
MODULAR PRINCIPAL SERIES REPRESENTATION OF GL2 OVER FINITE RINGS

GAHL SHEMY

Abstract. We construct a Jordan-Hölder series for the modulo p reduction of the principal series repre-
sentation of GL2(Fp[t]/(tr)), given any prime p ≥ 3, r ∈ N, and character χ on the Borel subgroup of

GL2(Fp[t]/(tr)). As a corollary we provide the semisimplifications of all characteristic p principal series
representations of GL2(Fp[t]/(tr)), and explain a process to compute such semisimplifications in small cases

by the means of Brauer characters, apart from utilizing the known Jordan-Hölder series.

1. Introduction

A common quest in representation theory involves determining how the irreducible representations of
a group “fit together” to make up some other representation of concern. For instance, given a complex
representation ρ : G→ GL(V ) of a finite group G, Maschke’s theorem guarantees that the representation is
completely reducible, such that it can be uniquely expressed as a direct sum of irreducible representations of
the group G, up to isomorphism. Maschke’s theorem also holds when the representation V is over any field
of characteristic 0 or over a field of characteristic p, so long as p does not divide the order of the group. In the
case where V is over a field of characteristic p and p does divide the order of the group, Maschke’s theorem
no longer holds, forcing us to consider a different method of determining exactly how the irreducible modular
representations of a finite group G “fit together” to make up the representation with which we are concerned.
This is done through investigating Jordan-Hölder series of the representation, which are filtrations

0 ⊂ V1 ⊂ · · · ⊂ Vd = V

of subrepresentations with inclusions being proper and maximal, in the sense that each composition factor
Vi+1/Vi is isomorphic to an irreducible representation of G. The Jordan-Hölder Theorem states that such
composition series need not be unique, but that the set of composition factors (known as the irreducible
constituents) of a representation is unique. We can then define

V ss :=

d−1⊕
i=1

Vi+1/Vi(1)

to be the semisimplification of V , so that while V is not semisimple, the semisimplification of V does indeed
have a direct sum decomposition of irreducible representations by construction. Since each quotient Vi+1/Vi
is isomorphic to an irreducible representation of G, we have

V ss =
⊕
j

ρ
dj

j(2)

where ρj is an irreducible representation of G and dj is its multiplicity in the semisimplification of V . A
consequence of the Jordan-Hölder theorem is that V ss is unique up to rearrangement of factors in the direct
sum, so V ss is unique up to isomorphism.

In this paper we fix a prime p and consider the non-archimedean local field L = Fp((t)), the field of formal
Laurent series in t with coefficients in Fp. The ring of integers of L, denoted OL, is given by Fp[[t]] and
consists of all formal power series in t with coefficients in Fp. This ring has a unique maximal ideal generated
by an element ϖL called a uniformizer, in this case taken to be t. For any r ∈ N, we may consider the
general linear group of the finite ring (Fp[t]/(t

r))2, that is, the group consisting of invertible 2× 2 matrices
with entries in Fp[t]/(t

r). We denote Gr := GL2(Fp[t]/(t
r)).
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The choice of L = Fp((t)) puts us in the equal characteristic setting, where the field L has the same
characteristic as its residue field Fp. For work done in the mixed characteristic setting, see the appendix in
[?].

Given the finite group Gr, we let Br ≤ Gr denote the Borel subgroup of Gr consisting of 2 × 2 upper
triangular invertible matrices with entries in Fp[t]/(t

r). Fixing a field E of characteristic 0 whose residue
field kE = OE/(ϖE) is of characteristic p, we let χ1, χ2 : (Fp[t]/(t

r))× → E× be group homomorphisms, and
define

χ : Br → E×[
a b
0 d

]
7→ χ1(a)χ2(d).

The principal series representation of Gr is the induced representation IndGr

Br
(χ), which is a vector space

IndGr

Br
(χ) := {f : Gr → E | f(bg) = χ(b)f(g) ∀g ∈ Gr, b ∈ Br}(3)

with a Gr-action given by

ϑχ : Gr → GL(IndGr

Br
(χ))(4)

ϑχ(x)(f(g)) = f(gx)

for all x, g ∈ Gr, f ∈ IndGr

Br
(χ). In this paper we explore the modulo p reduction of the principal series

representation, where now χ maps to kE = OE/(ϖE) ∼= Fp and all maps f ∈ IndGr

Br
(χ) have codomain kE .

From hereon we abuse notation and write IndGr

Br
(χ) to mean the principal series representation after reducing

modulo p. Hence IndGr

Br
(χ) is a characteristic p vector space of dimension [Gr : Br] · dim(χ) = (p+ 1)pr−1,

with a Gr-action still given by (4).

The main result of the paper is an inductive construction of a Jordan-Hölder series for IndGr

Br
(χ):

Theorem 1.1. Let p ≥ 3 be a prime, let r ∈ N≥2, and let χ : Br → Fp
×

be a character. There exists a

filtration for IndGr

Br
(χ) given by

0 ⊂ IndGr

Ir−1
r

(σ(1)) ⊂ · · · ⊂ IndGr

Ir−1
r

(σ(p−1)) ⊂ IndGr

Ir−1
r

(σ) = IndGr

Br
(χ),(5)

where Ir−1
r := {

[
a b

ctr−1 d

]
∈ GL2(Fp[t]/(t

r)) : c ∈ Fp}, σ := Ind
Ir−1
r

Br
(χ), and σ(k) is an Ir−1

r -invariant

k-dimensional subspace of σ. Furthermore, we have that

IndGr

Ir−1
r

(σ(k+1))/ IndGr

Ir−1
r

(σ(k)) ∼= InfGr

Gr−1
Ind

Gr−1

Br−1
(χ · (a

d
)k)(6)

for 0 ≤ k ≤ p− 1, where χ · (ad )
k is the character χ · (ad )

k : Br → Fp
×

mapping

[
a b
0 d

]
7→ χ(

[
a b
0 d

]
) · (ad )

k.

We prove Theorem 1.1 in §3 after providing some preliminaries in §2. In §4 we give a corollary of the
main theorem regarding semisimplification numbers. Finally, since determining the semisimplification of a
given representation can be done without a Jordan-Hölder series via a computational process of computing
Brauer characters, we compute a small example using this method in §5, and show that the semisimplification
matches with what is deduced from our main theorem.

2. Preliminaries

2.1. Basic Representation Theory. We begin by providing key definitions from representation theory.

Definition 2.1. (Modular representation of a finite group) A characteristic p representation of a finite group
G is a group homomorphism

ρ : G→ GL(V )



MODULAR PRINCIPAL SERIES REPRESENTATION OF GL2 OVER FINITE RINGS 3

where V is a finite-dimensional vector space over a field of characteristic p and GL(V ) is the general linear
group of V . Equivalently we may define a representation of a finite group as a group action of G on a vector
space V , such that g · v = ρ(g)(v).

Remark 2.2. Although a representation of a group G is specified by both a vector space V and a group
homomorphism ρ, we will often refer to the vector space V as the representation of G, keeping in mind that
V is equipped with a G-action.

Definition 2.3. (Subrepresentations) Let ρ : G → GL(V ) be a representation, and consider a subspace
W ≤ V . We say W is a subrepresentation of V if

ρ(g)(w) ∈W

for all g ∈ G,w ∈W .

