HIGHER-DIMENSIONAL MOVING AVERAGES AND
SUBMANIFOLD GENERICITY

JIAJUN CHENG, REYNOLD FREGOLI, AND BEINUO GUO

ABSTRACT. We generalize results of Bellow, Jones, and Rosenblatt on moving ergodic
averages to measure-preserving actions of Z¢ and R? for d > 1. In particular, we give
necessary and sufficient conditions for the pointwise convergence of certain sequences of
functions defined by averaging over families of boxes in Z¢ and R%. As an application of
our characterization, we show that averages along dilates of "locally flat" submanifolds
in R? do not necessarily converge point-wise for bounded measurable functions. This is
closely related to the concept of submanifold-genericity recently introduced in [BFK25].

1. INTRODUCTION

Let T be a measure-preserving transformation defined on a non-atomic probability
space (X, u). Let N denote the set of strictly positive integers and let §2 be a sequence
of integer pairs {(ng,lr)} C N x N. For each k € N consider the averaging operator

Ip—1

1 )
Apf = foT™ ™,
Ik =

where f € LY(X), and let
1 lp—1 '
Mqf :=sup — Z ’foT"’“ﬂ‘.
R

In [BJRI0], Bellow, Jones, and Rosenblatt gave necessary and sufficient conditions on
the sequence 2 for Mg to satisfy a maximal inequality. Let us briefly recall their char-
acterization. For a > 0 define

Q) .= {(w,y) eN?: |z —ny| < a(y — i) for some (ng,l;) € Q}

and for A € N set
Q) = {z eN: (2,0) € 0@},

Then, according to [BJRI0, Theorem 1], Mq is of weak type (1,1) and of strong type
(p,p) for any p > 1 if and only if the following condition on the sequence (2 is satisfied

(C1) JA,a>0: #Q@(\) <A\ forall A eN.
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Condition asserts in other words that the horizontal cross-section of all the cones
of aperture o above points in the sequence €2 at fixed height must grow linearly as the
height increases. For example, the sequence (k,rk) for any » € N has this property,
while the sequence (k,v/k) does not (see also picture below).

QM)

(n2,12)

(n1,101)

0 n
FIGURE 1. Set Q()(\) for some sequence (ng, i)

It is a well-known fact that, when the operator Mg, is of weak type (1, 1), the sequence
of functions Ay f converges point-wise for any f € L'(X). [BJR90, Theorem 4] shows
additionally that this is not the case if Condition (C1)) fails.

In this paper, we generalize [BJR90, Theorem 1, Part a)] and [BJR9I0, Theorem 4] to
measurable actions of Z¢ and R? for d > 1. Based on these extensions, we study the
property of submanifold genericity, recently introduced in [BFK25]. We now proceed to
lay out our results in greater detail.

1.1. The Discrete Case. Let (X, 1) be a non-atomic probability space and let 71, ...,
Ty be commuting measure-preserving transformations on the space X (which is our
standing assumption throughout this section). Given sequences {n;} C Z¢ and {I;} C
N (k € N), put

By := [, nir + ) X -+ X [ga, Ned + L)
and let B := {By}. To any box By € B associate an averaging operator Ay defined by

Apf(z) := ! Z f (lel . .ngl/‘)

I
k1 kd JEBRNZ4
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for f € L(X), and denote by Mp the maximal operator

Mpf(x):= sup L Z ’f (lel...Tjdx)’.

Lew -1
BieB k1 lkd s ol

Our first result shows, roughly speaking, that, if Condition holds in each co-
ordinate, then the operator Mp is of strong type (p,p) for any p > 1. More precisely, for
i=1,...,dlet
Q; = {(nki,lm) ke N}
and for o > 0 define
an) ={(z,y) € ZxN: |z —n| < a(y —1) for some (n,l) € Q;}.
Finally, given A € N put

AV ={zecZ: (1) e}

)

Then the following holds.

Theorem 1.1. Assume that for alli=1,...,d

(C)) JA,a>0: #AYON) < AN forall A eN.
Then the operator Mg is of strong type (p,p) for any p > 1.

Remark 1.2. It does not follow from our proof that Mp is of weak type (1,1). In
particular, it appears that extending the ideas of Bellow, Jones, and Rosenblatt to prove
a weak type-(1, 1) inequality for Z%- or Re-actions with d > 2 is a non trivial task. This
is mainly due to obstructions in the use of the Hardy-Littlewood Maximal Inequality in
higher-dimension (see [BJRI0, pages 45 and 46]).

As a corollary to Theorem we deduce that, under Condition fori=1,....,d,
the sequence of functions Ay f converges point-wise for any f € LP(X) with p > 1.

