
Methods for Demonstrating Model Equivalence

Using Parameter Reduction in Neuronal Models

Aidan Coletta

July 2025

1 Abstract

In the world of computational neuroscience, few individuals have been more in-
fluential than Alan Hodgkin and Andrew Huxley. In 1939, prior to the outbreak
of World War II, their work resulted in the first known instance of an intracellu-
lar recording of the action potential of an in vitro neuron. After publishing their
findings in Nature, they worked for another decade in an effort to understand
the behavior they observed. Using a technique known as voltage clamping, they
were able to control the voltage across the neuronal membrane, allowing them
to accurately measure the voltage across a squid giant axon and measure the
response of the neuron to different input currents. As a result, in 1952, they
published their most cited paper (for which they would later recieve the No-
bel prize) in which they first derived a model to predict the action potentials
they observed. Known as the Hodgkin/Huxley model, it uses four differential
equations and four state variables to describe the change in voltage across the
neuronal membrane. At the time of publication, their work represented the
most accurate mathematical description of neuronal behavior. Subsequently,
the world of computational neuroscience has worked for decades to build upon
this discovery. Owing to the computational intensity of the HH model, sister
models were derived that reduced the initial 4 dimensional model to 3 and 2
dimensional models. While these models are often very good at predicting the
membrane potential and matching the spike trains of the HH model, there are
important mathematical differences that are seldom investigated in subsequent
literature. However, there is ultimately no general method for determining
when a given model can be reduced. In this paper, we introduce various neu-
ronal models, including the HH model and the Adaptive Integrate and Fire
model (Gerstner, 2005), and investigate how Active Subspaces can be used to
systematically eliminate parameters and explicitly demonstrate that two models
are mathematically equivalent.

1



2 Introduction

2.1 Description of a Biological Neuron

While there are many different types of neurons in the body, they generally
function in the same manner at a cellular level. Fundamentally, a neuron receives
signals from other neurons in the form of electrical pulses using its dendrites.
This signal is processed in the soma, located within the cell body of the neuron.
If the signal has a particular strength and duration (specific to that particular
neuron) this causes the neuron to fire. It subsequently sends an electrical pulse
through its axon, which is then distributed throughout the network at the axon
terminal.

Figure 2.2.1 Simplified Neuronal Model (wikipedia)

In this manner, while a neuron is highly complex from a biological standpoint,
it is easy to understand from a mathematical perspective. It receives some small
input from its environment, and if that input crosses a given threshold value, a
voltage spike is produced, which is followed by a brief refractory period.

2



Figure 2.2.2 First intracellular recording of membrane action potentials in
the squid giant axon as first measured by Hodgkin/Huxley in 1952

2.2 The LIF Neuron

The Leaky Integrate and Fire model, first introduced by Luis Lapicque in 1907
is in many ways the simplest mathematical description of the action potential
of a neuron. Fundamentally, it is a one dimensional dynamical system equipped
with a reset condition. Solving the system using Euler integration results in a
discontinuous curve meant to represent the membrane action potential.

The dynamics of the LIF model are governed by the following equation:

C · dv
dt

= vr − v + Iext (2.2.1)

where Iext is the external (in this case, constant) input current, vr is the resting
potential (mV) of the neuron, and C is the capacitance. Using Euler integration,
we approximate a solution to the above equation given a discrete set of time
steps by:

dvi = (vr − v + Iext)/C (2.2.2)

vi = vi−1 + dvi · dt (2.2.3)

3



where dt is the length of each time step. Ultimately, we say that a spike in the
neuron has occurred if the voltage across the membrane has surpassed a given
threshold, vi ≥ vT , and set vi to some constant we call the reset potential, vR.
Thus, the relevant constants in this model are vr, vR, vT , C, Iext.

This system allows us to predict the membrane potential (mV) as a function of
time. However, it is often the case that a neuron in a system of connected neu-
rons is subjected to a ’noisy’ input, arising from the firing of adjacent neurons.
This ’noisy’ input is modeled by a random variable −1 ≤ ζ ≤ 1 with a gaussian
probability distribution, multiplied by a volume constant, µ. If we revise the
above model to include noise, the Euler integration process looks like:

dvi = (vr − v + Iext)/C (2.2.4)

vi = vi−1 + dvi · dt+
√
dt · ζi · µ (2.2.5)

This allows us to model the firing rate, of the neuron when it is subjected
to a noisy input. With input values as follows, we graph the firing rate of the
neuron as a function of time alongside the membrane potential using python.

Figure 2.2.1 Spiking LIF model (no noise)

4



Plotting the system to include noise with µ = 5 yields:

Figure 2.2.2 Spiking LIF model (with noise)

The Leaky Integrate and Fire model, while highly unsophisticated, has its place
in computational neuroscience literature. While widely regarded as a toy model,
the low number of parameters makes it relatively easy to code, and modeling
behavior is highly inexpensive from a computational standpoint. For this rea-
son, it is often used to model large networks of neurons, where it is necessary
to compute the voltage trajectories for hundreds, or sometimes thousands of
individual neurons simultaneously. However, the lack of parameters makes it
impossible to model certain behaviors that can be accessed using other models,
which we will discuss in subsequent sections.

2.3 EIF and QIF Models

While the leaky integrate and fire neuron is sufficient for many applications,
it does not produce the spiking behavior characteristic of biological neurons.
As seen in the plots above, the membrane potential increases ever more slowly
(owing to the negative second derivative one obtains by differentiating equation
2.2.1) which is inconsistent with the voltage trace seen in figure 2.2.1. For this
reason, alternative models were created to produce this spiking behavior while
maintaining the computational simplicity characteristic of the LIF.