Definition 2.4. (Irreducible representation) A representation ρ : G → GL(V ) is irreducible if its only
subrepresentations are the zero subspace and the whole vector space V . Otherwise we say V is reducible.

2.2. Maschke’s Theorem and its Converse.

Proposition 2.5. (Maschke’s Theorem) Let G be a finite group and let F be a field whose characteristic
does not divide |G|. If V is a representation of G over F and U is any subrepresentation of V , then V has
a subrepresentation W such that V = U ⊕W .

Maschke’s theorem implies that every representation V of a finite group G over a field whose characteristic
does not divide the order of the group can be expressed uniquely as a direct sum of irreducible represen-
tations. The converse of Maschke’s theorem holds as well: if G is a finite group and V is a representation
over a field F whose order does divide |G|, then V is not completely reducible, that is, there exists some
subrepresentation U of V which has no complement subrepresentation W in V .

For a common example of Maschke’s Theorem failing when the characteristic of F divides |G|, we consider
the following:

Example 2.6. Let G = Z/pZ = ⟨g⟩ and let V = Fp
2
over Fp. Define an action of G on V via g · e1 = e1

and g · e2 = e1 + e2, giving

ρ : ⟨g⟩ → GL(V )

ρ(g) =

[
1 1
0 1

]
.

We note that this is indeed a representation, as ρ(0) = ρ(p · g) = ρ(g)p =

[
1 p
0 1

]
=

[
1 0
0 1

]
since the

characteristic of the underlying field is p. Notice that ⟨e1⟩ is stable under the action of G and that ⟨e1⟩ is
isomorphic to the trivial representation. We claim that there does not exist V ′ a subrepresentation of V
such that V = ⟨e1⟩ ⊕ V ′. For, if there was, then V/⟨e1⟩ ∼= V ′. But V/⟨e1⟩ is isomorphic to ⟨e2⟩, which,
according to the action of G on V , is isomorphic to the trivial representation, as

g · e2 = e1 + e2 = e2.

This implies that V is isomorphic to the direct sum of two copies of the trivial representation, and hence that
the fixed subspace of V , denoted V G, is two-dimensional. But V G is one-dimensional: if α1e1 + α2e2 ∈ V G,
then g · (α1e1 + α2e2) = α1e1 + α2(e1 + e2) = α1e1 + α2e2 implies that α2 = 0 and hence that V G = ⟨e1⟩.

3. Proof of Main Theorem

3.1. Characters of Br. It is known (see [1]) that every character χ : B1 → Fp
×

is of the form[
a b
0 d

]
7→ aℓ(ad)s
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for some 0 ≤ ℓ, s ≤ p − 2. We claim that an analogue holds in the general Br case, in the sense that every

character χ : Br → Fp
×

is of the forma0 + · · ·+ ar−1t
r−1 b0 + · · ·+ br−1t

r−1

0 d0 + · · ·+ dr−1t
r−1

 7→ aℓ0(a0d0)
s

for some 0 ≤ ℓ, s ≤ p− 2, and hence only depends on the constant terms a0, d0 belonging to F×
p .

Lemma 3.1. Every character χi : (Fp[t]/(t
r))× → Fp

×
is completely determined by where it maps the

constant terms belonging to F×
p . That is, χi(a0 + a1t+ · · ·+ ar−1t

r−1) = χi(a0).

Proof. We first show that χi : (Fp[t]/(t
r))× → Fp

×
must always map an element of the form 1 + a1t +

· · · + ar−1t
r−1 to 1. By raising such an element to the pth power we see that such an element has order

dividing p inside (Fp[t]/(t
r))×, and thus any nonidentity element of such form has order p. Since χi is a

group homomorphism, the image χi(1 + a1t + · · · + ar−1t
r−1) ∈ Fp

×
must have order dividing p. But no

elements in Fp
×

have order p, and thus χi(1 + a1t+ · · ·+ ar−1t
r−1) = 1 = χi(1).

Now χi(a0 + · · ·+ ar−1t
r−1) = χi(a0 · (1 + a1

a0
t+ · · ·+ ar−1

a0
)) = χi(a0)χi(1 +

a1

a0
t+ · · ·+ ar−1

a0
) = χi(a0),

completing the proof. □

Lemma 3.2. Every multiplicative map χ : Br → Fp
×

is of the form

χ : Br → (Fp[t]/(t
r))×a0 + · · ·+ ar−1t

r−1 b

0 d0 + · · ·+ dr−1t
r−1

 7→ aℓ0(a0d0)
s

for some 0 ≤ ℓ, s ≤ p− 2.

Proof. We first show that any matrix

[
1 + · · ·+ ar−1t

r−1 b
0 1 + · · ·+ dr−1t

r−1

]
must get mapped to 1 in F×

p

under any multiplicative map χ. Notice that[
1 + · · ·+ ar−1t

r−1 b
0 1 + · · ·+ dr−1t

r−1

]p
=

[
1 + · · · pb(1 + · · · )

0 1 + · · ·

]
and since pb ≡ 0 in Fp, we must have that

χ(

[
1 + · · · b

0 1 + · · ·

]
)p = χ(

[
1 + · · · b

0 1 + · · ·

]p
) = χ(

[
1 + · · · 0

0 1 + · · ·

]
).

Because any multiplicative map on a diagonal matrix in Gr must be the product of two multiplicative maps
on each entry in the diagonal, and since such diagonal elements belong to (Fp[t]/(t

r))×, each of the two mul-

tiplicative maps must be of the form in Lemma 3.1. In particular this shows that χ(

[
1 + · · · b

0 1 + · · ·

]
) = 1.

Now any matrix

[
a b
0 d

]
∈ Br can be expressed as[

a b
0 d

]
=

[
a 0
0 d

]
·
[
1 a−1b
0 1

]
so χ(

[
a b
0 d

]
) = χ(

[
a 0
0 d

]
). But a multiplicative map on a diagonal matrix is again just the product of

multiplicative maps on its diagonal entries, implying that χ = χ1 × χ2 where each χi is a map as in Lemma
3.1. In particular, since Lemma 3.1 shows that χi(a0 + a1t + · · · + ar−1t

r−1) = χi(a0) for an element
a0 + · · ·+ ar−1t

r−1 ∈ (Fp[t]/(t
r))×, then we conclude

χ(

[
a0 + · · ·+ ar−1t

r−1 b
0 d0 + · · ·+ dr−1t

r−1

]
) = χ1(a0) · χ2(d0).
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But both a0 and d0 belong to F×
p , a cyclic group of order p−1, and hence χ1(a0) and χ2(d0) must be (p−1)st

roots of unity in Fp
×
. Since all p − 1 such roots of unity lie in F×

p ⊂ Fp
×
, then both χ1 and χ2 map into

F×
p , which is cyclic of order p− 1. This implies that χ1(a0) = am0 for some 0 ≤ m ≤ p− 2 and χ2(d0) = ds0

for some 0 ≤ s ≤ p− 2. Alternatively, we can express am0 · ds0 as aℓ0(a0d0)
s where ℓ = m− s mod p. □

Remark 3.3. In this paper we abuse notation and write, for instance, a
d : Br → Fp

×
to mean the map

sending

[
a b
0 d

]
7→ a0d

−1
0 = a0d

p−2
0 , since the lemmas above guarantee that any character χ :

[
a b
0 d

]
→ Fp

×

is of the form aℓ0(a0d0)
s.