Corollary 1.3. Assume that the action generated by the transformations Ty, ...,Ty on

the space X 1is ergodic and that Condition is satisfied for alli=1,...,d. Then for
any f € LP(X) with p > 1 and p-a.e. © € X we have that

Apf(z) = p(f) ask — oc.

If Condition is not satisfied for at least one 1 < i < d, on the other hand,
and the action of Z? on X is aperiodic, the conclusion of Corollary (I.3) fails in a

strong sense. Recall that a measurable action of Z? on X is said to be aperiodic if
wr € X :ax=1)=0 forall a € Z%\ {0}.

Before formally stating the converse of Corollary let us also recall the definition
of mizing family introduced by Sawyer. Following [Saw66], we say that a family of
measure-preserving transformations {S;} on X is mizing if for any pair of measurable
subsets A, B of X and any p > 1

(1.1) Jh: wANS,(B)) < p-p(A)u(B).
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Remark 1.4. Note that the notion of "mixing family" differs from that of "mixing
action". More precisely, suppose that {S;,} is a locally compact group of measure-
preserving transformations on X. Then Condition (1.1)) is equivalent to

inf (A0 Sk(B)) < W(A)n(B)-

Compare this to
lim (AN SK(B)) = p(A)p(B),

Sp—o00
which corresponds the usual definition of mixing action. In fact, it is possible to show
that any group of measure-preserving transformations that acts ergodically on X satisfies
(1.1) (see, e.g., [Saw66, Lemma 1, page 163]). This is an easy exercise if {Sy} is just the
group generated by one ergodic transformation on X.

We are now in a position to state our next result.

Theorem 1.5. Assume that the action generated by the transformations T1,...,Ty on
the space X is aperiodic and that T, ..., Ty commute with a mizing family {S,} on X.
Then, if for some 1 < i <d it holds that

(1Cy) VA ,a>0 #an)()\) > A- X for an unbounded set of X > 0,

the operators Ay have the "strong sweeping out" property, that is, for any € > 0 there
exists a set B: C X, with u(Be) < €, such that for p-a.e. x € X it holds that

limkinf Agxp.(x) =0 and limsup Agpxp.(z) = 1.
k

Remark 1.6. It is worth pointing out that, in view of Remark [I.4], any subgroup of an
Abelian group acting ergodically on the space (X, ) commutes with a mixing family,
even if the subgroup itself does not act ergodically.

1.2. The Continuous Case. We will now state the continuous version of the results
of the previous subsection.

Let (X, i) be a non-atomic probability space and let Us for t € R? denote a measurable
and measure-preserving d-dimensional flow on X (which is our standing assumption
throughout this section). Given sequences {wy} C R? and {s3} C (0, +00)?, put

By i= [Wg1, Wkt + Sk1) X -+ X [Wkdy Wia + Skd)

and let B := {By}. To any box By € B associate a continuous averaging operator Ry

defined by

Rif(a) = —— [ f(Ua) at
Skl Skd J By,

for f € L}(X), and let N denote the maximal operator
1
Npf(x) := sup 7/ |f (Ux)| dt.
BeB Sk1 """ Skd J By
Fori=1,...,dlet
Qi = {(wki,sk,i) ke N}



HIGHER-DIMENSIONAL MOVING AVERAGES AND SUBMANIFOLD GENERICITY 5

and for o > 0 define

an) ={(z,y) € R x (0,400) : |x — t| < a(y — s) for some (t,s) € Q;}.
Finally, for any real A > 0 put
AV = {zeR: (2,)) € V]

(2

Then, in analogy to Theorem we have the following.
Theorem 1.7. Assume that for alli=1,...,d

(&) JA,a>0: Leb (QE‘”(A)) < AN forall >0,

where Leb denotes the Lebesgue measure on R. Then the operator Ng is of strong type
(p,p) for any p > 1.

Once again, the analog of Corollary holds.

Corollary 1.8. Assume that the flow Uy acts ergodically on the space (X, p) and that
Condition is satisfied for alli=1,...,d. Then for any f € LP(X) with p > 1 and
p-a.e. x € X we have that

Rif(z) — u(f) ask — oo.

We now proceed to state the following converse to Corollary Recall that a d-
dimensional flow Uy on X is said to be aperiodic if there exists a set N C X, with
w(N) =0, such that Ugz # « for all z € X \ N and all t € R?\ {0}.

