or Eq. (3) will yield a satisfactory level
of agreement between the solution to an ODE model and given data. Since
both minimizing Eq. (2) and minimizing Eq. (3) generate parameter values
that yield a good fit between the model solution and the data, in this analysis
we define the best-fit parameter values to be the single set of parameter values
computed by averaging the values of each parameter determined using Eq. (2)
and Eq. (3). In other words, we weight the outputs of absolute (see Eq. (2))
and relative (see Eq. (3)) error equally.

For example, see Table 1, which displays the best-fit parameter values of r
and Ly generated by both minimizing Eq. (2) and minimizing Eq. (3). The
solutions to Eq. (1) using these sets of parameter values are graphed in Figure
2. As defined above, the best-fit parameter values are

0.92% + 1.04%
LO, best-fit — % = 0.98% (4)

and
0.53 hr.”! 4 0.50 hr.™*
2

which yield the solution to Eq. (1) graphed in Figure 1(c) (and reprinted in
Figure 2(c) for comparison).

Thest-fit = =0.52 hr.il, (5)
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Figure 2: Three realizations of the solution to Eq. (1) using the best-fit pa-
rameter values determined by minimizing the objective functions Eq. (2)-(3)
overlaid with data. (a): Minimizing Eq. (2) favors fitting data points at larger
confluences at the cost of a worse fit for data points at smaller confluences. (b):
Minimizing Eq. (3) favors fitting data points at smaller confluences over those
with larger confluences. (¢): The best-fit realization of the solution to Eq. (1)
using the average of the best-fit parameter values determined by minimizing Eq.

(2) and Eq. (3).

Objective Function Parameter | Best-Fit Parameter Value
Lo 0.92 %
Absolute error (Eq. (2)) - 0.53 hr.~!
. Lo 1.04 %
Relative error (Eq. (3)) , 0.50 hr.~!

Table 1: The best-fit parameter values of r and Ly generated by both minimizing

Eq. (2) and minimizing Eq. (3).



2.2 Assessing the Efficacy of an Anticancer Drug Target-
ing a Mutated FGFR3 Pathway in Bladder Cancer

This analysis aims to explore the on- and off-target effects of a fibroblast growth
factor receptor 3 (FGFR3) inhibitor aimed at slowing the growth of MB49 blad-
der cancer cells with a mutation in the FGFR3 gene that increases proliferation
and decreases apoptosis. Data is collected from an experiment in which the
confluences of three cell lines are recorded periodically. The three cell lines are

1. MB49, the parental bladder cancer cell line,
2. G370C, MB49 cells with a mutation in the FGFR3 gene, and

3. 2G, MB49 cells that have undergone the laboratory process of inserting
the mutation in the FGFR3 without receiving the mutation.

The 2G cell line serves as an appropriate control group for the G370C cell line
since it allows us to control for any effects that the process of inserting the
mutation has on the growth dynamics of the G370C cell line.

In this experiment, the FGFR3 inhibitor is administered in four dosages,
control (none), low, medium, and high, to each of the three cell lines. The
samples are allowed to grow freely in cell culture dishes. The confluences of
the samples of the MB49 and 2G cell lines receiving each of the four drug
dosages are recorded at 0, 3, 48, and 72 hours. The confluences of the samples
of the G370C cell line receiving each drug dosage are recorded at 0, 45, and
69 hours. Furthermore, this experiment is performed in replicate to account
for the inherent noise present in the processes underlying population growth.
Specifically, the confluences of six samples of each control-dosage cell culture and
three samples of each low-, medium-, and high-dosage cell culture are recorded
at each time point. The procedure used to measure confluence values in this
experiment interferes significantly with the growth of the sample; therefore, in
this experiment each sample yields a single data point.