Ultimately, exponential/quadratic integrate and fire neurons are coded in much
the same manner, to allow for constant input, noisy input, or a combination of
both. The governing equations respectively are:

C · dv
dt

= −gL(v − vr) + f(v) + Iext (2.3.1)

5



Where for the EIF:

f(v) = gL△T exp(
v − vT
△T

) (2.3.2)

while for the QIF, we have that:

f(v) = (v − vr)
2 (2.3.3)

In the EIF model, the constant △T is a time constant that changes the size of
the effect of the exponential term in the EIF model. At low values of △T , this
equation is identical to the one that governs the dynamics of the LIF model.
The quadratic integrate and fire model has the same number of parameters as
the LIF, however the values of these parameters differ from that of the LIF
significantly in some cases.

The parameter values are given in the figures below:

EIF:

Figure 2.3.1 Spiking EIF model (no noise)

6



Figure 2.3.2 Spiking EIF model (with noise, µ = 5)
QIF:

Figure 2.3.3 Spiking QIF model (no noise)
(With Noise)

Figure 2.3.1 Spiking QIF model (with noise, µ = 1)

2.4 Adaptive EIF

In the course of our research, we studied the paper that introduced an adapted
version of the Exponential Integrate and Fire neuron (Gerschner 2003). This
model was initially fit to the HH model in the above work, however it is derived
from the models introduced in the above two sections. While the governing
equations look much the same, there are some important differences. For in-
stance, in the case of the above models, one can check that a constant input
current high enough to cause the neuron to spike will cause it to fire indefinately
at a constant frequency.

7



Figure 2.2.1
However, it has been determined through experimentation that a single neu-

ron, subject to a high enough constant input current, will fire at a constant rate
for some period of time, and then subsequently begin to fire unpredictably be-
fore returning to its resting potential. In other words, a constant input voltage
is ignored by the neuron after a certain period of time. This is consistent with
other biological observations and intuitive reasoning; our nervous systems react
strongly to changes in our environment, because any change in our environment
indicates the presence of a potential threat. However, any external input in
ones environment, if constant, will be ignored by the nervous system after some
period of time so long as said input does not appear to be hurting you.

Ultimately, the adapted EIF was developed in order to account for this be-
havior. It is a two dimensional system composed of two differential equations,
given below:

τ
dω

dt
= α(v − vr)− ω (2.4.1)

C
dv

dt
= −gL(v − vr) + gL · △T · e(

v−vT
△T ) − ω + Iext (2.4.2)

where α is an adaptation constant and τ is the time constant associated with
the adaptation current ω. Using Euler integration, we approximate a solution
to these equations for a given a set of inputs and a discrete set of time steps by:

dwi = (α(vi−1 − vr)− ωi−1)/τ (2.4.3)

ωi = ωi−1 + dωi · dt (2.4.4)

dvi = −gL(vi−1 − vr) + gL · △T · e(
vi−1−vT

△T ) − ωi−1 + Iext (2.4.5)

vi = vi−1 + dvi · dt+
√
dt · µ · ζi (2.4.6)

In our code, we make the stipulation that if vi ≥ vT , we say a spike has occurred,
and set vi = vR. Note above that if µ = 0, and Iext is large enough to cause a

8



spike, the system exhibits the behavior described above for a neuron subjected
to constant input. That is to say, it fires periodically for a while before firing
aperiodically, and then returning to its resting state.

Figure 2.4.2 Adaptive EIF model (no noise)

Any nonzero value of µ introduces noisy input into the system. In this case, the
neuron will spike aperiodically for some length of time, and depending on the
volume of the noise, may or may not return to a resting state.

Figure 2.4.3 Adaptive EIF model (with noise, µ = 5)

2.5 The Hodgkin Huxley Model

A main goal of the project is to demonstrate model equivalence between the
HH model and the aEIF model. In 2005, Wulfram Gerstner showed that this
was possible by fitting his adapted version of the EIF to the HH model. In his
paper, he was able to get the spike times of the models to match given the same

9



noisy input. He further claims that in principle, this adapted model may be
fit to any repetitive spiking neuronal model, such as the Wang/Buzaki model
(shown below). Ultimately, we seek a method of understanding the apparent
relations between the parameters of the aEIF model and the HH model that
make them fundamentally equivalent. Below, we begin by describing the dy-
namics that govern the HH model, and the various similarities it shares with
the models above.

The Hodgkin Huxley model of a neuron is a 4 dimensional system governed
a shortlist of differential equations. In vivo, a neuron is influenced by many
different inputs. As described above, it receives noisy input from other neurons,
and this is modeled using the normally distributed random variable ζ. It then
receives some constant input current, Iext and these currents both contribute to
the membrane potential of the neuron given by v. However, voltage across the
membrane is also affected by other inputs, most notably voltage gated potas-
sium/sodium channels. Inputs across these channels is modeled by the vari-
ables n,m and h. In particular, the voltage gated potassium channel is modeled
by potassium activation variable n, while the voltage gated sodium channel is
modeled by the sodium activation/inactivation variables m,h respectively. The
dynamics of each gating variable are determined by the same equation:

dx

dt
= αx(v) · (1− x)− βx(v) · x (2.5.1)

for x = n,m, h where αx, βx are adaptation constants determined by the current
membrane potential at any given time. Unfortunately, these constants (really
functions of the membrane potential) are all distinct for each variable, and are
given below:

αn(v) =
0.01(v + 55)

1− e−0.1(v+55)
(2.5.2)

βn(v) = 0.125e(−0.0125(v+65)) (2.5.3)

αm(v) =
0.1(v + 40)

1− e−0.1(v+40)
(2.5.4)

βm(v) = 4e(−0.0556(v+65)) (2.5.5)

αh(v) = 0.07e(−0.05(v+65)) (2.5.6)

βh(v) =
1

1 + e−0.1(v+35)
(2.5.7)

Finally, the membrane potential is given by the following differential equation:

C
dv

dt
= Iext − gNam

3h(v − ENa))− gKn4(v − EK)− gL(v − EL) (2.5.8)

Ultimately, when updating the value of the membrane potential for discrete
time steps (using Euler integration) we add:

vi = vi−1 + dvi · dt+
√
(dt) · µ · ζi (2.5.9)

10



to allow for noisy input. The plot of the membrane potential for an HH neuron
with noisy input is given below.

Figure 2.5.1 Hodgkin/Huxley model, simulated for 1000 ms (without noise)

Figure 2.5.2 Hodgkin/Huxley model, simulated for 200 ms (with noise, µ =
10). Note that the parameter values in the plots above are taken different. The
parameter values in figure 2.5.1 were taken from (Dunworth) while the param-
eter values in figure 2.5.2 were taken directly from Gerstner’s textbook. When
noise is removed from the system, the resemblance to figure 2.1.1 can be more
easily identified, as seen in the plot below.

(ultimately, I need to regenerate these plots so that I am using the same pa-
rameters for the HH model throughout)

11



Figure 2.5.3 Hodgkin/Huxley model, simulated for 50 ms (without noise)

One of the many upsides to using this model is its relative (compared to other,
newer models) simplicity combined with its capability to model complex behav-
ior. For example, many pufferfish species such as Lagocephalis contain a potent
neurotoxin known as tetrodetoxin, which is emmitted during a stinging event.
This neurotoxin works by causing the deactivation of sodium channels, which
inhibits neurons from firing. In the victim, it can lead to paralysis or death.
The effect of the neurotoxin can be demonstrated using the HH model. Note
that in figure 2.5.1, the sodium leak capacitence, given by the variable gK , is a
constant. In the context of the pufferfish, we change gK to a time dependent
variable, for instance:

gK(t) = gK(1− t

r
) (2.5.10)

where the variable r represents the speed at which the neurotoxin takes effect
in the individual neuron. The result of this change is seen in the plot below,
where a neuron that would typically continue to fire stops firing.

12



Figure 2.5.4 Hodgkin/Huxley model (noisy input) with gK(t) = gK(1− t
10 )

While the HH model is capable of modeling complex behaviors as seen above, it
is unfortunately very computationally expensive to do so. With four time vari-
ant inputs, each with their own dynamics, this system is not only very inefficient
to work with at a large network scale, but parameter values can be sensitive to
small changes, making it difficult to code. For this reason, it is often useful to
eliminate as many insensitive parameters and variables as possible. Below, we
show a direct example of a relatively simple variable reduction.

3 Methods

3.1 Model Similarity

Given that many of the plots above that depict the membrane potential as a
function of time appear different for different models, it is important to demon-
strate model similarity. The approaches demonstrated below are frequently used
by researchers to show that a given reduction of an existing model is indeed valid.
While the previous simulations may convince some, a more principled approach
is to show that the different models match in a statistical sense. Ideally, one
would like to be able to match spike trains between models exactly, though this
goal is more complicated than it may initially appear. To begin, we can match
the models at the level of the first marginal statistic, the firing rate.

Several different measures were used to evaluate model similarity. While ac-
tion potential curves may appear different, these measures are used to show
that the models are qualitatively similar. One of the most informative values
given a neuronal model and an input current is the firing rate, which tells you
how quickly the neuron is spiking. This quantity is simply obtained by counting
the number of spikes in a time interval, and dividing by the length of that time
interval. The plot below was obtained by calculating the firing rate for each
model as a function of a constant input current.

13



Figure 3.1.1: Plot of the firing rate curve for the aEIF, EIF, and LIF models,
generated by calculating the firing rate for static input current ranging from 0
to 90 (units) for 90 different values.

Noting the shape of the aEIF curve, consider the plot below of the firing rate
curve for the Hodgkin Huxley model with the parameter values in Gerstner’s
textbook:

Figure 3.1.2: Firing rate for the HH model, generated by calculating the firing
rate for static input current ranging from 0 to 2.5 (units) for 50 different values.

Here, we observe that the firing rate curve for these two models is practically

14



identical. However, these plots could not be overlayed due to a scaling issue: the
parameter values in Gerstner’s textbook differ from those used to fit the aEIF
model, and thus, the input current is an order of magnitude off from where
it should be. Correcting this is unfortunately not as simple as changing all
parameter values by an order of magnitude, as parameter fitting can be quite
challenging, as we will see subsequently. However, the shape of these curves
indicate that change in the neuronal response to different input currents is con-
sistent across models.

If the neuronal models are in fact, describing the same thing, one should be
able to input the same noise into each model, and obtain the same result each
time. Using the parameter values for the HH model above, we applied the pa-
rameter fitting techniques used in Gerstner 2005 show proof of concept that the
parameters of the aEIF model can indeed be fit to the HH model.