Theorem 1.9. Assume the flow Uy is aperiodic and that it commutes with a mizing
family of transformations {Sp} on X. Then, if for some 1 <1i < d it holds that

{{eh) VA,aa>0 Leb (an)()\)) > A- X for an unbounded set of A > 0,
the operators Ry, have the "strong sweeping out" property (see Theorem .

In the next subsection, we present an application of Theorem

1.3. Failure of Submanifold Genericity for Essentially Bounded Functions. Let
(X, i) be a probability space equipped with a measure preserving action of R, which
we denote by a.z for all @ € R? and z € X. In [BFK25|, the notion of submanifold
genericity for a measure v on X was introduced, in connection with certain problems in
Diophantine approximation. We recall it here, for the convenience of the reader.

Let M C R? be a compact m-dimensional € submanifold of R? and let F ¢ L!(X)
be a collection of functions. Let vol,,, denote the m-dimensional volume measure induced
by the Euclidean metric on RY. We say that a measure v on X (potentially equal to 1)
is (M, F)-generic if for v-a.e. x € X it holds that

1 (M) /tM fla.z) dvoly(a) = u(f) ast — oo

1.2 _
(1.2) t™ - vol,,

We also say that a measure v is (m, F)-generic (for fixed 1 < m < d) if for all compact
m-dimensional ¢! submanifolds M in R? it holds that v is (M, F)-generic.
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When M is a d-dimensional bounded positive-measure set, (M,L!(X))-genericity is
equivalent to ergodicity of the R%action (see [Lin0I, Theorem 1.2]). However, if M is a
proper submanifold of R¢, the convergence in is more delicate and may not occur
for all f € L}(X). For example, when M = S%! (i.e., the (d — 1)-dimensional sphere
in R%) and d > 3, Jones [Jon93, Theorem 2.1] showed that p is (M, LP(X))-generic for
any p > d/(d — 1) and that the bound on p is sharp (see [Jon93, Theorem 2.3| for a
constructive counterexample). [Lac95] extended this result to the case d = 2. Such
analytical arguments, however, do not apply to different manifolds M such as, e.g., the
boundary of a hypercube.

If one restricts to very special families of functions F, on the other hand, there are
actions for which point-wise convergence in occurs for essentially any sufficiently
regular submanifold of R?. For example, let X = G/I', where G is a semisimple Lie
group (with no factors of rank 1) and I' is a lattice in G. Let p denote the canonical left-
invariant measure on G/I" and let A < G be a Cartan subgroup, whose Lie algebra will be
denoted by a. Consider the action of a on X given by = — exp(a)z (which is identifiable
with an R? action on X, if G is of rank d). Then [BFK25, Theorem 1.3] asserts that
the measure p on X is (k, €2°(X))-generic for all 1 < k < d. Here, €°(X) stands for
the space of smooth compactly supported functions on X. In addition, any invariant
measure supported on a closed unipotent orbit in X is also (k, €°°(X))-generic for all
E=1,...,d (see for instance [BFK25, Theorem 1.4]). More generally, any measure-
preserving and exponentially mixing action of R% on a probability space (X, ) (under
some minor assumptions) enjoys the same property (see [BEK25, Theorem 2.2]).

In view of the above discussion, it is natural to ask whether there exist ergodic actions
of R? on some probability space (X, i) such that the measure y is (k, F)-generic for some
much larger class of functions F, e.g., L°°(X). As a consequence of Theorem |1.9] we are
able to show the following.

Theorem 1.10. Let (X, ) be a probability space, equipped with an ergodic and aperiodic
measure-preserving action of R%. Let M be a compact m-dimensional €' submanifold of
R? such that M N7 is a non-empty open set in M for a given m-dimensional affine sub-
space ™ of RY, which does not contain the origin. Then the measure  is not (M,L>®(X))-
generic. In particular, there exist no ergodic and aperiodic measure-preserving actions
of RY on X that are (m,L>°(X))-generic for any m =1,...,d — 1.

Remark 1.11. The left-multiplication action of a Cartan subgroup A of a Lie group G
on the quotient X = G/T is always ergodic and aperiodic (see explanation below). Thus,
Theorem implies that the G-invariant measure p on X is not (m,L>°(X))-generic
for any m = 1,...,d — 1. In other words, a point-wise ergodic theorem for dilates of
submanifolds M such as those in Theorem cannot hold. However, it is interesting
to observe that for the same submanifolds the convergence in still occurs in the
LP-norm for any p > 1, i.e., a mean ergodic theorem holds. This follows easily from the
fact that the measure p is (m, €°>°(X))-generic, by a density argument.

