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Abstract

A set A is said to have the product perfect set property if there exist
perfect sets P, @ such that P x Q C A. Our goal is to create a game that
characterizes this property. While we were able to produce a game that
characterizes the product perfect set property under certain conditions, we
weren’t able to produce such a game for any given condition of the payoff
set. However, we were able to narrow down the properties of such a game,
if it were to exist. We also explore the possibility and methodology of
showing that no such game exists as a possible avenue for future research.

1 Introduction

The study of games as a mathematical object began in 1913 with Zermelo’s
analysis of real-life, finite games like chess and Go. The study of games were
then extended to infinite games by the likes of Banach and Mazur in the 1930’s
and Gale and Stewart in the 1950’s. Infinite games became a rich field of study
during the 1960’s and 1970’s when the Axiom of Determinacy, which postulates
that every game is determined, was introduced. The power of infinite games lie
in their ability to provide a paradigm that can emphasize the dichotomies of
certain properties. An example of such a property is the perfect set property,
which a set A is said to have if A is either countable or contains a perfect set.
This property provides a dichotomy that is emphasized by the perfect set game.
Our research is focused on the product perfect set property, where a set A is
said to have if there exist perfect sets P, Q such that P x Q C A. This property
has been previously researched by the likes of Galvin who showed a set P C X
where X is a nonempty perfect Polish space and where P has the Baire property
and be non-meager, then P contains a product of perfect sets [4]. However, it is
not known if there is a game that characterizes the product perfect set property.
Our goal is to create such a game. We wish, in doing so, to nicely characterize
the property’s negation so to provide a dichotomy of the property as in the case
of the perfect set game.



2 Background

This section begins by first outlining some notation that will be used through-
out the paper. w denotes the set of natural numbers {0,1,2,...}. A natural
number n denotes the set of all natural numbers less than it, such as 2 = {0, 1}.
The set XY denotes the set {f : Y — X : f a function}. An example of such a
set is 2%, which denotes the set of functions f : w — 2. An equivalent definition
of X% is the set of sequences of X, so 2% is the set of binary sequences. We
will denote X<¥ = {f : n — X : f a function A n € w}. Equivalently, X <%
is the set of finite sequences of elements of X, so 2<% is the set of finite binary
sequences. Let my denote the projection function in the first coordinate and
w1 denote the projection function in the second coordinate. my takes as input
some two dimensional object and outputs the first coordinate of that object.
Define m; similarly. Examples would be mo((0,1)) = 0,71((0,1)) = 1. In addi-
tion, for some set set of pairs A, we say mo[A] = {z : Jy((z,y) € A)}, m[4] =
{y : z((x,y) € A)} as the set of first and second coordinate projections of A,
respectively. We will denote finite sequences with () such as (0,0,0,1). For
any two sequences s, t, we denote the concatenation of the sequences s ~ t e.g
(0,0,0) ~(1,1,1) =(0,0,0,1,1,1).

A Gale-Stewart game is a two player game, in the natural sense, where
players alternate playing an element from a given set X for a countably infinite
number of turns with player I starting first. We denote this game as Gx. These
games are perfect information games; that is, at any given move of a player, the
player has access to all the information on prior moves made by both players.
For convenience, we will refer to Gale-Stewart games as simply games. For the
scope of our research, we will be considering only games where players play
elements from 2, 2 x 2, 2<“ and (2<¢)2. The outcome of a game is the infinite
sequence produced by concatenating the moves of both players in the order they
were played. Associated with each game is a payoff set A C X“. Player I wins
if the outcome is in A, otherwise Player II wins. We denote a game Gx with
its payoff set A as Gx(A).

player 1 ‘ S0 S
player II ‘ k1 ks

Figure 1: Note that player I’s moves are even indexed and player II’s moves are
odd indexed. Player I wins if (sq, k1, $2, ks3,...) € A. Otherwise, player II wins.