Since the samples grow unimpeded, we expect their growth to be approx-
imately exponential, following the growth dynamics outlined in Eq. (1). We
plot the data and confirm that exponential growth does a sufficiently good job
of capturing the trend of the data for each combination of cell line and drug
dosage. We then apply the parameter extraction techniques outlined in Section
2.1 to yield a best-fit growth rate r and initial value Ly for each combination of
cell line and drug dosage. Comparing the best-fit growth rates across cell lines
and dosages provides information about how the FGFR3 inhibitor affects the
growth dynamics of bladder cancer cells both with and without the mutation in
the FGFR3 gene. The intended, targeted effect of the drug is to decrease the
growth rate of cell populations with the mutation while leaving non-mutated cell
populations unaffected. Other changes, such as a decrease in the growth rates
of both mutated and non-mutated cell populations, are undesirable, off-target
effects.



2.3 Analyzing the Effects of SIY Antigenicity on Bladder
Cancer Growth Dynamics

This analysis aims to characterize the effects of the SIY antigen on the growth
dynamics of MB49 bladder cancer cells in the absence of T cells. The effects of
SIY antigenicity on cancer cell growth dynamics will be important to consider
in future experiments in which MB49 cells will be grown in the presence of T
cells. Data is collected from an experiment in which the confluences of five cells
lines are recorded periodically. The five cell lines are

1. MBA49, the parental cell bladder cancer cell line,

2. L14, MB49 cells expressing low levels of the SIY antigen,

3. L19, MB49 cells expressing medium levels of the SIY antigen,
4. H1, MB49 cells expressing high levels of the SIY antigen, and

5. ZS2, MB49 cells that have undergone the laboratory process of inducing
SIY antigen expression without adding any antigen.

The ZS2 cell line serves as an appropriate control group for the three antigenic
cell lines (.14, L19, and H1) since it allows us to control for any effects that the
process of inducing SIY antigen expression has on the growth dynamics of the
antigenic cell lines.

In this experiment, six samples of each cell line are allowed to grow freely in
cell culture dishes. The confluences of the samples are measured every four hours
over the course of 28 hours. Unlike the procedure used in the FGFR3 inhibitor
experiment (see Section 2.2), the procedure used to measure confluence values
in this experiment does not significantly interfere with the growth of the sample;
therefore, each sample is measured at each time point during the experiment.

Since the samples grow unimpeded, we similarly expect their growth to be
approximately exponential, following the growth dynamics outlined in Eq. (1).
We plot these data on a logarithmic scale and use a measure of linear correlation
to confirm that exponential growth does a sufficiently good job of capturing the
trend of the data for each sample of each cell line. We then apply the parameter
extraction techniques outlined in Section 2.1 to yield a best-fit growth rate r and
initial value Lg for each sample of each cell line. We expect that SIY antigenicity
has no noticeable effect on the growth dynamics of bladder cancer cells, since
in the absence of T cells we expect that the SIY antigen will not inhibit cancer
cell population growth. Comparing the best-fit growth rates across cell lines
provides information about the effect of SIY antigenicity on bladder cancer
growth, allowing us to evaluate our expectation that bladder cancer growth is
unaffected by SIY antigenicity.



2.4 Constructing an ODE Model to Describe the Interac-
tions Between Bladder Cancer Cells and T Cells

We construct a model consisting of four ODEs describing the interactions be-
tween healthy cancer cells (L), apoptotic cancer cells (A), healthy T cells (T),
and apoptotic T cells (U). The model incorporates the natural reproduction
and death of cancer and T cells, the killing of cancer cells by T cells, and the
exhaustion of T cells in response to chronic antigen exposure. Eq. (6) provides

a description of the biological processes corresponding to each term of the model
ODE:s.

L' = ‘ Growth rate of healthy cancer cells

— ‘ Rate at which healthy cancer cells become apoptotic‘

— ‘ Rate at which cancer cells are killed by T cells ‘

A = ‘ Rate at which healthy cancer cells become apoptotic‘

+ ‘ Rate at which cancer cells are killed by T cells‘

— ‘ Rate at which apoptotic cancer cells are cleared‘

T = ‘ Growth rate of healthy T cells

- ‘ Rate at which healthy T cells become apoptotic ‘

— ‘ Rate at which healthy T cells die due to exhaustion‘

U = ‘ Rate at which healthy T cells become apoptotic‘

+ ‘ Rate at which healthy T cells die due to exhaustion‘

- ‘ Rate at which apoptotic T cells are cleared‘

The model ODEs are listed in Eq. (7).