Let us briefly explain why the left-multiplication action of a Cartan subgroup A on G
is aperiodic. If agl’ = gI" for some a € A and g € G, then there exists v € I' such that
g ltag=~. Put S(A,7) :={g € G : gyg~! € A}. Hence, any periodic point ¢TI for the
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group A belongs to the set

U S(A,~y)T.

vyel

This is a countable union of algebraic varieties and therefore has measure 0.

We conclude with the following observation. If M is a polynomial curve in R¢ not
entirely contained in a proper affine subspace, then, according to [BF09, Theorem 2]
(with a slight modification to account for the density induced by the measure vol,,), the
convergence in occurs in norm (more precisely, in the L2 norm). As suggested in
[BE09], it would be natural to study point-wise convergence as in for such curves.
However, polynomial curves fall outside the scope of Theorem [I.10} since any smooth
submanifold M of R? not entirely contained in, but intersecting an affine subspace in an
open set, cannot be analytically parametrized.

1.4. Acknowledgments. The authors are indebted to Alexander Gorodnik for suggest-
ing to read [BJRI0], to Dmitry Kleinbock for pointing out Remark and to Amos
Nevo for many fruitful conversations which eventually lead to this paper.

2. PROOF OF THEOREMS [I.1] AND AND OF COROLLARIES [[.3] AND [T.8]

2.1. Proof of Theorem [1.1] First, we observe that, if a box By contains both integer
vectors whose i-th component is negative and integer vectors whose i-th component is
positive for some k and ¢, then it must be ng; < 0 and lx; > |ng;|. In this case, we may
write

By = By UB;*,
where

By ==ByN{r; <0} and B = Byn{x; >0}

If B’ is the collection of boxes where By, is replaced by B;: and ij, it is obvious that
Mpf < Mp f for any f € LP(X). Moreover, for any k and i such that lx; > |ng;| and
any A € N we have that

#{r €Z: |z —npi| <ad—1lk)} < (1+a)A,
so that the boxes By, that are broken in two or more parts do not contribute to the validity

of Condition . Hence, by working in each orthant separately and by replacing T;
with Ti_1 if necessary, we may always assume that ng; > 0 for all £ and .
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Take f € LP(X) for fixed p > 1 and observe that
1

Mpf(x) = sup ———— | (Tf - T
BreB k1 lka je B
lk1—1 lka—1
< sup .- sup Z Z ’f ( TRt ;deFjdm)’
(ne1te1)€N (Mkdslka) €924 lkl d j1=0  j4=0
lkl 1 lkd 1 )
< sup = . sup ‘f ( nk1+J1 . C?kd+]dx)‘
(nk17lk1)691 ]Z (Nkdslkd) € lk’d Z
= Mﬂl O--- OMQdf(fL‘),
where
1 lgi—1 '
Mo, f(a):= sup o= 3 |f (T )]
(Nkiy s ) EQ: lk’ =0
for i =1,...,d. Since the functions Mpf and Mgq, o---o Mgq, f are positive, we deduce
that

Mg fl, < [|Mq, ©---o Mo, fllp:

By [BJR90, Theorem 1], each operator Mg, is of strong type (p,p). Then Mz is also of
strong type (p, p).

2.2. Proof of Theorem |1 The proof in the case d > 1 relies once again on the case
d =1 and is analogous to that of Theorem [I.I] We therefore leave it to the reader.

In the case d = 1 we modify the proof of [BJRI0, Theorem 1]. This requires some
additional work. In what follows, for any p > 1 and any measure space Y we denote by
ZP(Y) the set of p-integrable functions from Y to R.

For any f € Z%(X), T >0,z € X, and t > 0 put
fra(t) == f(Ux) - x(—1,1) (1)

Then fr, € Z*(R). Let [T . denote the one-sided Hardy-Littlewood maximal function
associated to fr ., that is

@) =sup [ Ipte )

where the bounds of the integral are to be inverted if r < 0. By the Hardy-Littlewood
maximal inequality [Taolll, Lemma 1.6.16] we have that for any A > 0

(2.1 Leb (¢ 7,000 > ) < el = 3 [ punay) ar

Let us now fix A > 0 and a function f € #1(X). Then
{z: Npf(z) > A} = U{x : Ri|fl(z) > A}
k
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Let ¢ > 0 and let K. > 1 such that

1 U {z: Ri|f|(x) > A} | > pu(z: Ngf(x)>A) —e.
k<K
Choose N; so large that
makaKE {wk + Sk}
Ne

<e
and set
T, := N; + ’?%z}é {wg + si} -

Further, define

Y. = U {(x,t) : R|f|(Usz) > X and |t| < N.}
k<K.
and observe that, by the invariance of u, we have that

Ne
(2.2) p® Leb(Yz) :[N [){X{sukaKE Ry|f>A} © Urdpdt

2N5-u( U {z : Rg|f|(x) >)\}) > 2N, - p(x: Npf(x) > A) —2N; - .
k<K,

Finally, for any « € X let
Yo(w) = {€ : (2,€) € Vo).