We refer to the outcome (sg, k1, s2, k3, ...) of a game as a play of the game.
An initial segment of the outcome is referred to as a partial play. A player’s
strategy dictates what element to play given the previous moves. Formally, a
strategy is a function o : |, X2tk 5 X where k = 0 if o is a strategy for
player I, and k = 1 if ¢ is a strategy for player II. Let y € X“ be a sequence, or
enumeration, of moves played at each turn by player II. For player I's strategy
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Figure 2: A play of the game where player I has strategy o and player II is
playing y = (y1, 93,95, - - )

o, we denote o x y as the outcome of the game where player I plays according
to the strategy o against player II’s moves y. Similarly, if 7 is a strategy for
player II and z € X* is a sequence of moves played at each turn by player
I, then 7 * z is the outcome of the game where player II plays according to 7
against player I's moves z. We denote the set of outcomes of a strategy o as
[o] ={o*xy:ye X}

Definition 2.1. A strategy o for player I is said to be winning if [¢c] C A.
Similarly, a strategy 7 for player II is said to be winning if [r] C A°.

In essence, a winning strategy guarantees that a player will win, regardless
of what the opposing player plays.

Definition 2.2. A game Gx(A) is said to be determined iff one of the players
has a winning strategy.

We will often for convenience say that A is determined, dropping the Gx.
An intuitive observation is player I and player IT can’t both have winning strate-
gies. Otherwise, if these strategies played each other, one must lose, thereby
contradicting its winningness. There are also more interesting and significant
observations made about games: we let O(s) = {r € X“ : s C z}, where s C x
denotes s as an initial segment or initial subsequence of z. O(s) is the set of
sequences x where s is an initial segment of it. We define a set A C X“ open
iff A =J,0(s). We say that A is closed iff X — A is open. There are two
significant results in regards to closed and open payoff sets.

Theorem 2.1 (Gale-Stewart, [2]). For A C X%, If A is either open or closed,
then Gx(A) is determined.

Theorem 2.2 (Gale-Stewart, [2]). For any set X with at least two elements,
there is an A C X% such that Gx(A) is not determined.

Associated with a strategy o is a rooted tree, called the strategy tree and
denoted T,, which illustrates o response to a given opposing player’s moves.
T, is partially ordered by initial segment with a unique least element, the root,
and where every set of predecessors is well-ordered. Refer to Figure [3] for an



example of a strategy tree of a player II strategy in a game with X =2 x 2. We
denote the set of infinite paths of a strategy tree T, starting from the root, often
denoted 0, as [T,]. Note that [0] = [T,] since an infinite path of T, starting
at the root is exactly an infinite sequence of player I and player II moves, the
outcome of a game.

Definition 2.3. A tree is perfect if for all nodes ¢, there exist sg, s; such that
t C sg,t C s1 and sg,s; are not comparable, or not initial segments of each
other. Equivalently, a tree is perfect if every node has a descendant with at
least two children.

We will also denote the level-wise product of two trees S,T as S ® T. The
level-wise product of trees S, T" is defined as S® T = J,,,,(S(n) x T'(n)) where
S(n) ={s € S:sonlevel n},T(n) = {t € T : ¢t on level n} where a node is
said to be on the nth level if there is a path from the root to the node that is
n nodes long. Note that [S ® T| = [S] x [T].

2.1 Previously Studied Games

Two previously analyzed games are the binary game, by Mazur [5], and the
perfect set game by Davis [I]. In the binary game, denoted G2(A), each player
takes turns playing from 2. G2(A) has interesting properties in regards to its
player strategies and determinacy. Notably, if ¢ is a strategy for either player,
then [T5] is nonempty and perfect. Since T, contains all possible moves for the
opposing player and the possible moves are from 2, every other level of the tree
contains a node with two children. We observe that if G3(A) is determined, one
of A or A° contains a nonempty, perfect set. By o being winning, [T,] = [o] C A,
so A contains a nonempty, perfect set. If player II has a winning strategy 7, by
the same argument, A° contains a nonempty, perfect set.

We denote the perfect set game G5. In G35, player I plays elements from
2<% the set of finite binary sequences, and player II plays from 2. It has been
shown that

Theorem 2.3 (Davis, [1]). For A C 2%,
a) Player I has a winning strategy in G5(A) iff A contains a perfect subset
b) Player II has a winning strategy in G5(A) iff A is countable

These games are of importance in our research as they establish relationships
between specific games and perfect sets. In particular, the perfect set game
establishes a strong characterization of the perfect set property.