L'=(r—a)L—0 k(L,T)

A= L+ k(L T) — dA .
' = (a— BT — 6 ki(L.T)

U' =BT + ¢ ki(L,T) — dU.

We suggest four functional forms of k;(L,T’), which describes the mechanism
by which cancer cells are killed by T cells and by which T cells die due to



exhaustion:

ki (L,T) = LT (8)
_ (r/o)
ko(L,T) = @D (9)
T)\
ks(L,T) = PR DY (10)
ky(L,T) = LT (11)

Eq. (8) implements the law of mass action, whereas Eq. (9) and Eq. (10) are
increasing Hill functions of 7'/L and T, respectively. Eq. (11), a variation on
the law of mass action, did not yield usable results in this analysis.

When applying the best-fit parameter extraction method described in Sec-
tion 2.1, we fix the net growth rates of cancer cells and T cells to typical values
which are well-known from previous experiments:

Thet = T — a = constant (12)

Qnet = a0 — 3 = constant. (13)

A description of the biological significance of each model parameter along with
an assumed value of each model parameter is given in Table 2.

We analyze the model parameters r, «, 0, ¢, and d, along with a noise
estimate parameter o, in a Bayesian framework. A similar method has been
used in past research [1]. We perform Bayesian inference with uninformative
prior distributions and noisy synthetic data by sampling sets of parameter val-
ues from prior distributions and computing posterior distributions according to
Bayes’ theorem. This helps us understand to what extent the model parame-
ters are practically identifiable. Using the sets of parameter values sampled in
this process, we generate pair plots to investigate correlations between pairs of
parameters.

To assess the feasibility of performing this parameter extraction in practice,
we investigate the practical identifiability of several model parameters of in-
terest. We perform Bayesian inference on the cancer-T-cell model using three
versions of k;(L,T) (see Eq. (8)-(10)) with noisy synthetic data to look for
trends in the posterior distributions of these parameters and to look for correla-
tions between pairs of parameters. The fourth version of k;(L,T') (see Eq. (11))
did not yield usable results. The synthetic data are generated by recording the
solution to the cancer-T-cell model equations at 0, 5, 10, and 15 hours for a
set of reasonable input parameters (see Table 3). Uniformly distributed noise
is added to these data over a range of +15% of the data value; this is meant to
simulate the measurement error present in experimental data.

The input parameter values used in this analysis are the same as the assumed
values listed in Table 2. These values, along with the prior distributions for
the parameters of interest, are listed are listed in Table 3. Note that each
prior distribution is a uniform distribution, except for the the prior distribution
for the noise estimate parameter o, which is an inverse gamma distribution:



Parameter | Description Assumed Units
Value
Initial confluence of

Lo healthy cancer cells 10 %

Ao Initial .conﬂuence of 0 9%
apoptotic cancer cells
Initial confluence of

To healthy T cells g %

Initial confluence of

Uo apoptotic T cells 0 %

, Growth rate of cancer 0.9 _
cells

a Death rate of cancer 01 T
cells
Rate at which cancer 1

0 cells are killed by T | 0.01 (% - hr)="or % -

hr.
cells
Rate at which apop- _1

d totic cells are cleared 0.25 hr.

«@ Growth rate of T cells | 0.06 hr.”?

8 Death rate of T cells 0.05 hr.”?

& Rate at which T cells 0.01 (% - hr)Tor% -
die due to exhaustion ’ hr.~?
Exponent in cancer

A killing/T-cell exhaus- | 1 -
tion term
Steepness  coefficient

s in cancer killing/T-cell | 1 -
exhaustion term

Table 2: A description of the biological significance of each model parameter of
the cancer-T-cell ODE model (see Eq. (7)-(10)), along with assumed values of
each model parameter. Note that the units of § and ¢ are (% - hr.)~! when
using Eq. (8) and % - hr.”! when using Eq. (9) or Eq. (10).
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Parameter Input Value Prior Distribution