Then we have the following.

Lemma 2.1. For any (x,t) € Y there exists a pair (wg, si) € Q with k < K, such that

(2.3) [t + wio t + w + sx) € €5 F o(€) > A}

Proof. Fix (z,t) € Y.. Then there exists (wy, si) € Q with k < K, such that
1 [k 1 [k

24) — [ W 46 = — [ alt + we + ) d > A
St Jo Sk Jo

Assume by contradiction that (2.3]) fails. Then for some &y € [t + wg,t + wi + si) we
have that f7. ,(§o) < A. Hence,

0
/ a6+ 7T <A+ (G~ (¢+wy) and
—(€o—(t+wy))
(t+wi+sk) —&o
/ oG+ T)ldT < A+ (¢4 wn + 1) — &)

and
t+wg+sg
/t fro(r) A7 < A- sy

Fwg
— a contradiction to ([2.4). O

Lemma [2.1] further implies the following.
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Lemma 2.2. For any x € X it holds that
Leb (Ya(2)) < ACq - Leb (€1 ff, ,(6) > A)

where A and o« are the constants in Condition (for i = 1) and Cy is an absolute
constant only depending on .

Proof. Fix § > 0 and x € X such that Y.(z) # 0. Note that, by construction Yz(x) C
(=Ng, N.). Let O, C (=N, N.) be an open set with the following two properties:
(2.5) Oy 2 Ye(x) and p (0 \Yz(2)) <0

For each £ € O, put 7¢ :=sup{r > 0: ({,{ +r) C O} and consider the covering of O,
given by

U (& &+re).

£€0;

By the Vitali Covering Lemma (see [Cohl3, Theorem 6.2.1]), there exists a countable
sub-collection of disjoint open intervals (&;,&; +1;) (where r; = ¢, for brevity) such that

O. C|J(& — 2ri, & + 3m).

Fix t € Y.(x). By Lemma we may find k < K, such that
[t—i—wk,t+wk —i—Sk) C Oy.

Now, if there exists ¢ such that

s 2s
thwg g <& <twi

by the definition of r¢ it must be r; > s5,/3. On the other hand, if for all 7 if holds that

s 2s
£i<t+wk+§’“ or £i2t+wk+?'“,

then, there must be i such that ¢ + wy + s, /2 € (& — 2r4,& + 3r;). Hence, 3r; > s5/6.
In any case, we have that there exists ¢ such that r; > s;/18 and (& — 2r;,& + 3r;) N
[t + wg, t + wy + sg) # 0. For this i we therefore have that

(& —21r, & + 21r;) D [t + wg, t + wg + Sk)-
Now, note that
[(& — 21r;) —t — wy| < (& — 21r;) — (64 wi)| < 421 < a(Curi — si)
for C, = 42a~! + 18. By definition of Q(®, we conclude that
& —21r; —t € Q) (Cyry).

Hence, we have that
Yo(z) C | J(& — 21r) — Q@ (Cary).
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This shows that

Leb (Y. <ZLeb< /(Cari)) < ZAC ri
< AC, - Leb(0,) < AC, - (Leb (g L fra(6) > )\> + 5) .

By letting § — 0, we conclude. g

On combining Lemma and ([2.1), we find that for any x € X it holds that
AC,,

T
(26)  Leb(Ya(a)) < ACa-Leb (€ fio(6) > A) < =%+ [ 7Tl at.

We now use transference. From ([2.2) and ({2.6]), it follows that
2N - p(x : Ngf(z) > A\) —2N. - ¢

< 1 ® Leb(Y: /Leb dp(x)

AC
f(U)| dtdp < 2Tz - —=|| £
Dividing both sides by 2V, (recall that 1 < TE/N€ <1+ ¢) gives
A
(1 =+ Ca ) €

On letting ¢ — 0, we conclude that Np is of weak type (1,1). Since Np is bounded from
L to L*°, by the Marcinkiewicz Interpolation Theorem [Gral4, Theorem 1.3.2], N is
of strong type (p,p) for p > 1.

p(z: Ngf(z) >N <

2.3. Proof of Corollaries and The strategy to prove an ergodic theorem given
a maximal inequality is standard (see for example [EW11] Section 2.6.5]). We therefore
only give a sketch of proof for the discrete case. Let us start with an observation.