3.2. Induction from Borel subgroup. Let χ : Br → Fp
×
be a character. For r ≥ 2, we define the Iwahori

subgroup

Ir−1
r := {

[
a b

ctr−1 d

]
∈ Gr}(7)

to be the invertible matrices in Gr whose (2, 1)-entry have no terms of the form ckt
k for 0 ≤ k ≤ r − 2.

Equivalently, we may define Ir−1
r to be the preimage of Br−1 under the surjective homomorphism

π : Gr ↠ Gr−1(8)

tr−1 7→ 0.

Let σ := Ind
Ir−1
r

Br
(χ). Because dim(σ) = [Ir−1

r : Br] = p, we fix a basis {δ0, . . . , δp−1} of σ by setting

δj : I
r−1
r → Fp

×
(9)

δj(i) = 1Brxj · χ(ix−1
j )

where Brxj := Br

[
1 0

jtr−1 1

]
and 1 refers to the indicator function. It is clear that these p functions

are linearly independent as they each have support on a distinct right coset of Br in Ir−1
r , and that these

functions truly belong to σ, as if bi ∈ Brxj , we have

δj(bi) = χ(bix−1
j ) = χ(b)δj(i)

and if bi ̸∈ Brxj , then i ̸∈ Brxj , and

δj(bi) = 0 = χ(b)δj(i).

We note that by composition of induction, constructing a Jordan-Hölder series for IndGr

Br
(χ) is equivalent to

constructing a Jordan-Hölder series for IndGr

Ir−1
r

(σ). Therefore one may initially construct a Jordan-Hölder

series for σ and then “induce up” to get a filtration for IndGr

Br
(χ), which can then be further refined to a full

composition series for IndGr

Br
(χ). Since this is the approach we take in Theorem 1.1, we must first construct

a Jordan-Hölder series for σ:

Proposition 3.4. For every 0 ≤ k ≤ p there exists a k-dimensional Ir−1
r -invariant subspace σ(k) of σ, such

that

0 ⊂ σ(1) ⊂ · · ·σ(p−1) ⊂ σ

is a Jordan-Hölder series for σ.

Proof. The cases of k = 0 and k = p are trivial. For each 1 ≤ k ≤ p − 1, we construct a k-dimensional
subspace of σ, denoted σ(k), as follows:

σ(k) = ⟨
p−1∑
j=0

(
j

j

)
δj ,

p−2∑
j=0

(
j + 1

j

)
δj , . . . ,

p−k∑
j=0

(
j + k − 1

j

)
δj⟩.(10)
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To see that the vectors {
∑p−ℓ

j=0

(
j+ℓ−1

j

)
δj : 1 ≤ ℓ ≤ k} are linearly independent (and hence form a basis for

σ(k)), we notice that if we express each sum as a tuple in the basis {δ0, . . . , δp−1}, then putting the k p-tuples
into a p× k matrix gives

A =



(
0
0

) (
1
0

) (
2
0

)
· · ·

(
k−1
0

)(
1
1

) (
2
1

) (
3
1

)
· · ·

(
k
1

)
...

...
...

. . .
...

...
...

...
...

...(
p−2
p−2

) (
p−1
p−2

)
0 · · · 0(

p−1
p−1

)
0 0 · · · 0


p×k

.(11)

We verify that the columns {v⃗1, . . . , v⃗k} are linearly independent by noting that if

a1v⃗1 + · · ·+ akv⃗k = 0

then in particular a1
(
p−1
p−1

)
= 0, implying that a1 = 0. Then since a1

(
p−2
p−2

)
+ a2

(
p−1
p−2

)
= 0, we deduce that

a2 = 0. The fact that Aij = 0 for j ≥ p− i+ 2 allows us to inductively deduce that ai = 0 for 1 ≤ i ≤ k.

To see that σ(k) is Ir−1
r -invariant and therefore a subrepresentation of σ, we check that it is invariant under

every generator of Ir−1
r . By the Iwahori factorization of Ir−1

r , we have that any matrix

[
a b

ctr−1 d

]
∈ Ir−1

r

can be expressed as [
a b

ctr−1 d

]
=

[
1 0

ca−1tr−1 1

]
·
[
a 0
0 −ca−1btr−1 + d

]
·
[
1 ba−1

0 1

]
which allows us to conclude that

Ir−1
r = ⟨

[
1 tk

0 1

]
,

[
1 0

tr−1 1

]
,

[
a 0
0 d

]
⟩(12)

where k ranges from 0 to r− 1 and a, d belong to (Fp[t]/(t
r))×. In order to determine how Ir−1

r acts on each

subspace σ(k), we first determine how each generator of Ir−1
r given in (12) acts on each basis vector δj of σ.

Lemma 3.5. Let χ : Br → Fp
×

be a character of Br and let σ = Ind
Ir−1
r

Br
(χ). Let {δ0, . . . , δp−1} be the

ordered basis of σ given in (9). Then the generators of Ir−1
r act on each δj via[

1 tk

0 1

]
· δj = δj(13) [

1 0
tr−1 1

]
· δj = δj−1(14) [

a 0
0 d

]
· δj = χ(

[
a 0
0 d

]
) · δ d

a j(15)

where all indices j are taken modulo p.

Proof. We have that

(

[
1 tk

0 1

]
· δj)(i) ̸= 0 ⇐⇒ δj(i

[
1 tk

0 1

]
) ̸= 0

by definition of the Gr action on σ. But

δj(i

[
1 tk

0 1

]
) ̸= 0 ⇐⇒ i

[
1 tk

0 1

]
∈ Br

[
1 0

jtr−1 1

]
⇐⇒ i ∈ Br

[
1 0

jtr−1 1

]
·
[
1 −tk
0 1

]
⇐⇒ i ∈ Br

[
1 0

jtr−1 1

]
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such that

[
1 tk

0 1

]
· δj only has support on Brxj . Now suppose i ∈ Brxj , so i = b ·

[
1 0

jtr−1 1

]
for some

b ∈ Br. Then

(

[
1 tk

0 1

]
· δj)(i) = δj(b

[
1 0

jtr−1 1

]
·
[
1 tk

0 1

]
) = δj(b

[
1 tk

jtr−1 jtr−1+k + 1

]
) = χ(b

[
1 tk

jtr−1 jtr−1+k + 1

]
·
[

1 0
−jtr−1 1

]
)

= χ(b

[
1− jtr+k−1 tk

−j2t2r−2+k jtr−1+k + 1

]
)

= χ(b)χ(

[
1− jtr+k−1 tk

0 1 + jtr−1+k

]
)

= δj(i)

since χ(

[
1 + · · · b

0 1 + · · ·

]
) = 1 by the proof of Lemma 3.2. Hence

[
1 tk

0 1

]
· δj = δj . A similar argument

shows that

[
1 0

tr−1 1

]
· δj only has support on Brxj−1, and if i = bxj−1 for some b ∈ Brxj−1, then

(

[
1 0

tr−1 1

]
· δj)(b

[
1 0

(j − 1)tr−1 1

]
) = δj(b

[
1 0

(j − 1)tr−1 1

] [
1 0

tr−1 1

]
) = δj(b

[
1 0

jtr−1 1

]
) = χ(b) = δj−1(i),

allowing us to conclude

[
1 0

tr−1 1

]
· δj = δj−1. Finally, an analogous computation shows that

[
a 0
0 d

]
· δj only

has support on Brx d
a j , so we suppose i = b

[
1 0

d
ajt

r−1 1

]
for some b ∈ Br, and find that

(

[
a 0
0 d

]
· δj)(i) = δj(b

[
1 0

d
ajt

r−1 1

] [
a 0
0 d

]
) = δj(b

[
a 0

djtr−1 d

]
) = χ(b

[
a 0

djtr−1 d

] [
1 0

−jtr−1 1

]
) = χ(b)χ(

[
a 0
0 d

]
)

whereas

δ d
a j(b

[
1 0

d
ajt

r−1 1

]
) = χ(b)

by definition, which shows that

[
a 0
0 d

]
· δj = χ(

[
a 0
0 d

]
)δ d

a j as desired.