Lo 10 % -

AO 0 % -

To 5 % _

Uy 0% -

T 0.2 hr. ™" Uniform|0, 0.5]
a 0.1 hr.™* -

0 0.01 (% - hr.)"Yor % -hr.”" Uniform][0, 0.1]
d 0.25 hr.” " Uniform|[0, 0.5]
o 0.06 hr.” " Uniform|0, 0.5]
s 0.05 hr.” ! -

o 0.01 (% - hr.)"lor %-hr.”" Uniform|0, 0.1]
A 1 -

s 1 -

o - InverseGamma(a = 2, § = 3)

Table 3: Input values and prior distributions for the parameters of the cancer-
T-cell model (see Eq. (7)-(10)), along with the noise estimate parameter o.
Bayesian inference was not performed on the initial conditions, a, 8, A, or s;
therefore these parameters do not require prior distributions.

o ~ InverseGamma(a = 2, 8 = 3). Eight chains of 4,000 samples each are
obtained from the prior distributions using a No U-Turn Sampler (NUTS) with
a target acceptance ratio of 0.65.

Parameter values such as the intrinsic growth rates of the cancer cells (r)
and T cells («) are well known from previous experiments, so discovering strong
correlations between these and other less well-known parameters (in this case,
0, ¢, and d) will allow for the identification of the values of these less well-known
parameters based on their correlation with well-known parameter values.

3 Results

3.1 Parameter Extraction from an ODE Model to Assess
the Efficacy of an Anticancer Drug

We apply the best-fit parameter extraction method outlined in Section 2.1 to the
data from the FGFR3 inhibitor experiment (see Section 2.2). Fitting the param-
eters of the exponential growth ODE model (see Eq. (3)) to the experimental
data yields a best-fit growth rate and initial confluence for each combination
of cell line and FGFR3 inhibitor dosage. Comparing the best-fit growth rates
across cell lines and drug dosages allows us to investigate the on- and off-target
effects of an FGFR3 inhibitor aimed at slowing the growth of MB49 bladder
cancer cells with a mutation in the FGFR3 gene.

Figures 3-5 show the experimental data (blue) overlaid with the solution to

11
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Figure 3: Experimental data for the MB49 cell line (blue) overlaid with the
solution to Eq. (1) using the best-fit parameter values (red) for control (a), low
(b), medium (c), and high (d) dosages of an FGFR3 inhibitor.

Eq. (1) using the best-fit parameter values (red) for the MB49, G370C, and
2G cell lines, respectively, treated with four different dosages of the drug. The
best-fit growth rate in hr.”! is displayed in the title of each panel of Figures
3-5. As noted in Section 2.2, the procedure used to measure confluence values in
these trials interferes significantly with the growth of the cell culture. Therefore,
each data point in Figures 3-5 is taken from a different sample.

For each cell line, we normalize the best-fit growth rates to that of the
control-dosage trial for that cell line. This allows us to better observe the effects
of the drug on the cancer cell growth dynamics across cell lines and dosages by
controlling for the differences in the cell lines’ intrinsic growth rates (see Table
4 and Figure 6).

In assessing the efficacy of the FGFR3 inhibitor, we are especially interested
in comparing the G370C and 2G cell lines, as the 2G cell line is intended to
serve as a control for the effects of inserting the mutation in the FGFR3 gene of
the G370C cells (see Section 2.2). Noticeable on-target effects (i.e., a decrease
in the growth rate of the G370C cell line while leaving the growth rate of the
2G cell line unaffected) emerge only in the high-dosage trial. Even for the high-
dosage trial, off-target effects (i.e., a decrease in the growth rates of both the

12
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Figure 4: Experimental data for the G370C cell line overlaid with the solution
to Eq. (1) using the best-fit parameter values for control (a), low (b), medium
(c), and high (d) dosages of an FGFR3 inhibitor.