3 The Binary Squared Game

Our first attempt to constructing a game was extending the binary game to
two dimensions. FEach players play elements from 2 x 2, or pairs of binary
digits. Player I plays elements on even turns so their moves form the sequence



((82n)new, (t2an)new)- Player II plays elements on odd turns so their moves
form the sequence ((S2n+1)ncw; (t2n+1)new). The outcome of the game is the
pair of concatenated sequences (($p)necw; (tn)new), With player T and player 1T
moves alternating. We denote this game with payoff set A C (2¢)? as Gax2(A).
Our initial investigation into Gax2 starts with considering when payoff sets are
products of sets.

Theorem 3.1. Player I has a winning strategy in Ga(A) and Go(B) iff Player
I has a winning strategy in Gaxa2(A X B)

Proof. =: Let 04,05 be the winning strategies for Go(A), G2(B) respectively.
Consider o, where for any partial play s ending with player II’'s move o(s) =
(ca(mo(s)),0B(m1(s))). Then, for any sequence of player II’'s move y, we have
oxy = (o4 *7mo(y),op *m(y)). Since o4,0p are winning strategies in their
respective games, o4 *x mo(y) € A and op xm1(y) € B,so o xy € A X B.

<: Suppose that ¢ is a winning strategy for Gax2(A x B). Fix some ¢ € 2%.
Define 7, a strategy for player I in Go(A), as

T((50,t15- .3 82m, tant1)) = mo 0 ({80, t1, ..., S2n, tant1)s (o, - - -, G2nt1))

where (sg,t1,...,San, tan+1) is a partial play of G2(A) ending with player II’s
move. 7T plays according to o in the first coordinate when o plays against
¢ in the second coordinate. 7 is a winning strategy since for any p € 2“,
Txp = m o (o * (p,q)) where o % (p,q) € A x B because o is winning, so
T*p € A. Thus, {T*p:p € 2“} C A. Go(B) follows similarly with the following
alteration: define 7 =m; o O'(<(]0, ey an+1>, <50, t1,...,52m, t2n+1>). U

Theorem 3.2. If player II has a winning strategy in one of Go(A), Go2(B), then
II has a winning strategqy in Gax2(A X B).

Proof. Suppose without loss of generality II has a winning strategy 7" in G5 (B).
Define 7 to be the strategy for II in Gax2(A X B) that always plays 0 in the first
coordinate and according to 7’ in the second coordinate, so for a partial play m
ending with player I's move, 7(m) = (0,7'(71(m)). Then, for any sequence of
I's move z € (2*)2, 7x 2 = ((24), (y;)) € A x B since (y;) ¢ B. O

Theorem 3.3. If at least one of Go(A),Ga(B) is determined, and II has a
winning strategy for Gaxo(A X B), then II has a winning strategy for one of
G2(A) or Go(B).

Proof. If G2(A),G2(B) are both determined: Suppose that II does not have
a winning strategy in either G3(A) or G2(B). Since they are determined, I
has a winning strategy in both, so I has a winning strategy in Gay2(A X B),
contradicting the assumption that II has a winning strategy.

If only one of G2(A) or G2(B) is determined: without loss of generality, suppose
that G2(A) is determined and G2(B) is undetermined. Then, one of player I or
IT has a winning strategy in G2(A). Suppose that player I has winning strategy
o in G3(A). Let 7 be I’s winning strategy in Gax2(A X B). Since Go(B) is



undetermined, every strategy for IT has at least one outcome in B. Consequently,
7 cannot be a strategy such that for all b € 2¢, 7 x (a,b) = (x,y) for y € B.
Otherwise, by similar methods as in Theorem 7 can be used to construct a
strategy in G2(B) that is winning. So, we have that there exists b € 2¥ where
when 7 plays against b in the second coordinate its outcome y is in B. Suppose
that there exists a € 2 such that 7 * (a,b) = (z,y) € A x B. Then 7 is not
winning, so it must be the case that VYa € 2%, 7 * (a,b) € A° x B. Let z, be the
sequence of moves played by o when it plays against the moves played by 7 in
the first coordinate. Then, 7 * (z,,b) € A° X B, so x, € A°, contradicting o
being winning. By determinacy in Go(A), player II has a winning strategy. O

It is a noteworthy observation that player I having a winning strategy in
Gax2(A x B) implies determinacy of Go(A), G2(B) while determinacy is be-
ing used to say something meaningful for when II has a winning strategy in
Gax2(A x B).