□

Recall that we wish to show σ(k) is Ir−1
r -invariant. Consider the sum

∑p−ℓ
j=0

(
j+ℓ−1

j

)
δj ∈ σ(k) for 1 ≤ ℓ ≤ k.

Since

[
1 tk

0 1

]
acts trivially on each δj , then certainly

[
1 tk

0 1

]
·
∑p−ℓ

j=0

(
j+ℓ−1

j

)
δj =

∑p−ℓ
j=0

(
j+ℓ−1

j

)
δj ∈ σ(k) for

each ℓ. The actions by the other generators are more involved, so we provide them as lemmas.

Lemma 3.6.

[
1 0

tr−1 1

]
·
p−ℓ∑
j=0

(
j + ℓ− 1

j

)
δj =

ℓ∑
m=1

p−m∑
j=0

(
j +m− 1

j

)
δj(16)

so that if the basis vectors of σ(k) are ordered, then acting on each basis vector by

[
1 0

tr−1 1

]
yields a sum of

the vector being acted on and the preceding basis vectors, thus remaining in σ(k).
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Proof. We prove (16) by induction on ℓ: when ℓ = 1, we have[
1 0

tr−1 1

]
·
p−1∑
j=0

(
j

j

)
δj =

p−1∑
j=0

(
j

j

)[
1 0

tr−1 1

]
· δj

=

p−1∑
j=0

(
j

j

)
δj−1

=

p−1∑
j=0

(
j

j

)
δj

so that the base case holds. Now suppose (16) holds for some ℓ ∈ N, ℓ < k. We wish to show the claim holds
for ℓ + 1. By the binomial coefficient recurrence relation

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
(where

(
n−1
k−1

)
= 0 whenever

k < 1), and by the fact that we can express
∑p−(ℓ+1)

j=0

(
j+ℓ
j

)
δj =

∑p−ℓ
j=0

(
j+ℓ
j

)
δj since the coefficient

(
p

p−ℓ

)
in

front of δp−ℓ is zero mod p, we get[
1 0

tr−1 1

]
·
p−(ℓ+1)∑

j=0

(
j + ℓ

j

)
δj =

[
1 0

tr−1 1

]
·
p−ℓ∑
j=0

(
j + ℓ

j

)
δj

=

[
1 0

tr−1 1

]
·

p−ℓ∑
j=0

(
j + ℓ− 1

j

)
δj +

p−ℓ∑
j=0

(
j + ℓ− 1

j − 1

)
δj

 .(17)

Our inductive hypothesis guarantees that[
1 0

tr−1 1

]
·
p−ℓ∑
j=0

(
j + ℓ− 1

j

)
δj =

ℓ∑
m=0

p−m∑
j=0

(
j +m− 1

j

)
δj ,(18)

while [
1 0

tr−1 1

]
·
p−ℓ∑
j=0

(
j + ℓ− 1

j − 1

)
δj =

p−ℓ∑
j=0

(
j + ℓ− 1

j − 1

)
δj−1

=

p−ℓ∑
j=1

(
j + ℓ− 1

j − 1

)
δj−1

=

p−(ℓ+1)∑
j=0

(
j + ℓ

j

)
δj(19)

since the coefficient
(
j+ℓ−1
j−1

)
= 0 for j = 0, by convention. Hence from (17), (18) and (19), we conclude that

[
1 0

tr−1 1

]
·
p−(ℓ+1)∑

j=0

(
j + ℓ

j

)
δj =

ℓ+1∑
m=1

p−m∑
j=0

(
j +m− 1

j

)
δj(20)

as desired, confirming σ(k) is indeed invariant under

[
1 0

tr−1 1

]
. □

It now suffices to show that σ(k) is invariant under

[
a 0
0 d

]
. As in the

[
1 0

tr−1 1

]
case, we show that acting

by

[
a 0
0 d

]
on
∑p−ℓ

j=0

(
j+ℓ−1

j

)
δj ∈ σ(k) yields an Fp-linear combination of

∑p−m
j=0

(
j+m−1

j

)
δj ∈ σ(k) for m ≤ ℓ,

and hence belongs to σ(k). Explicitly, we claim:
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Lemma 3.7. Let αi =
((p−i) a

d+ℓ−1

(p−i) a
d

)
. Then[

a 0
0 d

]
·
p−ℓ∑
j=0

(
j + ℓ− 1

j

)
δj = χ(

[
a 0
0 d

]
)

ℓ∑
m=1

cm

p−m∑
j=0

(
j +m− 1

j

)
δj(21)

where each cm is given by
∑m

i=1(−1)i+1
(
m−1
i−1

)
αi.

Proof. By the action of

[
a 0
0 d

]
on each δj , we have

[
a 0
0 d

]
·
p−ℓ∑
j=0

(
j + ℓ− 1

j

)
δj = χ(

[
a 0
0 d

]
)

p−ℓ∑
j=0

(
j + ℓ− 1

j

)
δ d

a j .(22)

For 0 ≤ n ≤ p−1, we see that δn appears in the right hand sum of (22) with a coefficient of χ(

[
a 0
0 d

]
)
(n a

d+ℓ−1
n a

d

)
,

and since δn appears in each vector
∑p−m

j=0

(
j+m−1

j

)
δj with a coefficient of

(
n+m−1

n

)
for the respective

1 ≤ m ≤ ℓ, it suffices to verify

c1

(
n

n

)
+ c2

(
n+ 1

n

)
+ · · ·+ cℓ

(
n+ ℓ− 1

n

)
=

(
na

d + ℓ− 1

na
d

)
for the proposed coefficients c1, . . . , cℓ. That is, we wish to show

ℓ∑
r=1

(
n+ r − 1

n

) r∑
i=1

(−1)i+1

(
r − 1

i− 1

)
αi = αp−n.(23)

Noticing how often each αr appears in the left hand side of (23) allows us to express

ℓ∑
r=1

(
n+ r − 1

n

)
cr =

ℓ∑
r=1

(−1)r+1

 ℓ−1∑
j=r−1

(
j + n

n

)(
j

r − 1

)αr(24)

such that the new goal is to show

ℓ∑
r=1

(−1)r+1

 ℓ−1∑
j=r−1

(
j + n

n

)(
j

r − 1

)αr = αp−n.(25)