First, we note that in both cases, equations 2.5.8 and 2.4.2 for the HH and
aEIF models respectively can be written:

C
dv

dt
= Iext − F (v, n,m, h) (3.1.1)

C
dv

dt
= Iext − w − f(v) (3.1.2)

Hence, if we can fit the parameters of the aEIF model to match f(v) to the
shape of the curve F (v, n,m, h), it makes sense to say that we have found a valid
approximation of the HH system. First, in order to understand the dynamics of
the function f , we graph it for different values of △T . Changing will ultimately
alter the shape of each spike. Note that in the limit as △T → 0 we find that:

gL · △T · e(
v−vT
△T ) → 0 (3.1.3)

⇒ −gL(v − vr) + gL · △T · e(
v−vT
△T ) → −gL(v − rr) (3.1.4)

so that the aEIF model resembles the LIF model (with adaptation) in the limit.
The plots of f(v) for different values of △T are given below.

15



Figure 3.1.3: Plot of the f(v) curve for values of v ranging from −80 to
−40mV.

Note that for smaller values of △T , the exponential relationship between the
membrane potential and the function f(v, w) increases at a faster rate for values
of v ≥ −50. Thus, we can, in principle, use an exponential fitting algorithm to
fit these curves to that of F (v, n,m, h).

Note that above, we have plotted f(v) not as a function of time, but as a
function of v. However, in practice, F is a function with multi-dimensional in-
put. Thus, holding the values of n,m and h constant and simply increasing the
value of v linearly does not give us very much information about the system as
a whole. In practice, v is a variable with time dependent dynamics, and it does
not increase linearly in either system. Nonetheless, we seek a method of plotting
f(v) and F (v, n,m, h) alongside one another so that a fit can be achieved. In
order to do this, we treat F and f as time dependent variables that evolve with
each system respectively, and plot F and f alongside each other as functions of
time.

16



Figure 3.1.4: Plot of F (v, n,m, h) and f(v) as the aEIF and HH models evolve
over time from 4 to 16ms.

Subsequently, we defined an exponential function with the equation:

y(t) = abe
r(t)
b + c (3.1.5)

Note here the resemblance of the above function to f(v). Since F (t) is plotted
as a function of time, the input parameter for the exponential function needed
to also be the time parameter in order to scipy’s optimization function to work.
However, f(v) is a function of v not of time, although v changes exponentially
over time. Therefore, we note that the function f(v) sees a spike at approx-
imately the time that the aEIF model sees a spike (i.e., when v ≥ vT ). At
that time, v increases by approximately 20mV over a period of one millisecond.
Therefore, we make the approximation:

v − vT = r(t) = 20(t− 14) (3.1.6)

since the first spike in the f(v) occurs at approximately 14 milliseconds.
With this approximation, we were able to use scipy’s exponential fitting algo-
rithm to fit the curve to the data points above cooresponding to F (t).

17



Figure 3.1.5: Plot of y(t) fit to the data points cooresponding to F (v, n,m, h)
from figure (3.1.4).

The fitted parameter values of a, b and c were given by a = 6.2, b = 4.1, and
c = −6.5. Inputting the fitted a and b parameters in for gL and △T did not
quite work, most likely due to the fact that f(v) has a linear component as well
as an exponential component. However, after increasing the value of gL to 25,
making no changes to the other variables, we were able to achieve the following
result:

Figure 3.1.6: Plot of F (v, n,m, h) and f(v) as the aEIF and HH models evolve
over time from 4 to 16ms using the new parameter values of gL and △T found
above.

We subsequently plotted the voltage trace of the aEIF and HH models together
with these parameter values for an input current of 10µa2. Afteradjusting the
starting voltage for the aEIF model to −40 to account for the longer burn in
period of the aEIF model, suprisingly, this happened:

18



Figure 3.1.7: Plot of the HH and aEIF voltage traces, simulated for 100ms,
subject to the same static input current.

Plotting both systems with noise, we were able to match the voltage trace
of the aEIF model to the voltage trace of the HH model more or less spike for
spike:

19



Figure 3.1.7: Plot of the HH and aEIF voltage traces, simulated for 200ms,
subject to the same noisy input current.

Note here that the aEIF model occasionally misses some spikes that occur in
the HH model, spikes when it should not, or the timing of certain spikes is
slightly off. Gerstner noted the presence of these ’missed spikes’ in his paper,
although there is only one missed spike and one extra spike in the above plot
after simulating the models for a period of 200ms.

3.2 Parameter Reduction

We showed above that the parameters of the aEIF model can be fit to match
the behavior of the HH model. Mathematically, it is important to understand
why we can do this. First, in considering equation 2.5.8 of the HH model, one
should note that unlike the aEIF model, the HH model need not be reset at
a given value of the input current. This is due to the fact that the sodium
and potassium gating activation variables inhibit the growth of the membrane
potential at a certain threshold value, and unlike the aEIF model, there is no
positive term in the equation for C dv

dt . Hence, we may write equation 2.5.8 in
the following manner:

C
dv

dt
= Iext − gL(v − EL)− (INa + IK) (2.5.8)

Note that for the parameter values of the HH model given in figure 2.5.1,
since the reset potential vr = −65, the term (v − EK) is positive, while the

20



term (v − ENa) may be either positive or negative. This means that sodium
activation may be excitatory or inhibitory depending on the current state of
the membrane potential. Therefore, one can conceive of it having a positive
component as well as a negative component. Taking note of these features, we
consider again equation 2.4.2:

C
dv

dt
= −gL(v − vr) + gL · △T · e(

v−vT
△T ) − ω + Iext (2.4.2)

At least in principle, based on the above similarities, one may be inclined to
make the approximation:

(INa + IK) = gL · △T · e(
v−vT
△T ) − ω (3.2.1)

It should be noted that such an approximation is completely invalid unless
one has access to the correct parameter values, as demonstrated above. How-
ever, it shows how one could theoretically reduce the dimension of the system
using fewer variables. For a more concrete and straightforward example of pa-
rameter reduction, we turn to a 3-dimensional adaptation of the HH model caled
the Wang/Busaki model.