Gax2(A) is a a game that describes a method for obtaining products of
perfect sets for particular payoff sets. But, the statement does not generally
hold true for all strategies. In fact, if o is any strategy for one of the players,
there won’t necessarily exist a product of perfect trees in the payoff set. Consider
the following: Let o be a strategy for player II that plays as such:

1. player I plays (0,0), o plays (0,0)

( (8
(0,1), o plays (1,
( (
( (

2. player I plays 0)
3. player I plays (1,0), o plays (0,1)
)

1,1

)

4. player I plays (1,1), o plays

Theorem 3.4. There does not exist any nonempty, perfect P,Q C 2<% such
that P® Q C T,.

Proof. Suppose that there exists such S,T. We claim that if S ® T is contained
in T, and S, T are pruned, that is a tree with no leaves, then they both must
be a single branch. In particular, they cannot be perfect.

Suppose it were not the case that 5,7 has only one branch. Then, there
exists node p € S with two child nodes. Suppose that p is in an odd level k.
Let ¢1, ca be p children which are in even level k& 4+ 1. Suppose that n € T is a
node in level k£ + 1. We know such node exists because S, T are both infinite.
Then, we have pairs (¢1,n), (c2,n) € S® T in level k + 1. The even level of T,
contain pairs of sequences of the form:

o ((...00),(...00))
e ((...01),(...10))
o ((...10),(...01))
o ((...11),(...11))
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Figure 3: T,. The Oth level is the root, often denoted (. Blue is player I’s
moves. Red is player II’s moves. Note that all possibilities of player I's moves
at any given turn are considered in the tree.

Since S® T C T, and k + 1 is even, n corresponds to one of the sequences in
the right coordinate. Notice that for any sequence in the right coordinate, it is
matched to a unique sequence in the left coordinate. So, if (¢1,n), (c2,n) € SRT,
then ¢; = co, but ¢; # co, a contradiction. Consequently, p cannot be in an odd
level.

Suppose then that p is in an even level k. Let c¢1, ¢y be the children of p which
are in odd level £ + 1. Let g1, g2 be children of ¢y, co respectively, which are
in even level k + 2. The argument proceeds just as before: since T infinite,
there exists node n in level k 4+ 2. So, we have (g1,n),(g2,n) € S® T. Since
(g1,m), (92,n) are on an even level in Ty, n is a sequence in the right coordinate
of one of the above listed pairs, so it is uniquely matched. Then, g; = g2, but
g1 # go, a contradiction. Thus, p cannot belong in either odd or even levels, so
there cannot exist a node in S with two children. The same argument applies
for T

Thus, S, T contain only a single branch, but this contradicts S, T being per-
fect, so there cannot be any nonempty, perfect S, T such that S® T C T, for o
a strategy for player II.

The argument can be adapted for player I. Define o as above, interchang-
ing the roles of player I and player II and having player I make an arbitrary
first move. The argument follows similarly, with the even and odd levels inter-
changed. O

Thus, Gaox2(A) is not a game that sufficiently characterizes the product
perfect set property. These results naturally lead to a class of strategies with
interesting properties.



4 Independent strategies

Definition 4.1. A strategy o is independent if there exist unique strategies
0,0y such that for all n € w.

o(((0:90); -+ (@n, yn))) = (@ny1,ynt1) = (@2((os - s 2n); 0y (Y05 - Yn))

If 0 is a strategy for player I, then n = 2k 4+ 1 for all k£ € w. If ¢ is a strategy
for player II, then n = 2k for all k € w. We say that ¢ = (0,,0,).

Theorem 4.1. If o is an independent strategy for game Gx(A) on any set X,
then [To] = [T,,] x [T5,].

Proof. [T,] C [T,,] x [Ts,] follows from the definition of 0. By independence,
o = (04, 0y) so for any outcome (p, q) € [T,], we have that (p,q) = (0, *a, 0, *b)
for some a,b € X%, so (p,q) € [To,] x [15,].