Remark 2.3. If for some 1 < i < d Condition is satisfied, then it must be [;; — co.
In fact, if there is a sequence k, such that [ ; < C for a given constant C' > 1, then for
all integer A > C' and all r we have that

(k55 A) € (N,
whence #QZ(O‘)(/\) = 00.
The first step in the proof is the following lemma.

Lemma 2.4. Let f € L2(X). Then there exists a function f' € L2(X) that is invariant
under the transformations 11, ..., Ty, such that

[Akf = f'll2 = 0.
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Sketch of Proof. For i =1,...,d define Ur, f := f o} and let

I:={gecl*X):Upg=gfori=1,...,d}.
Let B := I*. Then
B=DB;® - & By,
where
Bi:={Urg—g:9€L*X)}.

Since lx; — oo for i = 1,...,d (see Remark it is clear that for any h € B; we
have that ||Agxh|l2 — 0 as k — oco. Then the conclusion follows as in [EW11], Theorem
2.21]. 0

Let f € L*(X). By Lemma we know that Ay f converges to an invariant function
f"in L?(X). Now, for every measurable B C X we have that

(Arf,xB) < [[flloo - 1(B).
Hence, the same must be true if Ay f is replaced by f’. This shows that f’ € L*°(X).

We now need the following.

Lemma 2.5. For any k > h and any f € L>(X) we have that

Ao Anf = Aif + Oty ((hr -+~ 1ra) ™1 1) -

Proof. We have that

lg1—1 lka—1
toai= S
L
lh1—1 lhg—1 . .
Z Z nh1+nk1+J1+J1 Nhd+Nkd+Id+I,
flT T T
J1 =0 Ja=0
Jj1=0 Ja=0
1 lg1—1+np1+51 lga—1+npa+ia Ll I
n
l l Z f <T1 k1TJ1 Tdkd jdx)
k1 kd J1=nn1+j1 Jh=nna+ia
-1
= Ak f + Oy, (=) M flloo )
as desired. O

Let us show point-wise convergence in L*°(X).

Let f € L>(X) and let f’ be the

function found in Lemma Note that for any k it holds that Agf’ = f’, since f’ is
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invariant. Fix €, > 0 and pick h so large that |Anf — f'|]2 < 0. Then, by Lemma
Remark [2.3] and Theorem [I.7] we have that

i (:U limsup |Arf — f'| > 6) :u(x limsup |[Ag o Apf — Arf'| > 6)
k k

<p(x: Mp(Anf — f) > e) < || Anf = f']2 < 0.

This gives point-wise convergence. Finally, since L>(X) is dense in L”(X) for any p > 1,
we may use Theorem [[.7] and a density argument to conclude.

3. PROOF OF THEOREMS AND [LO]

In this section we show that, provided Condition (respectively ) holds for
some 1 < i < d, the operators Ay (respectively Ry) enjoy the "strong sweeping out"
property. This is a direct application of [BJR90, Theorem 3|, which we recall below for
the convenience of the reader.

Theorem 3.1. [BJRI0, Theorem 3] Let (X, X, u) be a probability space and let {T}.} be
a sequence of linear operators on Ll(X) satisfying the following properties:

o 1. > 0;

o Til=1;

o all Ty, commute with a mizing family of measure-preserving transformations {S, }

on X.

For n € N let M, f := supy,, |Tif| and assume that for each ¢ > 0 and n € N there
exists a sequence of sets {Hp} in X such that

M, >1-—
(%) sup plMnxr, 2 0.
p p(Hp)

Then the sequence Ty, has the "strong sweeping out" property (see Theorem .

When Tj, = Ag (or Ty, = Ry), the first two assumptions in Theorem are trivially
true, while the third one follows by our hypothesis on the transformations 77, ...,Ty (or
the flow Uy). Hence, it is enough for us to verify that (E[) holds. Note also that, when f
is the characteristic function of a set in X, M, f coincides with Mp/f (or Np/f), where
B'={Bpe€B:k>n}.

3.1. Proof of Theorem Take a = 1 and assume, without loss of generality, that
('Ci)) holds for i = 1. Fix p € N and choose an integer A, so that #le)()\p) > p-(4Xp+1).