When n = 0, we need to show that
∑ℓ

r=1

(
r−1
0

)
cr = αp =

(
ℓ−1
0

)
= 1. To see this, notice that by (24) we know

that
∑ℓ

r=1 cr =
∑ℓ

r=1(−1)r+1
∑ℓ−1

j=r−1

(
j
0

)(
j

r−1

)
αr =

∑ℓ
r=1(−1)r+1

(
ℓ
r

)
αr. Writing α1 =

((p−1) a
d+ℓ−1

(p−1) a
d

)
=

1
(ℓ−1)! (ℓ− 1− a

d ) · · · (1−
a
d ) and letting the variable x stand in for a

d , we have that

α1 =
1

(ℓ− 1)!
(aℓ−1x

ℓ−1 + aℓ−2x
ℓ−2 + · · ·+ a1x+ (ℓ− 1)!)

for some coefficients aℓ−1, . . . , a1. Notice then that αr = 1
(ℓ−1)! ((−1)ℓ−1rℓ−1xℓ−1 + · · ·+ a1rx+ (ℓ− 1)!), so

that the constant term of
∑ℓ

r=1 cr, when viewed as a polynomial in x = a
d , is given by

ℓ∑
r=1

(−1)r+1

(
ℓ

r

)
(ℓ− 1)!

(ℓ− 1)!
= (−1)

ℓ∑
r=1

(−1)r
(
ℓ

r

)
= (−1)

ℓ∑
r=0

(−1)r
(
ℓ

r

)
− (−1) = 1

since
∑ℓ

r=0(−1)r
(
ℓ
r

)
= 0. On the other hand, the coefficient of xm in the polynomial

∑ℓ
r=1 cr for 1 ≤ m ≤ ℓ−1

is given by

ℓ∑
r=1

(−1)r+1rm
(
ℓ

r

)
am

(ℓ− 1)!
=

−am
(ℓ− 1)!

ℓ∑
r=0

(−1)rrm
(
ℓ

r

)
= 0

due to the combinatorial sum identity
∑ℓ

r=0(−1)rrm
(
ℓ
r

)
= 0 given in [3]. We conclude that

∑ℓ
r=1 cr = 1 = αp

as desired.
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To prove
∑ℓ

r=1

(
n+r−1

n

)
cr = αp−n for 1 ≤ n ≤ p−1, we compare the coefficient of xm in both expressions.

Since the coefficient of xm in αr is given by am

(ℓ−1)!r
m, then from (24) we deduce that the coefficient of xm

in
∑ℓ

r=1

(
n+r−1

n

)
cr must be

∑ℓ
r=1(−1)r+1 am

(ℓ−1)!r
m
∑ℓ−1

j=r−1

(
j+n
n

)(
j

r−1

)
. On the other hand, the coefficient of

xm in αp−n is given by (−n)m am

(ℓ−1)! , so it suffices to prove

ℓ∑
r=1

(−1)r+1rm
ℓ−1∑

j=r−1

(
j + n

n

)(
j

r − 1

)
= (−n)m.(26)

Because
(

j
r−1

)
= 0 whenever j < r − 1, we can express the left hand side of (26) as

ℓ∑
r=1

(−1)r+1rm
ℓ−1∑
j=0

(
j + n

n

)(
j

r − 1

)
.(27)

Identity 3.155 in [2] tells us that
∑s−1

k=0

(
k
n

)(
k+m
m

)
=
(
s
n

)(
s+m
m

)
s−n

m+n+1 , which allows us to express (27) as

ℓ∑
r=1

(−1)r+1rm
ℓ−1∑
j=0

(
j + n

n

)(
j

r − 1

)
=

ℓ∑
r=1

(−1)r+1rm
(

ℓ

r − 1

)(
ℓ+ n

n

)
ℓ− r + 1

r + n

=

(
ℓ+ n

n

) ℓ∑
r=1

(−1)r+1rm
(

ℓ

r − 1

)
ℓ− r + 1

r + n

=

(
ℓ+ n

n

) ℓ∑
r=1

(−1)r+1rm · r
(
ℓ

r

)
1

r + n

=

(
ℓ+ n

n

) ℓ∑
r=1

(−1)r+1

(
ℓ

r

)
rm+1

r + n
.(28)

Finally, identity 1.47 in [2] shows that
∑ℓ

k=0(−1)k
(
ℓ
k

)
kj

x+k = (−1)j xj−1

(x+ℓ
ℓ )

, and therefore (28) becomes

(
ℓ+ n

n

) ℓ∑
r=1

(−1)r+1

(
ℓ

r

)
rm+1

r + n
=

(
ℓ+ n

n

)
(−1)

ℓ∑
r=0

(−1)r
(
ℓ

r

)
rm+1

r + n

=

(
ℓ+ n

n

)
(−1)(−1)m+1 nm(

n+ℓ
ℓ

)
= (−1)mnm

= (−n)m(29)

as desired. This proves that there exist c1, . . . , cℓ ∈ Fp
×

such that

p−ℓ∑
j=0

(
j + ℓ− 1

j

)
δ d

a j =

ℓ∑
m=1

cm

p−m∑
j=0

(
j −m+ 1

j

)
δj(30)

which means that there exist c1, . . . , cℓ ∈ Fp
×

such that[
a 0
0 d

]
·
p−ℓ∑
j=0

(
j + ℓ− 1

j

)
δj =

ℓ∑
m=1

χ(

[
a 0
0 d

]
)cm

p−m∑
j=0

(
j −m+ 1

j

)
δj .(31)

Because this holds for all 1 ≤ ℓ ≤ k, we have that σ(k) is invariant under action by

[
a 0
0 d

]
. □

Proposition 3.4 gives us a p-dimensional Jordan-Hölder series

0 ⊂ σ(1) ⊂ · · · ⊂ σ(p−1) ⊂ σ.
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Since each σ(k) is a subrepresentation of σ which is itself a representation of Ir−1
r , then inducing each σ(k)

to Gr gives a filtration

0 ⊂ IndGr

Ir−1
r

(σ(1)) ⊂ · · · ⊂ IndGr

Ir−1
r

(σ(p−1)) ⊂ IndGr

Ir−1
r

(σ).

In order to refine this filtration to a composition series for IndGr

Ir−1
r

(σ) = IndGr

Br
(χ), we note that it suffices to

find a composition series for IndGr

Ir−1
r

(σ(k+1)) which begins with IndGr

Ir−1
r

(σ(k)) for each 0 ≤ k ≤ p−1. But this

is equivalent to finding a composition series for IndGr

Ir−1
r

(σ(k+1))/ IndGr

Ir−1
r

(σ(k)) and then lifting the subrep-

resentations under the projection map p : IndGr

Ir−1
r

(σ(k+1)) → IndGr

Ir−1
r

(σ(k+1))/ IndGr

Ir−1
r

(σ(k)). Furthermore,

since

IndGr

Ir−1
r

(σ(k+1))/ IndGr

Ir−1
r

(σ(k)) ∼= IndGr

Ir−1
r

(σ(k+1)/σ(k))

then we only need to consider composition series of IndGr

Ir−1
r

(σ(k+1)/σ(k)) in order to answer our original

question.