The Wang-Busáki model is a refinement of the HH model that takes the 4
dimensional dynamical system proposed by HH and reduces it to a 3 dimen-
sional model. It does this by taking the gating variable m for sodium activation
and reducing it to a function of the membrane potential v. It uses the same
general equation for the membrane potential:

Cm
dV

dt
= −(INa + IK + IL) + Iext (3.2.2)

However, the Wang-Busáki model makes the following change; note that in the
HH model:

INa(v) = gNam
3h(v − ENa) (3.2.3)

While in the WB model:

INa = gNam∞(v)3h(v − ENa) (3.2.4)

where:

m∞(v) =
αm(v)

αm(v) + βm(v)
(3.2.5)

As it turns out, this sort of reduction is common. Potassium and sodium gating
variables alike can be reduced into functions of voltage, as voltage affects these
quantities in a sub linear manner, and can be modeled using a rational function.
The gating variable m simply responds fastest to a change in the membrane
potential, and so it makes sense to reduce the model using this variable first.
To demonstrate howm is affected by a change in voltage, a plot of the membrane
potential for the HH model is given alongside a plot of the gating variable.

21



Figure 3.2.1: Plot of the voltage trace of the HH model simulated for 100ms
and subjected to noisy input alongside a plot of the gating variable m.

To show that the approximation of the gating variable m = m∞(v) is valid,
we plot the trajectories of m and m∞(v) as the HH system evolves over the
course of 200ms:

Figure 3.2.2: Plot the gating variable m and m∞(v) in the HH model as the
system is simulated for 200ms, subjected to noisy input.

An example plot of a WB neuron, subjected to noisy input, is shown below
alongside the plot of the HH neuron subjected to the same input:

22



Figure 3.2.2: Plot the voltage traces of the HH and WB models subjected to
the same noisy input and simulated for 100ms.

As with the plot of the aEIF model, the WB model occasionally misses spikes
as well. In this case, we have not followed the procedures to fit the parame-
ters of the WB model to those of the HH model, as that would go beyond the
scope of what we are trying to demonstrate here. The point is that in some
cases, you can reduce the dimension of these models, and after correctly fitting
the parameters, one can obtain a system of equations that exhibits the same
behavior when subjected to the same input. We finally seek a general method
for determining when there is a relation on two or more model variables that
can be exploited, and if so, what the nature of that relationship may be. We
proceed to do that using active subspaces.

3.3 Active Subspaces:

The aim of this project is to show that certain models can be reduced into
less complicated models with less dimensions. There are many frameworks and
methods to which to approach this problem, including the MBAM method.
However, while the method itself is very robust in generality, it suffers from
being highly computationally inefficient. Therefore, we seek other more refined
numerical methods for reducing the models above. As it turns out, there is this
really nice, linear-algebra-adjacent way to think about all of this called active
subspaces. The method of Active Subspaces seeks to reduce the number of pa-
rameters needed to approximate a quantity of interest. An active subspace is a
region in parameter space throughout which the output of the model is highly

23



sensitive to changes in initial parameter values. An inactive subspace is a region
where you see mostly the same output, regardless of your initial input. Geomet-
rically, this method is essentially the linear algebra equivalent of the manifold
boundary approximation method. It finds sensitive and insensitive directions in
parameter space, and these directions define a plane, which is a local approxi-
mation to an arbitrary manifold. Fundamentally, it speaks to the identifiability
of the model (which parameter combinations can be uniquely identified by the
output of a given model).

Consider a system of ODE’s with the following form:

x′ = w(x, t, θ) (3.3.1)

y = v(x, θ) (3.3.2)

Here, t is time, w, v are functions, θ is the input vector, x is the unobserved
state vector, y is the observed output vector.

Let f denote a map from the space of model parameters to the model out-
put: f : θ ∈n→m.

A model is said to be identifiable if it can be uniquely determined from model
output. A model is identifiable if all of its parameters are identifiable. If a
parameter cannot be solved for, it may be an insensitive parameter, or it could
be part of an identifiable parameter combination. That is to say, either the
parameter simply does not matter very much in the context of the qualitative
behavior of the model, or there may be some relation whereby that parameter
can be expressed in terms of the other parameters in the model.

For example, consider the system below.

y = (m1 +m2)x+ b (3.3.3)

Here, with (x, y) pairs as the observed output, b is identifiable, and while
(m1+m2) is an identifiable quantity, the parametersm1,m2 are not individually.