Control Dosage | Low Dosage | Medium Dosage | High Dosage
2G 1 0.985 0.996 0.918
G370C 1 0.986 0.994 0.895
MB49 1 1.008 0.933 0.903

Table 4: The best-fit growth rates across cell lines and FGFR3 dosages, nor-
malized to the control-dosage trial for each cell line.
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Figure 5: Experimental data for the 2G cell line overlaid with the solution to
Eq. (1) using the best-fit parameter values for control (a), low (b), medium (c),
and high (d) dosages of an FGFR3 inhibitor.
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Figure 6: (a): The best-fit growth rates across cell lines and FGFR3 inhibitor
dosages, normalized to the control-dosage trial for each cell line. (b): The
differences between the best-fit growth rates and the control-dosage growth rates
for the low-, medium-, and high-dosage trials, normalized to the control-dosage
trial for each cell line.
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MB49 | ZS2 L14 L19 H1

Sample 1 | 0.998 | 0.994 | 0.992 | 0.999 | 0.999
Sample 2 | 0.999 | 0.993 | 0.997 | 1.000 | 0.999
Sample 3 | 0.999 | 0.992 | 0.994 | 0.999 | 0.999
Sample 4 | 1.000 | 0.997 | 0.995 | 0.999 | 0.999
Sample 5 | 1.000 | 0.997 | 0.995 | 0.999 | 0.999
Sample 6 | 0.998 | 0.996 | 0.995 | 0.999 | 0.999

Table 5: Pearson correlation coefficient (PCC) values for the data from the STY
antigenicity experiment plotted on a logarithmic scale (see Figure 7). A PCC
value close to 1 indicates a strong, positive correlation between the independent
and dependent variables.

G370C and 2G cell lines) dominate over on-target effects. The relatively small
effect the FGFR3 inhibitor has on slowing the growth of bladder cancer cells
with the mutation to the FGFR3 gene even at high dosages suggests that the
mutation may promote cancer growth in a way other than by increasing the
intrinsic growth rate of the cancer cells. One possibility is that the mutation
affects the in vivo microenvironment in a way that increases the growth rate of
bladder cancer cells and decreases the the rate at which they become apoptotic.

3.2 Parameter Extraction from an ODE Model to Ana-
lyze the Effect of SI'Y Antigenicity on Bladder Cancer
Growth Dynamics

We expect that the exponential growth model outlined in Eq. (1) is a good
description of the data from the SIY antigenicity experiment (see Section 2.3).
To confirm this expectation, we plot the data on a logarithmic scale and compute
the Pearson correlation coefficient (PCC) for each cell culture data set (see
Table 5 and Figure 7). The PCC is a measure of linear correlation; a PCC
value of 1 indicates that there is a perfect positive, linear relationship between
the independent and dependent variable, whereas a PCC value of 0 indicates
that there is no correlation between the independent and dependent variable.
If the logarithmic-scale plots are approximately linear with a positive slope
(and therefore yield PCC values close to 1), we can be confident that the data
approximately follow exponential growth. Since the PCC values for each sample
of each cell line are greater than 0.99, we can be confident that the exponential
growth ODE model Eq. (1) will yield a close fit to the data.

We again apply the best-fit parameter extraction method outlined in Section
2.1 to the experimental data. Fitting the parameters of Eq. (1) to the experi-
mental data yields a best-fit growth rate and initial confluence for each sample
of each cell line. Figure 8 shows the experimental data (blue) overlaid with the
solution to Eq. (1) using the best fit parameter values for one sample of MB49
cells (red). This procedure was repeated for the other 29 samples used in the
experiment.
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Figure 8: Experimental data (blue) overlaid with the solution to Eq. (1) using
the best fit parameter values for one sample of MB49 cells (red). This procedure
was repeated for the other 29 samples used in the experiment (not shown).

As noted in Section 2.3, this experiment yields true time-series data (i.e., the
confluence of each sample is measured multiple times without being destroyed).
Therefore, we take the mean of the six best-fit growth rates for each cell line
to yield a single growth rate associated with each cell line. Table 6 shows that
the standard deviation of the growth rates among samples of the same cell
line is small compared to the mean growth rate for each cell line; therefore, it
is reasonable to characterize each cell line with a single intrinsic growth rate.
Comparing the best-fit growth rates across cell lines allows us to investigate the
effect of SIY antigenicity on the growth dynamics of cancer cells.