Recall that, by definition of le)()\p), for any z € le)()\p) there exists (ng1,lp1) € N
such that

(3.1) |z —ng1] < Ap =l < Ay

In view of this, we may write

oM = U ),
k
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where )
CVO) i={z € Z: v —np| < Ay — 1)}
Choose K, > 1 large enough so that

# ( U CS’(Ap)) >p-(4Xp +1)

k<K,
and put
A= Vo).
k<K,
Then for each z € A there exists k < K, such that holds. Note that it must be
Ap > U1, so that for all j =0,...,lx1 — 1 we have that

(3.2) =2 431 € A+ Ay = 20
Now, let
Ny =2\, +sup A
and
Nj := sup |ngj + i
k<K,

for j = 2,...,d. Form a Rokhlin tower as in [KW72, Theorem 1] with parameters
Nl, 3N2, e ,3Nd. Then

Ni—13Np—1  3Ng—1 ‘
el U U - U TP1e.. 194B) | >1-6

Jj1=0 j2=0 Ja=0
for some positive-measure set B C X and some small § > 0, where the union is disjoint.

Define
Ni—1 3No—1  3Ngz—1

H,= | U - U .1
J1=N1—4Xp—1 j2=0 Ja=0
Fix z € A and
2N;—1  2Ng—1 ‘ ‘
zeF=J - |J i B
J2=N2 Ja=Na
Then, by (3.2), for some k < K, it holds that
N1—4)\p—1§(N1—2/\p—1)—z+nk1+j§]\71—1
for all j =0,...,l — 1. Since |ng; + ;| < N; for j =2,...,d, we conclude that

Z . Z XH, (sz+nk1+]l T2nk2+.72 . Tgkd+de> - 1.
J1=0 Ja=0

Mpgxmh, (Ty ) > [
k1" lkd

This implies that
{Mpxu, >1—¢} D |J Ty °F,,
zEA
whence
,U(MBXHP > 1—8) > #ANgNd,u(B)
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Moreover, it is clear that
p(Hy) =341 (4N, +1) - Na... Ng- u(B).
Combining these two observations, we find that
p(Mpxm, >1—¢) #A-Ny...Ng-p(B) . D
((Hp) = 344N, +1) - Ny Ng - p(B) — 31
showing that @ holds for the operator Mg. To conclude, observe that if B := {By €

B : k > n}, then (ICj) holds for the collection B’ and the above argument also applies
to the operator My .

3.2. Proof of Theorem The continuous case follows from a similar argument,
based on a Rokhlin tower construction for aperiodic flows proved in [Lin75], which we
recall below.

Theorem 3.2. [Lin75, Theorem 1] Let Uy = Uy, .+, be a d-dimensional measure-
preserving aperiodic flow on (X, ). Let Li,...,Lg,6 >0 and let Q@ = Qr, := [0,L1) X
... % [0,Lg). Then there exists a set B C X with the following properties:

o the sets Uy B fort € () are pairwise disjoint;
o the set Y := Uieq Ut B is measurable and p(Y') > 1 —6;

e there exists a measure vp defined on B such that the map ¢ : B x Q — X
given by p(x,t) := Ugx is bijective and both ¢ and its inverse are measurable and

measure-preserving with respect to the measures vg ® Leb on B x Q and 1 on
X.

In particular, the last part of Theorem implies that for any f € L*(X) we have
that

(3.3) /Y Fdu = /B /teQ F(Use) dtdug ().

As in the proof of take a = 1 and suppose that |j holds for : = 1. Fix p € N
and choose a real number A, > 0 so that Leb (le)()\p) > p-4X,. Then for each

z € le)()\p) we have that
(3.4) |z —wp1| < X\p — s,

for some (wg1, sx1) € 1. Once again, this implies that
1 1
2 0y) =J i ),
k

where .
CVO) = {z eR: |z —wp| < (A\p — s1)}-
Choose K, > 1 large enough so that

Leb( U c,g%p)) >p-4),

k<K,
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and put

A= Vo).

k<Kp

Then for each z € A there exists k < K, such that (3.4) holds. Note that it must be
Ap > sp1 so that for all 0 < ¢; < si; we have that
(3.5) | — 24 wrr + t1] < 2,
Let

Ly :=2)\, +supA
and

Lj:= sup |wg; + s
k<Kp

for j = 2,...,d. Form a tower as in Theorem with parameters Li,3Lo,...,3L4.
Define
Qp = [Ll — 4)\p,L1) X [0, 3L2) X oo X [0, 3Ld)

and H, := {Ugzr : v € Band t € Qp}, so that

(y) = xq,(t) ify=Uwr withz € Bandtec Q.
Xt 8= 0 otherwise.