In this case, the parameter b exhibits global gdentifiability. A parameter θi
in θ is structurally globally identifiable if for almost all values of the parameter
θ∗i , the observation of an output value y = y∗ uniquely determines the value of
θi = θ∗i if only one value of θi could have resulted in the observation that y = y∗.
A parameter is said to be locally identifiable if there are a finite number of pa-
rameter values that generate the observed output. Note here that the quantify
(m1+m2) is also structurally globally identifiable, since any value of the output
y specifies a unique line in 2 dimensions expressing the possible values of m1

and m2

24



One way to determine how to reduce your parameter space is to fix them one at
a time and solve for the remaining parameters until you can identify the sloppy
ones. This is computationally expensive. However, one could also attempt to
reparameterize the model in terms of its identifiable parameter combinations.
This is called identifiable reparameterization. For example, in the model above,
one could set m = (m1 +m2) so that now the model has a set of outputs (x, y)
identifiable from m, b. In order to determine when this can be done, we use
something called the Fischer Information Matrix (FIM).

3.4 FIM:

Suppose a system of equations gives m observed quantities and n parameters,
with θ∗ representing any given set of parameter values, and f(θ∗) representing
the model output cooresponding that set of parameter values.

We consider a matrix with entries

Fi,j(f : θ) = [

m∑
k=1

(
∂fk
∂θi

)(
∂fk
∂θj

)]i,j (3.4.1)

Note here that:

F (f : θ) = Df(θ) ∗ (Df(θ))T (3.4.2)

This is called the sensitivity Fischer Information Matrix (which we denote
sFIM in subsequent sections). Note that it is a real symmetric matrix, and is
therefore diagonalizable. Finding the eigenvalue decomposition of this matrix
and the cooresponding eigenvalues can help to identify sensitive and insensitive
directions in parameter space. In spirit, the FIM can be understood as the
square of the derivitive matrix of the output in terms of each of the parameter
values. Therefore, each entry gives you information about which linear direc-
tions in parameter space lead to the largest change in the output. It is said that
the FIM is only capable of determining linear identifiable parameter combina-
tions, however, we propose a method to find nonlinear identifiable combinations
in subsequent sections.

4 Results:

4.1 The FIM in a Toy Model:

We used the FIM in two settings to determine if it is capable of finding any sort
of relation between the variables/parameters in the model, and if so, what the
nature of that relation might be. In constructing a function f(θ) for a given set of
parameter values, we seek some output that adequately describes the behavior
of the model for which it is possible to take the derivative in terms of each
parameter. Ultimately, we chose the coefficients of the fast fourier transform

25



for our output. In order to demonstrate that this output is capable of finding
identifiable parameter combinations using the FIM, we first implemented it on
a toy model. Consider the following dynamical system given by:

dx

dt
= (m1 +m2)y (4.1.1)

dy

dt
= x+ k (4.1.2)

with parameters m1,m2, k, x0, y0 where x0, y0 are the initial values of x and y
respectively. Plotting the system over time yeilds:

Figure 4.1.1: Plot of the trace of x and y as the system is simulated over 4s.

Subsequently, we let θ = (m1,m2, k, x0, y0, and we define the function:

f(θ) = [Xj = |
N∑

n=1

xne
−i 2πkn

N |]10j=1 (4.1.3)

where the Xj is the magnitude of the complex number given by the jth pair
of coefficients (which outputs a vector of length 10 for the first 10 harmonics)
cooresponding to the FFT of the y curve simulated for 4ms, or N = 4

0.01 = 400
time steps. We then take the FIM of the output function f(θ∗) for a given set of
parameter values θ∗ by approximating the derivative using secant approximation
and calculating:

F (f : θ∗) = Df(θ∗) · (Df(θ∗)T ) (4.1.4)

26



We then use the linear algebra ’eigh’ function of numpy to get the eigenvalues
and eigenvectors cooresponding to the FIM matrix. At the values of the param-
eters described above, we use bargraphs to illustrate the different directions in
parameter space indicated by each eigenvector.

Figure 4.1.2

Figure 4.1.3

27



Figure 4.1.4

Figure 4.1.5

28



Figure 4.1.6
We now demonstrate how this data can be used to uncover the identifiable

parameter combination (m1 +m2). Note that the first 3 eigenvectors describe
sensitive directions in parameter space. Therefore, adding these eigenvevtors to
the input parameter vector θ∗ will yeild some nonzeo change in the output of the
function f . Alternatively, the final 2 eigenvectors coorespond to insensitive di-
rections in parameter space. Adding these vectors to the input parameter vector
θ∗ should theoretically yield no change in the output of the model. Therefore,
we can calculate the initial FIM, and take, for instance, a small step in the
direction of the 4th eigenvector (which should yeild no change in the model)
and recalculate the FIM at the new parameter values. Iterating this process
and keeping track of the parameter values will yeild a curve in parameter space
on the surface of output manifold cooresponding to zero change. Hence, we
can graph these parameters as functions of one another in order to determine a
relation on the variables themselves.

Beginning at the parameter values above, we apply this method to the model,
and plot the subsequent values of m1 and m2, which yeilds the following curve:

Figure 4.1.7: Scatter plot of the values of m1 and m2 generated using the
method described above.

Note that the line of best fit for the above set of data points cooresponds to
the line parameterized by:

r(t) = t[−1, 1] + [m0
1,m

0
2] (4.1.5)

29



Noting that this line cooresponds to zero change in the output of the model, we
deduce that the direction perpendicular to this curve, [1, 1] cooresponds to some
nonzero change in the output of the model. Hence, we can reduce the number
of parameters in the system by letting α = m1 +m2, which uncovers precisely
the parameter reduction that we were seeking.