The means and standard deviations of the best-fit growth rates, along with

Mean Standard Deviation
Growth Rate | of Growth Rates | Doubling Time (hrs.)
(days™") (days—")
MB49 | 1.46 0.02 11.4

7S2 1.10 0.02 15.1

L14 1.36 0.06 12.3

L19 1.54 0.03 10.8

H1 1.53 0.04 10.9

Table 6: The means and standard deviations of the best-fit growth rates, along
with their associated doubling times, for each cell line.
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Figure 9: (a): The mean best-fit growth rate for each cell line. The error bars
span +1 standard deviation. (b): The doubling time associated with the mean
growth rate for each cell line.

their associated doubling times, are shown for each cell line in Table 6 and plot-
ted in Figure 9. In analyzing the effect of antigenicity on cancer cell population
growth dynamics, we are especially interested in comparing the ZS2 cell line
with the antigenic cell lines (L14, L19, and H1), as the ZS2 cell line is intended
to serve as a control for the effects of inducing SIY antigen expression in the
antigenic cell lines (see Section 2.3). Contrary to our expectation, the growth
dynamics of MB49 cells appear to depend strongly on the amount of SIY antigen
expressed by cancer cells. Specifically, the L19 (medium-antigen) and H1 (high-
antigen) cell lines exhibit even larger growth rates than the L14 (low-antigen)
cell line, which exhibits a larger growth rate than the ZS2 (control) cell line.
The growth rate of the MB49 parental cell line is comparable to those of the
L19 and H1 cell lines.

3.3 Investigating a Cancer-T-Cell ODE Model in a
Bayesian Framework

We use the Generating Series for Testing Structural Identifiability (GenSSI) 2.0
software package to perform structural identifiability analysis on the cancer-
T-cell model outlined in Eq. (7) for each of the four versions of k;(L,T) (see
Eq. (8)-(11)). Using Eq. (8) (the law of mass action), we find that the model
is globally structurally identifiable. Using Eq. (9)-(11), the model is locally
structurally identifiable. For any choice of k;(L,T), the model is structurally
identifiable, which informs us that we can theoretically extract the value of each
model parameter from data given a sufficiently good initial guess.

To assess the feasibility of performing this parameter extraction in practice,
we investigate the practical identifiability of several model parameters of inter-
est. We are most interested in simultaneously analyzing the parameters r and
«, whose values are well known from previous experiments, with the less well-
known parameters 6, d, and ¢. We perform the Bayesian inference procedure
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Figure 10: Bayesian inference results using Eq. (8) (the law of mass action).
(a): Posterior distributions for five model parameters and the noise estimate
parameter o. (b): Pair plots for five model parameters. (c)-(d): Realizations
of the solution to (7) using (8) using two of the 8000 sampled sets of parameter
values used in this analysis, overlaid with synthetic data.

on these five parameters along with the noise estimate parameter o for each of
three versions of k;(L,T) (see Eq. (8)-(10)).

The results of this analysis using Eq. (8) (the law of mass action) are dis-
played in Figure 10. Each posterior distribution in Figure 10(a) appears to
be approximately normal, indicating that the model parameters are practically
identifiable to a large extent. We note the strong, positive correlation between
r and 0 and the weaker positive correlation between o and ¢ shown in the pair
plots (see Figure 10(b)). Figure 10(c)-(d) show two realizations of the solution
to the cancer-T-cell model outlined in Eq. (7) using Eq. (8) using two of the
8000 sampled sets of parameter values used in this analysis overlaid with syn-
thetic data. We note the high level of agreement between the best-fit model
solutions and the data across all four cell populations.

The results using Eq. (9) (an increasing Hill function of 7'/ L) are displayed in
Figure 11. The posterior distributions of 7, a, d, and o in Figure 11(a) appear
to be approximately normal, indicating that these parameters are practically
identifiable to a large extent. There is a strong, positive correlation between r
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Posterior Distribution Mean Using
Parameter | Input Value Eq. (8) | Eq. (9) Eq. (10)
r 0.2 0.2014 | 0.2057 0.2380
0 0.01 0.0102 | 0.0290 0.0562
d 0.25 0.2376 | 0.2976 0.3653
o 0.06 0.0554 | 0.0768 0.0741
10) 0.01 0.011 0.0325 0.0152

Table 7: The means of the posterior distributions for each model parameter
analyzed for the three versions of k;(L,T) used, along with the input parameter
values.

and 0 and between « and ¢ (see Figure 11(b)). Since r appears to be practically
identifiable and r and @ are highly correlated, we can be confident in our ability
to identify the value of 6 given the value of r. A similar relationship exists
between o and ¢. These results indicate that these parameters are practically
identifiable to a large extent.