By (3.3), we deduce that

3.6) nty) = [ xm)an= [ [, (Ui) atav(a

— ~ Leb(Qy) B
= [, L X () = PR ) = (),

Now, let
Fy:={Uwx:x e Bandte{L —2\} X [La,2L3) x --- X [Lq,2Lg)}.
Fix z € A and y € F), so that y = Ugz with z € B, a1 = L1 — 2)\,, and a; € [0, L;) for
j=2,...,d. By , there exists k < K, such that
la1 — 2z + w1 +t1] € [L1 —4Xp, Ly) for all t; € [0, sp1).

Since |wy; + sg;| < Lj for j =2,...,d, we conclude that

NBXHp (Ufz,O,‘..,Oy) = NBXHp (Ufz,O,...,OUa,x)

1

Z 7/ XHp(Ufz+a1+t1,a2+t2,...,ad+td$) dt = 1.
Sk1 - - Skd JtE€By

This implies that
{NBXHp >1-— 5} D) U U_z,07,,,70Fp.
zZEA
Thus, precisely as in (3.6), we have that

Leb(A)-Ly---Lg P-4\
U Uso. 0Fp | = Yy > Py
. (zeA el p) Ly -3Lg---3Lg u¥) = 3d=1. 1,4 uy).
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whence
1 (Ngxm, >1—¢) P L p
w(Hp) T 3d-l. Ly 4), 34U
showing (ED for the operator Np. To conclude, note that if B’ := {By € B: k > n}, then
holds for the collection B’, and the above argument also applies to the operator

Np.

4. PROOF OF THEOREM [L.10]

Choose vectors w, vy, . .., v, € R% such that
U={u+Mvi+ - +A\pVm:A,.., A €0, 1)} CMnNm

is an open set in M. Since m does not contain the origin, we may always assume that

w and vq,...,V,, are linearly independent. Then for any measurable set £ C X, any
x € X, and any t > 0 we have that
(4.1) / xe(a.x)dvol,,(a) > / xe(a.x)dvol,,(a).

tM tU

Let us study the integral at the right-hand side. Consider the parametrization of tU
given by
©t(A) = tu + tA o1 + - -+ ARV,

Then, if V := (v1,...,vn), we have that
42 / a.z)d lma:/ A).z) - £ [det (VIV) dA,
@2 [ xslaw)dol@) = [ xpleh)a) o fde (vIY)

(0,1)
Note that, since the vectors vi,...,v,, are linearly independent, the determinant is
non-null. By combining (4.1)) and (4.2)), we deduce that
1 \/det (VIV)
4.3 _—— .z) dvol >+ / A).x)dA.
(4.3) tm - vol, (M) /tM xs(a.z) dvolm(a) = voly, (M) (0,1)m X (#r(A).-x)
Now, let us consider a new action of R™*! on X (which we denote by ”..”), defined

by the relations:
ey..r:=u.x and e;..z:=v;xfori=1,...,m.

Then we have that

(4.4) /( : XE(p(A).x)dX\ = XE((teo +t e + -+ t)\mem)..a:) dA
0,1)m™

(0,1)m
= im mXE((t60+/\1€1+"‘+)\mem)..l’> dA.
& Jon
For k € N let
By :=[k—1,k) x [0,k)™.

Note that, in the notation of Theorem we have that s;; = 1 for all k. Thus, by
Remark Condition (!C;) holds for i = 1. Moreover, the action of R™+! defined
above is aperiodic, since u, vy, ..., v,, are linearly independent, and it commutes with a
mixing family of transformations on X, by Remark [I.6] Thus, by Theorem [I.9] for any
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g > 0 there exist a measurable set . C X and a sequence of integers k, such that for
all » and p-a.e. x € X it holds that

ke /[kr—l,k:r)x[o,kr)m

1
Xz ((Voeo + Arer + -+ + Anep)..x ) dAodA > 97/100.

By Fubini’s Theorem, there must be a real number ¢, € [k, — 1, k,) such that

kin /[O,kr)m XE. ((treo +Xep+--+ )\mem)..az)d)\ > %,
whence
1
@ /(O,tr)m XE: ((treo +Mep+---+ )\mem)..m> dX
1 1 97 .
= W /[o,kr)m XE: ((treo 4+ Xeyp+---+ )\mem)..x)d)\ + Op (k. 0) > 100 + O (kD).
From this, we deduce that
(4.5) 1/ XE: ((treO +Arer + - )\mem)..x)d}\
" Jo,t)m
97k N )
100t Om(t; ") = 100 T Om(tr b.

Combining (4.3)), (4.4), and (4.5)), we conclude that for all r it holds that

1
tm - vol,, (M)

97,/det (VTV)

—1
100vol,, (M) + Omary (t:).

/ xe(a.x)dvol,,(a) >
tr M

This contradicts the convergence to p(xg.) if € is sufficiently small.
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