4.2 The FIM in the HH model using FFT output:

With sufficient proof that the above method can be used to find identifiable
parameter combinations in the context of a similar (yet simpler) model, we
proceed by applying this method to the Hodgekin/Huxley model. First, for a
given set of parameter values:

θ = (Cm, gNa, gK , gL, ENa, EK , EL) (4.2.1)

we consider the system given by:

f(θ) = [Xk = |
N∑

n=1

xne
−i 2πkn

N |]Kk=0 (4.2.2)

where Xk is the kth coefficient of the fast forier transform (computed for K = 50
harmonics) cooresponding to the voltage trace of the HH model simulated for
25ms, or N = 2500 time steps. The following plot shows the voltage trace of
the HH model overlayed with the resutling FFT approximation:

30



Figure 2.4.1: Plot of the voltage trace of the HH model simulated for 25ms
and subjected to static input current with the cooresponding FFT approxima-
tion.

We used secant approximation of the derivative for a point θ∗ in parameter
space to find the matrix:

Fi,j(f : θ) = [

m∑
k=1

(
∂fk
∂θi

)(
∂fk
∂θj

)]i,j = Df(θ∗) · (Df(θ∗)T ) (4.2.3)

In this case, θ∗ is given by the same parameter values for the HH model used in
the previous section. After applying the same eigenvector estimation package
used above, we were able to get the following eigenvectors and their coorespond-
ing eigenvalues:

Figure 2.4.2

Figure 2.4.3

31



Figure 2.4.4

Figure 2.4.5

Figure 2.4.6

32



Figure 2.4.7

Figure 2.4.8
Note here that the eigenvalues associated with the above eigenvectors all

appear to be rather large. However, qualitatively, it must be noted that the FIM
matrix has values ranging from 106 to 1010. This means the difference between
the larges value in the matrix and the smallest value in the matrix is 4 orders of
magnitude. Therefore, it is not obvious whether the eigenvalues cooresponding
to eigenvectors 6 and 7 are qualitatively large or small. However, when plotting
the trajectories for the HH model with parameter sets θ∗ and θ′ = θ∗+Eλ7

, we
find that there is almost no discernable difference between the plots:

33



Figure 2.4.9: Plot of the HH model simulated for 25ms and subjected to noisy
input for parameter sets θ∗ and θ′.

While if we plot the same HH voltage trajectory alongside the voltage trajectory
cooresponding to θ′′ = θ∗ + Eλ0

, we get:

Figure 2.4.10: Plot of the HH model simulated for 25ms and subjected to
noisy input for parameter sets θ∗ and θ′′.

34



This suggests that eigenvectors 5, 6 and 7 do indeed coorespond to insensitive
directions in parameter space, even though the size of the eigenvectors would
seem to suggest otherwise. Therefore, it may make sense to re-examine the
above eigenvectors to look for potential relationships between variables. Note
that in equation 2.5.8:

C
dv

dt
= Iext − gNam

3h(v − ENa))− gKn4(v − EK)− gL(v − EL)) (2.5.8)

the size of gNa and gK control the size of the effect of the sodium and potas-
sium gating variables on the voltage trace. Hence, it makes intuitive sense that
increasing one while decreasing the other would lead to little change in the out-
put of the model, as seen in eigenvectors 5 and 6. Additionally, it should be
noted that there seems to be some relationship between Cm and gNa as well as
Cm and gK illustrated in eigenvectors 7 and 6 respectively. Note that in the
above equation, a change in the size of the capacitence Cm leads to a change in
the speed at which v increases or decreases. In practice, it is a time parameter
that will either stretch or shink the trace of the voltage horizontally by some
amount. Recall that the gating variables m and h either increase or decrease
dv
dt depending on whether v < ENa or v > ENa respectively. Therefore a rela-
tionship between Cm and gNa would hint at a potential relationship between v
and m, although certainly, some different approach is necessary to confirm the
existence of that relationship and the nature of it.

Ultimately, makes sense that the above approach would not necessarily give
us much information about how to approximate gating variables using v. Of
course, the above approach does not use these gating variables as inputs, and so
it is difficult to see any relationship between them especially given the number
of parameters involved. Therefore, we devise a new method for uncovering this
relationship using the FIM.

4.3 The FIM in the HH model using gating variables as
parameters:

In the above approach, we took the input of the funciton f to be:

θ = (Cm, gNa, gK , gL, ENa, EK , EL) (4.2.1)

Conventionally, this is the type of input that one would normally use for param-
eter reduction. However, while we would ultimately like to reduce the number
of parameters used in the model, we must first reduce the dimension of the
model; we must find a way to relate one or more of the gating variables to the
membrane potential v. In order to do this, we instead construct a function f
that takes the gating variables themselves as the input, and return an output

35



that says something about the change in the membrane potential. Therefore,
we propose the following function:

f(θ) = v +
dv

dt
∗ dt (4.3.1)

θ = (n,m, h, v) (4.3.2)

where dv
dt is given above, and dt = 0.01. In other words, we simply take the

input to be the values of n,m, h, and v at a particular time, and take the output
to be the new value of v after using Euler integration to evolve the system one
time step. We subsequently used secant approximation to calculate the FIM for
this function:

F (f : θ∗) = Df(θ∗) · (Df(θ∗)T ) (4.3.3)

where we take θ∗ to be:

θ∗ = [n0,m0, h0, v0] (4.3.4)

v0 = vr = −65, x0 =
αx(v0)

βx(v0) + αx(v0)
(4.3.5)