We claim that σ(k+1)/σ(k) is equivalent to Inf
Ir−1
r

Br−1
(χ·(ad )

k) as one-dimensional Ir−1
r representations, where

Inf
Ir−1
r

Br−1
(χ · (ad )

k) refers to the inflation to Ir−1
r of the character sending

[
a b
0 d

]
7→ χ(

[
a b
0 d

]
) · (ad )

k ∈ Fp
×
.

To prove this equivalence it suffices to show that Ir−1
r acts on σ(k+1)/σ(k) via multiplication by χ · (ad )

k.

Again we show this claim only for the three types of generators of Ir−1
r . □

Lemma 3.8. The generators

[
1 tℓ

0 1

]
and

[
1 0

tr−1 1

]
act trivially on σ(k+1)/σ(k) for 0 ≤ ℓ ≤ r − 1 and

0 ≤ k ≤ p− 1.

Proof. Notice that σ(k+1)/σ(k) = ⟨
∑p−(k+1)

j=0

(
j+k
j

)
δj⟩, where δp−1, . . . , δp−k are defined by the equations∑p−m

j=0

(
j+m−1

j

)
δj = 0 for 1 ≤ m ≤ k. Since

[
1 tℓ

0 1

]
acts trivially on each δj , then clearly

[
1 tℓ

0 1

]
acts

trivially on
∑p−(k+1)

j=0

(
j+k
j

)
δj , which generates σ(k+1)/σ(k). On the other hand, by the proof of Lemma 3.6,

we know that[
1 0

tr−1 1

]
·
p−(k+1)∑

j=0

(
j + k

j

)
δj =

k+1∑
m=1

p−m∑
j=0

(
j +m− 1

j

)
δj

=

k∑
m=1

p−m∑
j=0

(
j +m− 1

j

)
δj +

p−(k+1)∑
j=0

(
j + k

j

)
δj

=

[
1 0

tr−1 1

]
·
p−k∑
j=0

(
j + k − 1

j

)
δj +

p−(k+1)∑
j=0

(
j + k

j

)
δj

=

p−(k+1)∑
j=0

(
j + k

j

)
δj(32)

where (32) follows from the fact that
∑p−k

j=0

(
j+k−1

j

)
δj = 0 ∈ σ(k+1)/σ(k). This proves that

[
1 0

tr−1 1

]
acts

trivially on σ(k+1)/σ(k), completing the proof of our lemma. □

Lemma 3.9. The generator

[
a 0
0 d

]
acts on σ(k+1)/σ(k) via scaling by χ(

[
a 0
0 d

]
) · (ad )

k.
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Proof. Since σ(k+1)/σ(k) is generated by
∑p−(k+1)

j=0

(
j+k
j

)
δj , we wish to show that

[
a 0
0 d

]
·
∑p−(k+1)

j=0

(
j+k
j

)
δj =

χ(

[
a 0
0 d

]
)(ad )

k
∑p−(k+1)

j=0

(
j+k
j

)
δj . By Lemma 3.7 we have that

[
a 0
0 d

]
·
p−(k+1)∑

j=0

(
j + k

j

)
δj = χ(

[
a 0
0 d

]
)

k+1∑
m=1

cm

p−m∑
j=0

(
j +m− 1

j

)
δj

and since
∑p−m

j=0

(
j+m−1

j

)
δj = 0 ∈ σ(k+1)/σ(k) for 1 ≤ m ≤ k, then in σ(k+1)/σ(k) we have

[
a 0
0 d

]
·
p−(k+1)∑

j=0

(
j + k

j

)
δj = χ(

[
a 0
0 d

]
)ck+1

p−(k+1)∑
j=0

(
j + k

j

)
δj .

Thus to prove our claim it suffices to show that ck+1 = (ad )
k. Recall that by Lemma 3.7, we have

ck+1 =
k+1∑
i=1

(−1)i+1

(
k

i− 1

)
αi

where here αi =
((p−i) a

d+k

(p−i) a
d

)
=

(k−i a
d )···(1−i a

d )

k! . In particular, since we may write out α1 = (k−x)···(1−x)
k! =

1
k! ((−1)kxk+ak−1x

k−1+ · · ·+a1x+k!) where x = a
d , then we have that αi =

1
k! ((−1)kikxk+ak−1i

k−1xk−1+
· · ·+ a1ix+ k!) for 1 ≤ i ≤ k + 1. Since the coefficient of xm in αi is given by am

k! · im, then the coefficient
of xm in the expression of ck+1 is given by

k+1∑
i=1

(−1)i+1

(
k

i− 1

)
am
k!
im =

am
k!

k+1∑
i=1

(−1)i+1

(
k

i− 1

)
im.(33)

Since we wish to show that ck+1 = xk = (ad )
k, it suffices to show that (33) is zero whenever 0 ≤ m ≤ k−1 and

is 1 whenever m = k. When m = 0, we have that a0 = k!, so a0

k!

∑k+1
i=1 (−1)i+1

(
k

i−1

)
i0 =

∑k+1
i=1 (−1)i+1

(
k

i−1

)
=∑k

i=0(−1)i
(
k
i

)
= 0, as desired. On the other hand, the identity

k+1∑
i=0

(−1)i
(
k + 1

i

)
im = 0(34)

holds for 1 ≤ m ≤ k (see [3], #3 in 0.154), and since
(
k+1
i

)
=
(
k
i

)
+
(

k
i−1

)
, we deduce from (34) that

k+1∑
i=0

(−1)i
(
k

i

)
im +

k+1∑
i=0

(−1)i
(

k

i− 1

)
im = 0

which implies that

k+1∑
i=0

(−1)i+1

(
k

i− 1

)
im =

k+1∑
i=0

(−1)i
(
k

i

)
im =

k∑
i=0

(−1)i
(
k

i

)
im

since
(

k
k+1

)
= 0 by convention. Now

∑k
i=0(−1)i

(
k
i

)
im = 0 for 0 ≤ m ≤ k − 1 by the identity in (34),

so
∑k+1

i=0 (−1)i+1
(

k
i−1

)
jm = 0 for 0 ≤ m ≤ k − 1. When m > 0 we have that 0m = 0, so we conclude∑k+1

i=1 (−1)i+1
(

k
i−1

)
im = 0 for 0 ≤ m ≤ k−1 as desired. On the other hand, identity #4 in §0.154 of [3] gives

k∑
j=0

(−1)j
(
k

j

)
jk = (−1)kk! ,(35)



MODULAR PRINCIPAL SERIES REPRESENTATION OF GL2 OVER FINITE RINGS 13

which in combination with (34) and the fact that
(
k+1
j

)
=
(
k
j

)
+
(

k
j−1

)
gives

k+1∑
j=0

(−1)j
(
k + 1

j

)
jk =

k+1∑
j=0

(−1)j
(
k

j

)
jk +

k+1∑
j=0

(−1)j
(

k

j − 1

)
jk

=⇒
k+1∑
j=1

(−1)j+1

(
k

j − 1

)
jk = (−1)kk!