The results using Eq. (10) (an increasing Hill function of T') are displayed in
Figure 12. We note a strong, positive correlation between o and ¢. There is also
a strong, positive, three-way correlation between r, 6, and d; however, the lack
of sharp peaks in the posterior distributions of these parameters greatly limits
their practical identifiability. One way of overcoming the limitations imposed
by the unidentifiability of r, 6, and d is by using the fact that r, the intrinsic
growth rate of cancer cells, is well-known from previous experiments. Assuming
the value of r allows us to use the correlation between r and 6 and between r
and d to closely identify each parameter.

The means of the posterior distributions describing each model parameter
analyzed for the three versions of k;(L,T) used are shown alongside the input
parameter values in Table 7.

4 Discussion

This paper showcases some basic methods used to apply ODE models to ex-
perimental data in order to obtain a more detailed description of the growth
dynamics governing MB49 bladder cancer. Extracting the best-fit values of
model parameters from experimental data reveals information about the under-
lying growth dynamics of a system that is not immediately measurable from the
data alone.

We first define a method to generate the best-fit realization of an ODE
model to experimental data by choosing model parameter values that minimize
the outputs two objective functions, one considering absolute error and the other
considering relative error. This yields two reasonable sets of parameter values;
the average of the the two values of each parameter is defined to be the best-fit
value of that parameter.

We apply this method using a simple model of exponential growth to assess
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of T).
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the efficacy of an FGFR3 inhibitor intended to slow the growth of MB49 bladder
cancer cells with a mutation in the FGFR3 gene. We find that the majority of
the drug’s effects are off-target, slowing the growth of cancer cell populations
both with and without the mutation. However, at high dosages, on-target ef-
fects begin to emerge, and mutated populations grow at slower rates than the
non-mutated population. We conclude that the mutation to the FGFR3 gene
likely promotes cancer cell population growth in a way other than by increas-
ing the intrinsic growth rate of cancer cells, possibly by affecting the in vivo
microenvironment in a way that is not captured by the in vitro experiment
considered here.

Next, we analyze the effect of the amount of SIY antigen expression on
the growth dynamics of MB49 cells in the absence of T cells. Using the same
exponential growth model as before, we determine a best-fit growth rate for
several cell lines corresponding to different levels of SIY antigenicity. We find
that higher levels of antigen expression generally correspond to larger growth
rates. These results contradict our expectation that SIY antigenicity has no
effect on the growth dynamics of populations of bladder cancer cells.

Finally, we investigate the behavior of an ODE model describing cancer-T-
cell interactions. We use a software package to show that the model is struc-
turally identifiable for any choice of k;(L,T). This informs us that, given a
sufficiently good initial guess, we can theoretically extract the value of each
model parameter from data. To assess the feasibility of performing this pa-
rameter extraction in practice, we investigate the model in a Bayesian frame-
work. The tools of Bayesian inference allow us to gain information about the
practical identifiability of several model parameters of interest and investigate
correlations between model parameters with well-known values and those whose
values are not well known. We aim to apply this cancer-T-cell model to future
experimental data that study the interactions between bladder cancer and T-
cell populations over time. Fitting the parameters of the cancer-T-cell model
to these data will allow us to gain a clearer picture of the underlying dynamics
that govern the interactions between bladder cancer and T-cell populations.

This approach to applying the mathematical tools of ODE modeling to data
obtained through biological experimentation should prove to be a valuable tool
for collaboration between laboratory researchers and mathematicians, assist-
ing in our understanding of malignancy in cancers and eventually leading to
improved therapeutics.
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