In other words, we take the input to be the initialized values of the gating
variables so that the input is simply the state of the HH model at t = 0. We then
calculated the FIM for an array (of size 10000) of points surrounding these initial
values, and added these With the same eigenvalue/eigenvector approximation
package used above, we calculated the following eigenvectors cooresponding to
this input:

Figure 4.3.1

36



Figure 4.3.2

Figure 4.3.3

37



Figure 4.3.4
According to the above plots, there is one (perhaps two or three) sensitive

directions in parameter space and at least two insensitive directions in parameter
space. In examining the first eigenvector, we find that a large positive change
in v combined with a large positive change in m coorespond to the greatest
direction of change. In examining eigenvectors 2 and 3 we find that a if there
is a positive change in either m or v and a negative change in the opposite
variable, this leads to almost no change. The final eigenvector simply states
that changing n does not change the membrane potential qualitatively, at least
initially. This is consistent with the fact that n is the slowest and least impactful
gating variable in the model. Below, we plot the evolution of the HH model for
all four gating variables simultaneously in order to illustrate this:

Figure 4.3.5: Plot of v alongside the gating variables in the HH model, simu-
lated for 50ms and subjected to static input.

In considering v and m in the first 3 eigenvectors, we note that this is re-
markably similar to what we observed in the toy model, where either increasing
or decreasing m1 and m2 by the same amount leads to a large change in the
output, while increasing one and decreasing the other by the same amount will
lead to negligible change. This again suggests that there is some exploitable
relationship between m and v.

In order to uncover the nature of this relationship, we use the technique demon-
strated in the toy model, where we compute the value of the eigenvectors for
the FIM at θ∗, and then instead of adding an eigenvector cooresponding to an
insensitive direction in parameter space, we initially made the choice to add
the eigenvector with the largest eigenvalue. This is due to the fact that v and
m are the gating variables that have the greatest impact on the state of the
model, and so any relationship between them will be most prevalent in the first
eigenvector. Adding this eigenvector to the initial parameter vector gives us a
new set of parameters, θ∗ +Eλ0, and we recompute the FIM at this new point.
Ultimately, this process is iterated forward, and track the development of the
variables v and m as we go. In using this method, we were able to obtain the
following data:

38



Figure 4.3.6: Scatter plot of the data points cooresponding to values of m
and v obtained using the method above alondside a plot of the m∞(v) curve for
values of v ranging from −65 to −20mV

Here, we see that after appropriate rescaling, the best fit line for the data ap-
pears to qualitatively resemble the inverse of the m∞(v) relation (in the second
plot). In order to further analyze the potential relationship here, we chose to
itterate using the second eigenvector instead. This yeilds the following plot:

Figure 4.3.7: Scatter plot of the data points cooresponding to values of m

39



and v obtained using the method above alondside a plot of the m∞(v) curve for
values of v ranging from −65 to −20mV

In analyzing this plot, we find that while there is significantly more noise, the
graph of m∞(v), after appropriate rescaling, appears to be almost identical to
the line of best fit for the data.

5 Conclusion:

In this paper, we have introduced several neuronal models, and explored their
dynamics in several circumstances. We then demonstrated that the adapted
version of the aEIF model can be fit to match the behavior of more complex
models. Subsequently, after showing that the Hodgekin/Huxley model can be
reduced to a 3, and even a 2 dimensional dynamical system, we used active
subspaces to demonstrate how these reductions could be found using the FIM
matrix. While the above approach by no means constitutes a general method
for parameter reduction in higher dimensional models, these results do indeed
demonstrate that active subspaces and the FIM can be used in concert with
one another to give researchers an idea or when a model can be reduced, and
what the nature of the reduction might be. While the explicit reduction m =
m∞(v) was not replicated, one could conceivably do this by using an exponential
fitting algorithm with input parameters cooresponding to the various constants
in αm, βm to get a best fit line for the data points in figure 4.3.7, austensibly
recovering m∞(v). Unfortunately, there were scaling issues with these plots that
prevented us from achieving such a fit. A likely cause here would be the fact
that the gating variables themselves are time dependent, and do not increase
linearly with time. Therefore, incrementing them by a small fixed step size leads
to a shear in the data, causing it to look noisy and mishapen. However, we used
to toy model to show that this is a valid approach, at least in circumstances
where the relation on the parameters can be approximated linearly.

40



6 References:

(yet to be formatted) Hodgkin, A. L., Huxley, A. F. (1952). A quantitative de-
scription of membrane current and its application to conduction and excitation
in nerve. The Journal of physiology, 117(4), 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764

Gerstner, Adaptive Exponential Integrate-and-Fire Model as an Effective De-
scription of Neuronal Activity, 2005

Gerstner, Neruonal Dynamics, textbook

Brouwer, Eisenberg, The underlying connections between identifiability, active
subspaces, and parameter space dimension reduction

Fourcard, Hansel, How Spike Generation Mechanisms Determine the Neuronal
Response to Fluctuating Inputs Mark K. Transtrum, Peng Qiu, Model Reduc-
tion by Manifold Boundaries

Alain Destexhe,Diego Contreras, andMircea Steriade, Mechanisms Underlying
the Synchronizing Action of Corticothalamic Feedback Through Inhibition of
Thalamic Relay Cells

Walch, Eisenberg, Parameter identifiability and identifiable combinations in
generalized Hodgkin–Huxley models

Simeone Marino, Ian B Hogue, Christian J Ray, Denise E KirschnerA methodol-
ogy for performing global uncertainty and sensitivity analysis in systems biology

41