which is precisely what we wished to show. Hence the coefficient of xm in ck+1 is am

k! ·0 = 0 for 0 ≤ m ≤ k−1

while the coefficient of xk is (−1)k

k! · (−1)kk! = (−1)2k = 1, completing the proof that ck+1 = (ad )
k, and

therefore that

[
a 0
0 d

]
·
∑p−(k+1)

j=0

(
j+k
j

)
δj = χ(

[
a 0
0 d

]
) · (ad )

k
∑p−(k+1)

j=0

(
j+k
j

)
δj . □

Recall we wish to show that σ(k+1)/σ(k) is equivalent to Inf
Ir−1
r

Br−1
(χ · (ad )

k) as Ir−1
r representations. Let

T : ⟨
∑p−k

j=0

(
j+k−1

j

)
δj⟩ → Fp be the isomorphism sending

∑p−k
j=0

(
j+k−1

j

)
δj 7→ 1. For all

[
a b

ctr−1 d

]
∈ Ir−1

r ,

we have

T (

[
a b

ctr−1 d

]
·
p−k∑
j=0

(
j + k − 1

j

)
δj) = T (

[
1 0

ca−1tr−1 1

] [
a 0
0 −ca−1btr−1 + d

] [
1 ba−1

0 1

]
·
p−k∑
j=0

(
j + k − 1

j

)
δj)

= T (

[
1 0

ca−1tr−1 1

] [
a 0
0 −ca−1btr−1 + d

]
·
p−k∑
j=0

(
j + k − 1

j

)
δj).(36)

Now (

[
a 0
0 −ca−1btr−1 + d

]
· δj)(i) ̸= 0 if and only if i

[
a 0
0 −ca−1btr−1 + d

]
∈ Br

[
1 0

jtr−1 1

]
, which holds if

and only if i ∈ Br

[
1 0

jtr−1 1

] [
a 0
0 −ca−1btr−1 + d

]−1

= Br

[
1 0

d
ajt

r−1 1

]
. A similar argument as the one for[

a 0
0 d

]
·δj = χ(

[
a 0
0 d

]
)δ d

a j reveals that

[
a 0
0 −ca−1btr−1 + d

]
·δj = χ(

[
a 0
0 d

]
)δ d

a j , and therefore Lemma 3.9

applies to (36) to give χ(

[
a 0
0 d

]
)(ad )

k · T (
∑p−k

j=0

(
j+k−1

j

)
δj) = χ(

[
a 0
0 d

]
)(ad )

k. On the other hand, we have

that

Inf
Ir−1
r

Br−1
(χ · (a

d
)k)(

[
a b

ctr−1 d

]
)(T (

p−k∑
j=0

(
j + k − 1

j

)
δj)) = (χ · (a

d
)k)(

[
a 0
0 d

]
)(T (

p−k∑
j=0

(
j + k − 1

j

)
δj))(37)

= χ(

[
a 0
0 d

]
)(
a

d
)k

which shows that T ◦σ(k+1)/σ(k)(

[
a b

ctr−1 d

]
) = Inf

Ir−1
r

Br−1
(χ·(ad )

k)(

[
a b

ctr−1 d

]
)◦T , and hence that σ(k+1)/σ(k)

and Inf
Ir−1
r

Br−1
(χ · (ad )

k) are isomorphic as Ir−1
r -representations.

Now because the diagram

Ir−1
r Br−1

Gr Gr−1

tr−1 7→0

tr−1 7→0

commutes, we have by commutativity of inflation and induction that IndGr

Ir−1
r

Inf
Ir−1
r

Br−1
(χ·(ad )

k) ∼= InfGr

Gr−1
Ind

Gr−1

Br−1
(χ·

(ad )
k). But this implies IndGr

Ir−1
r

(σ(k+1)/σ(k)) ∼= InfGr

Gr−1
Ind

Gr−1

Br−1
(χ · (ad )

k), completing the proof of Theorem

1.1.
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4. Semisimplifications

From Theorem 1.1 we deduce that

(IndGr

Br
(χ))ss = (Ind

Gr−1

Br−1
(χ))ss ⊕ · · · ⊕ (Ind

Gr−1

Br−1
(χ · (a

d
)k))ss ⊕ · · · ⊕ (Ind

Gr−1

Br−1
(χ · (a

d
)p−1))ss(38)

= (Ind
Gr−1

Br−1
(χ))ss ⊕ · · · ⊕ (Ind

Gr−1

Br−1
(χ · (a

d
)k))ss ⊕ · · · ⊕ (Ind

Gr−1

Br−1
(χ))ss

In particular, we see that (Ind
Gr−1

Br−1
(χ))ss appears twice in the direct sum of (38), while (Ind

Gr−1

Br−1
(χ · (ad )

k))ss

appears once in the direct sum for every 1 ≤ k ≤ p− 2. Hence we may express

(IndGr

Br
(χ))ss = ((Ind

Gr−1

Br−1
(χ))ss)2 ⊕

p−2⊕
k=1

(Ind
Gr−1

Br−1
(χ · (a

d
)k))ss.(39)

Since the semisimplifications of IndG1

B1
(χ) are well known for all characters χ : B(GL2(Fp)) → Fp

×
, it is

desirable to express (39) explicitly in terms of (IndG1

B1
(χ))ss for various χ. We claim that we may continue

simplifying (39) inductively to obtain:

Corollary 4.1. For a prime p, (IndGr

Br
(χ))ss = ((IndG1

B1
(χ))ss)

pr−1+p−2
p−1 ⊕

⊕p−2
k=1((Ind

G1

B1
(χ · (ad )

k))ss)
pr−1−1

p−1 .

Proof. We prove the corollary by induction on r. When r = 1, the claim is that

(IndG1

B1
(χ))ss = ((IndG1

B1
(χ))ss)

p0+p−2
p−1 ⊕

p−2⊕
k=1

((IndG1

B1
(χ · (a

d
)k))ss)

p0−1
p−1

which is easily seen to be true when one simplifies the exponents on the right hand side of the equality.
Suppose the claim in the proposition holds for some r ∈ N. We wish to show it holds for r+1. As a corollary
of Theorem 1.1, we have that

(Ind
Gr+1

Br+1
(χ))ss = ((IndGr

Br
(χ))ss)2 ⊕

p−2⊕
k=1

(IndGr

Br
(χ · (a

d
)k))ss.

Utilizing the inductive hypothesis on (IndGr

Br
(χ))ss and on each (IndGr

Br
(χ · (ad )

k))ss gives

(Ind
Gr+1

Br+1
(χ))ss =

(
((IndG1

B1
(χ))ss)

pr−1+p−2
p−1 ⊕

p−2⊕
k=1

((IndG1

B1
(χ · (a

d
)k))ss)

pr−1−1
p−1

)2

(40)

⊕

p−2⊕
k=1

((IndG1

B1
(χ · (a

d
)k))ss)

pr−1+p−2
p−1 ⊕

⊕
m̸=k

((IndG1

B1
(χ · (a

d
)m))ss)

pr−1−1
p−1

 .