It remains to show to the other containment. Suppose o is a strategy for player
I and that there exists (p,q) € [T,,] x [I,] such that (p,q) & [T,]. Then,
there exists a pair of finite sequences (s,t) € X<“ with length n where (s,t) is
an initial segment of some element in [T,] but (s —~ spy1,t — thy1) Z (p,q)
for (sp+1,tnt1) € Toy. (s,t) is the shortest initial segment where the next
element in its sequence according to T, deviates from (p,q). (s,t) # (0,0) since
(@) = (04(0),0,(0)) C (s,t). Sp+1,tnt1 are also not moves by player II since
all of player II moves are included in T, by definition, so s,4+1,%,+1 must be
within a move made by player I. Let s’ C s,t' C t denote the sequences where
the last element in the sequences is the last move played by player II in s,t
respectively. Then, s,41,tn41 are elements played according to o,(s"), oy (t')
respectively, 50 s ~ sp41 C 8" ~ 0,(s") and t ~ tp,41 Tt/ —~ o,(t'). We have
that s ~ 0,(s’) C p since s’ C p and by definition p contains player I's response
to ', namely o, (s"). Similarly, t’ ~ 0,(¢') C q. So, s ~ $pt1 C p,t ~tyy1 C g,
contradicting (s,t) being a sequence deviating from (p,q). In the case where
o is a strategy for player II, the argument is the same with the change that
(s,t) # (0,0) because T, contains all of player I’s possible first moves and
flipping player I and player II in the analysis. Thus, [T}, ] x [T5,] C [T,]. O

Corollary 4.1.1. For o an independent strategy, To =1T,, @ Ty, .

Proof. o independent so [T,] = [T,,] x [T,] = [To, ® Ty, ]. Thus, T, = T,, ®
Ts,. O

By considering independent strategies in Gax2, we can better understand
our previous results of products of sets to general sets:

Corollary 4.1.2. If o is winning independent strategy for player I in Goxa(A),
then there exist nonempty, perfect sets P,Q C 2% such that P x Q C A. If o is
a winning independent strategy for player II, then there exist nonempty, perfect
sets P,Q C 2 such that P x Q C A°. Particularly, P=T,,,Q =1T,,.



Proof. Since ¢ independent, we have ¢ = (0, 0y) for some 0,,0,. Then, [T,] =
[T,, ®T,,] € A by o being winning. If o is a strategy for player II, then adapt
the same argument but for A°€. O

We now see that independent strategies are the exact strategies needed to
produce a product of perfect sets in Gaoxo. In fact, the strategy provided for
figure [3] is necessarily non-independent. We move on to our next game, which
attempts to take the perfect set game to two dimensions.

5 Perfect Set Squared Game

The perfect set squared game refers to the game where player I plays elements
of (2<¥)? and player II plays elements of 2 x 2. We denote this game G}, ,(A).

Theorem 5.1. If player I has a winning strategy o, then there exist nonempty
P C A perfect.

Proof. We have that [0] C A by it being winning. [o] is perfect since in T,
after every one of player I’s moves, player II creates four incomparable nodes,
or four children. O

Note that the converse need not hold true. Consider the following complete
binary tree in (2¢)? as A:

0

7N\

(0,0) (1,1)

\ \

(0,0) (1,1) (0,0) (1,1)

Figure 4: the left child at any junction is (0,0) and the right child is (1,1). The
tree extends infinitly.

A itself is a perfect tree, but player II has a winning strategy: play one
of (0,1),(1,0). In fact, we must enforce independence on player I’s a winning
strategy:

Theorem 5.2. If there exist nonempty, perfect P,Q such that P,Q C A, then
there exist a winning strategy for player I. In particular, the strategy is indepen-
dent.



Proof. We construct Player I winning strategy o to play according to P and Q.
For player I’s 2nth move, where the concatenation of the previous 2n — 1 moves
is (s,t), player I plays (p,q) € P x Q where p,q € 2<% s ~p€ Pt ~q€Q
and both p, g are sequences such that p ~0,p ~1€ Pand ¢ ~0,g ~1 € Q.
0 is winning:

At the Oth move of the game, o(()) = (a,b) for some (a,b) € (2<*)? where both
a~0,a~1€Pandb~0,b ~1¢€ Q. Player II plays either (¢,j) € 2 x 2.
The partial play of the game is (a —~ i,b —~ j). By the condition on a,b, we
have that (a ~i,b ~ j) € P x Q.