Counting how many times (IndG1

B1
(χ))ss appears in the direct sum of (40) yields that (IndG1

B1
(χ))ss appears

2(
pr−1 + p− 2

p− 1
) + (p− 2)

pr−1 − 1

p− 1
=
pr + p− 2

p− 1

times, whereas counting how many times (IndG1

B1
(χ · (ad )

n))ss appears in (40) for a given 1 ≤ n ≤ p− 2 yields

that (IndG1

B1
(χ · (ad )

n))ss appears

2(
pr−1 − 1

p− 1
) +

pr−1 + p− 2

p− 1
+ (p− 3)

pr−1 − 1

p− 1
=
pr − 1

p− 1

times. Therefore

(Ind
Gr+1

Br+1
(χ))ss = ((IndG1

B1
(χ))ss)

pr+p−2
p−1 ⊕

p−2⊕
k=1

((IndG1

B1
(χ · (a

d
)k))ss)

pr−1
p−1 .(41)

proving the inductive claim. □

A complete semisimplification expresses the given representation as a direct sum of its unique set of
composition factors, which are each irreducible representations. Hence giving the semisimplification IndGr

Br
(χ)

requires knowing the irreducible characteristic p representations of GL2(Fp[t]/(t
r)).
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4.1. Classifying Modular Irreps of GL2(Fp[t]/(t
r)). We give a complete characterization of the irre-

ducible characteristic p representations of Gr for r ≥ 2. For r = 1 we have that Fp[t]/(t) ∼= Fp, and the
characteristic p irreducible representations of GL2(Fp) are fully classified; see [1]. Consider the surjective
homomorphism

π : GL2(Fp[t]/(t
r)) ↠ GL2(Fp)a0 + · · ·+ ar−1t

r−1 b0 + · · ·+ br−1t
r−1

c0 + · · ·+ cr−1t
r−1 d0 + · · ·+ dr−1t

r−1

 7→
[
a0 b0
c0 d0

]
(42)

and notice that G1 = GL2(Fp) may be viewed as a subgroup of Gr, as it respects multiplication in Gr. By
the first isomorphism theorem for groups we know that kerπ ⊴Gr, and since the matrixa0 + · · ·+ ar−1t

r−1 b0 + · · ·+ br−1t
r−1

c0 + · · ·+ cr−1t
r−1 d0 + · · ·+ dr−1t

r−1


belongs to kerπ if and only if a0 = d0 = 1, b0 = c0 = 0, and ai, bi, ci, di ∈ Fp for 1 ≤ i ≤ r − 1, then

| kerπ| = |Fp|4(r−1) = p4(r−1).

We wish to show that every irreducible characteristic p representation of Gr is of the form ρ ◦ π, where π
is as in (42) and ρ is an irreducible characteristic p representation of GL2(Fp). To prove this fact we need the
following two lemmas, which then establish the result as a quick corollary. The fact that kerπ is a p-group
is essential.

Lemma 4.2. Let G be a finite group and let H ⊴ G be a p-group. If V is an irreducible characteristic p
representation of G, then V H = V , that is, H acts trivially on all elements of V .

Proof. Let V H = {v ∈ V : h · v = v}, with the action of H on V given by the action of G on V . We wish to
show that V H is a nonzero subrepresentation of V , such that V being irreducible implies that V H = V .

We claim that there exists a nonzero element of V which is fixed by all h ∈ H. By the Orbit-Stabilizer
theorem, we have that for any v ∈ V , H/Hv

∼= OrbH(v), where Hv = {h ∈ H : h · v = v} and OrbH(v) =
{h · v : h ∈ H}. In particular this tells us that |OrbH(v)| | |H| for every v ∈ V , so if |H| = pk for some k
we must have |OrbH(v)| = pℓ for some 0 ≤ ℓ ≤ k. Notice that V can be assumed to be finite; otherwise let
v ̸= 0 ∈ V , and consider the Fq span of Orb(v), where q is a power of p and this orbit is considered over
all g ∈ G. Let this finite vector space be denoted W . Since G (and thus H) acts on V via the irreducible
characteristic p representation ρ : G→ GL(V ), H also acts on W , and we get that

|W | = |{0}|+
∑
w ̸=0

|OrbH(w)|.(43)

Because W is a finite vector space over a field of characteristic p, then |W | = pm for some m. But then
|W | − |{0}| = pm − 1 which is not divisible by p, and hence on the right hand side of (43) there must exist
some nonzero w for which |OrbH(w)| = 1, that is, some nonzero w which is fixed by the action of all h ∈ H.
Now the Fp span of w is a subspace of V which is fixed by all h ∈ H, and hence V H ̸= {0}. To see that
V H is a subrepresentation of V , notice that V H is invariant under the action by G, since if v ∈ V H , then
h · v = v for all h ∈ H, and thus h · (g · v) = hg · v = gh′ · v = g · v, where hg = gh′ for some h′ ∈ H by the
fact that H ⊴G, and where h′ · v = v since v ∈ V H . Finally, since V is irreducible, this gives V H = V . □

In particular Lemma 4.2 tells us that if G is a finite group, H ⊴ G is a p-group, and V is an irreducible
characteristic p representation of G, then V must be the trivial representation on H. We claim that this
implies V factors through G/H.

Lemma 4.3. A representation of a finite group G is trivial on a normal subgroup H if and only if it factors
through G/H.

Proof. Suppose ρ : G → GL(V ) is trivial on a normal subgroup H. Let π : G → G/H be the natu-
ral projection. We wish to show that there exists some group homomorphism ψ : G/H → GL(V ) such
that ρ = ψ ◦ π. Define ψ(gH) = ρ(g). Then ψ(g1Hg2H) = ψ(g1g2H) = ρ(g1g2) = ρ(g1)ρ(g2), and
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ψ(H) = ρ(e) = I ∈ GL(V ), so ψ is indeed a representation of G/H. In addition, we have that ρ(g) = ψ◦π(g)
by definition.

Suppose a representation ρ̃ : G→ GL(V ) factors through G/H where H ⊴G. We wish to show that ρ̃ is
trivial on H. Express ρ̃ = ρ ◦ π. Then for all h ∈ H, we have ρ̃(h) = ρ(π(h)) = ρ(H) = I ∈ GL(V ) since H
is the identity of G/H and ρ is a representation of G/H. □

The preceding lemmas allow us to prove the claim established at the beginning of this section:

Corollary 4.4. Any irreducible modular representation of GL2(Fp[t]/(t
r)) is the inflation of an irreducible

modular representation of GL2(Fp).

Proof. The surjective homomorphism π in (42) gives us H = kerπ ⊴Gr. Since H is a p-group, we know by
Lemma 4.2 that any irreducible modular representation of Gr must be trivial on H. But by Lemma 4.3, we
know that a representation of Gr is trivial on a normal subgroup H if and only if it factors through Gr/H.
Since Gr/H ∼= GL2(Fp), then every irreducible characteristic p representation ρ̃ of Gr must be of the form
ρ ◦π where π is the map given in (42) and ρ is an irreducible characteristic p representation of GL2(Fp). □

Fortunately the irreducible characteristic p representations ρ of GL2(Fp) are fully classified (see [1] or

[4] for the proofs). Given 0 ≤ n ≤ p − 1 and 0 ≤ ℓ ≤ p − 2, let Pn be the Fp span of the basis
{xn, xn−1y, . . . , xyn−1, yn}. Define

ρn,ℓ : GL2(Fp) → GL(Pn)(44) [
a b
c d

]
· P (x, y) = P (ax+cy, bx+ dy) ·

(
det

[
a b
c d

])ℓ

Then {ρn,ℓ} give a complete set of irreducible characteristic p representations of GL2(Fp) up to equivalence.
Hence every irreducible characteristic p representation of Gr is given by ρn,ℓ ◦π, where π is the map in (42).
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