Suppose that the partial play (s,t) up to the 2nth move is in P x @ and player
I up till now has played so that for any of its moves p,q, p ~0,p ~1 € P and
g~ 0,g ~1€Q. At the 2n+1 move, player II plays from (¢, j) € 2x 2. By the
condition on player I’s moves, (s ~i,t ~ j) € P x Q. At the 2n + 2th play of
the game, o plays a pair of sequences (p,q) € P x @ such that p ~0,p ~1€ P
and ¢ ~ 0,q ~ 1 € Q. We have up till moves 2(n + 1) that (s ~i —~ p,t ~
j —~ q) € Px@Q. Thus, at every nth move of the game played with o, the
pair of sequences is in P X ), so ¢ winning. In particular, 7, = P X @, so
[02] = P,[0y] = Q and 0 = (04,0,), thus ¢ is independent. O

Theorem 5.3. Player I has a winning independent strategy o in G, o(A) iff
there exist nonempty perfect P,Q C 2% such that P x Q C A. In particular,
T,,] x [Ts,] € A.

Proof. Suppose that player I has a winning independent strategy o. By o
being independent, there exist strategies o, 0, such that o = (0, 0,). More
importantly, [T,] = [T,] x [T,,]. Both 0., 0, are winning strategies for player
I in the perfect set game, namely G3(mo[A]) and G3(m1[A]), so [T,,], [T,,] are
perfect sets themselves. We have that [T,] is perfect, and by ¢ being winning,
[T,] = [o] C A. O

Theorem 5.4. If A is countable, then player II has a winning strategy.

Proof. We proceed as in Kanamori [3]: enumerate and diagonalize. Since A is
countable, we enumerate A = ((a;,b;) : © € w). Player IT plays the ith to ensure
that it differs with (a;, b;). O

Player II winning strategy is not necessarily independent. Consider A =
{({000...),(000...)),({111...),(111...))}. A winning non-independent strat-
egy for player II can be described as such:

1. I plays (0,0), II plays (1,1)

2. I plays (0, 1), IT plays (0, 0)
3. I plays (1, 0), IT plays (0, 1)
4. I plays (1, 1), II plays (1, 0)

The strategy is necessarily not independent since for each i € 2 in the left coor-
dinate, ¢ flips between 0 and 1 depending on the value of the second coordinate.
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Theorem 5.5. If player II has a winning independent strategy T, then A is
countable.

Proof. Since 7 is independent, 7 = (7,,7,). 7., T, are winning strategies for
G3(mo[A]), G5(m1[A]) respectively, mo[A], m1[A] are both countable. Then, |A| <
|mo[A] x m1[A]|, so we have that A is countable. O

It is not true that in general player II having a strategy implies A being
countable. Consider the complete binary tree as in figure Player II has a
winning strategy: after player I's move, play (0,1) or (1,0). But, |4] = |2¥], so
it is not countable.

G5, 5(A) characterizes the product perfect set property under the condition
that the strategy be independent. However, this game does not nicely charac-
terize the property since it only holds for particular strategies and not general
strategies. Furthermore, it does not provide a nice characterization of the prop-
erty’s negation unlike the perfect set game does for the perfect set property.

6 Conclusion

While we were able to produce a game that characterizes the product perfect set
property under certain conditions, we weren’t able to produce such a game for
any given condition of the payoff set. We narrowed down the properties of such
a game, if such a game exists. The game must have player I playing elements
from 2<% and player II playing at least from 2 x 2, possibly 2<“. Player I must
play from 2<% because if player I could only play from 2 x 2, then payoff set A
could be constructed as a perfect tree where the tree splits only at even level,
forcing player I to choose one of the nodes present at the split, ensuring that
the outcome was not a product of nonempty perfect sets. Player II controls
the splitting for any of player I’s strategy trees, so player II must play at least
from 2 x 2. However, the more important property such a game would have to
enforce is the structure of the trees the strategies produced. This is problematic
because strategies only have access to information on a given partial play, not
every possible partial play, so defining a game with this property would be
against the definition of a strategy. A possible future avenue of our research
is to show that there does not exist such a game by utilizing mechanics of
descriptive set theory. In the perfect set game, we know that a set A having the
perfect set property is ¥3. In fact, the statement is Al. As in the case of the
perfect set game, we know that a set A having the product perfect set property
is 33, but it is not obvious that the statement is in fact Al. This is related to
the negation of the product perfect set property having multiple possibilities. If
we can show that the statement of A having the product perfect set property
necessarily not Al by showing that the statement is ¥3-Hard, we can show that
in fact there does not exist such a game.

11



Figure 5: If player I played from 2 x 2, then a winning strategy would be play
(0,0) for all moves. But, the strategy would not produce a perfect sets.
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