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Abstract

A formula for the KPZ fixed point of the multi-point TASEP distri-
bution was very recently obtained in terms of a Fredholm determinant
[Liu, 2021]. I will analyze certain right-tail asymptotics of this distribu-
tion using the steepest descent method. Specifically I will investigate the
asymptotic regime where the height of the second point is a fixed multiple
of the height of the first point, and we let both heights go to infinity.

1 Introduction

The TASEP (Totally Asymmetric Simple Exclusion Process) model can be for-
mulated by considering particles which lie a subset of the points on the infinite
lattice Z. Each integer can contain at most one particle. Furthermore each
particle is assigned an independent clock which rings after a wait time governed
by an exponential random variable with parameter 1. Once a particle’s clock
rings, it moves one unit to the right if the next integer is not already occupied,
otherwise it stays at the same integer. Then the particle’s clock is immediately
reset.

An equivalent way to model TASEP called the corner growth model, is to
consider the evolution of some random height function H(x, t). Let H denote
the space of all function h : Z→ Z satisfying

1. h(x+ 1)− h(x) ∈ {−1, 1} for all x ∈ Z

2. h(0) ∈ 2Z

Figure 1: TASEP modeled by evolution of particles in Z
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Figure 2: TASEP modeled by evolution of height function H(x, t)

We start with an initial height function H(x, 0) and evolve H(x, t) by assign-
ing each integer an independent clock with wait time given by an exponential
random variable with parameter 1. When the clock associated with i rings, we
increase H(i, t) by 2 and keep H(x, t) the same for all other x if the resulting
function H(x, t) belongs to H, otherwise we leave H(x, t) unchanged. Then we
reset the clock.

We will study this height function with the initial condition H(x, 0) = |x|
referred to as the ”step” initial condition. Figure 2 shows an example of how
H(x, t) could evolve.

It is of interest to study the limiting behaviour of the height function H(x, t),
and a particularly fruitful scaling to study is the 1 : 2 : 3 scaling for which time
is of order T , the space parameter is of order T 2/3 and the fluctuation of the
height is of order T 1/3.

With this scale it was proven that

Theorem 1.1 ([3]). For every (x, τ, h) ∈ R× R+ × R,

lim
T→∞

P

(
H(2xT 2/3, 2τT )− τT

−T 1/3
≤ h

)
= Fstep(h, (x, τ)) (1.1)

Where Fstep(h, (x, τ)) is defined as a Fredholm determinant det(1 − K).
In order to define K, let CL be an unbounded contour in the left half of the
complex plane going from ∞e− 2

3πi to ∞e 2
3πi, and CR an unbounded contour in

the right half of the complex plane going from ∞e−π3 i to ∞eπ3 i. Additionally
define the measure dµ(z) := dz

2πi . Then K : L2(CL, dµ) → L2(CL, dµ) is the
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kernel operator with kernel

K(z, z′) =

∫
CR

exp(−1

3
τ(z3 − w3) + x(z2 − w2) + h(z − w))

· 1

(z − w)(z′ − w)
dµ(w)

(1.2)

Using the identity det(1 − AB) = det(1 − BA) which holds for Fredholm de-
terminants under mild assumptions, it can be shown that Fstep(h, (0, 1)) is the
Tracy-Widom distribution appearing in the asymptotic formula for the largest
eigenvalue of GUE random matrices.
The right tail of Fstep(h, (x, τ)) is well known. For example, see [3]. It can be
obtained from the series formula of the Fredholm determinant

det(1−K) =

1 +

∞∑
n=1

(−1)n

n!

∫
CL

...

∫
CL

det((K(zi, zj))
n
i,j=1) dµ(z1) ... dµ(zn)

(1.3)

Note that the trace is given by

tr(K) =

∫
CL

K(z, z)dµ(z) =∫
CL

∫
CR

exp(−1

3
τ(z3 − w3) + x(z2 − w2) + h(z − w))

1

(z − w)2

dw

2πi

dz

2πi

(1.4)

Hence, if we set ĥ = τ1/3(x2τ−1 + h), then,

tr(K) =∫
CL

∫
CR

exp(−1

3
τ(z3 − w3) + x(z2 − w2) + h(z − w))

1

(z − w)2

dw

2πi

dz

2πi

=

∫
CL

∫
CR

exp(−1

3
(ζ3 − ω3) + ĥ(ζ − ω))

1

(ζ − ω)2

dω

2πi

dζ

2πi

=
1

16π
ĥ−3/2e−

4
3 ĥ

3/2

(1 +
35

24
ĥ−3/2 +O(ĥ−3))

(1.5)

as ĥ → +∞, where the method of steepest-descent can be used to obtain the
last equality. Furthermore it can be show that all the higher order terms in the

determinant, have a smaller order contribution O(e−
8
3 ĥ

3/2

) so that

Theorem 1.2. With ĥ := τ1/3(x2τ−1 + h),

Fstep(h, (x, τ)) = 1− 1

16π
ĥ−3/2e−

4
3 ĥ

3/2

(1 +
35

24
ĥ−3/2 +O(ĥ−3)) (1.6)

Recently in [4], an analogous formula for the limiting joint distribution of m
points was discovered. Going forward I will only consider the case when m = 2
and so the result can be stated as

Theorem 1.3 ([4]). The two point limiting distribution satisfies

lim
T→∞

P

({
H(2x1T

2/3, 2τ1T )− τ1T
−T 1/3

≤ h1

}⋂{
H(2x2T

2/3, 2τ2T )− τ2T
−T 1/3

≤ h2

})
= Fstep(h1, h2, (x1, τ1), (x2, τ2)) (1.7)

where Fstep(h1, h2, (x1, τ1), (x2, τ2)) will be defined in the next section.
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The primary objective will be to obtain an analogous result to Theorem 1.2
by calculating certain asymptotics for Fstep(h1, h2, (x1, τ1), (x2, τ2)) as h1, h2 →
+∞. I will only carry out these calculations with several restrictions on the
parameters described in section 2.3.

2 Asymptotic Analysis of Fstep for m = 2

2.1 Definition of Fstep

Let Cin2,L, C1,L, C
out
2,L denote three unbounded contours in the left half of the

complex plane going from∞e−2πi/3 to∞e2πi/3 which are nested from innermost
to outermost (or equivalently from left to right). Similarly let Cin2,R, C1,R, C

out
2,R

denote three unbounded contours in the left half of the complex plane going
from ∞e−πi/3 to ∞eπi/3 which are nested from innermost to outermost (or
equivalently from left to right).

For convenience we denote

C2,L := Cin2,L ∪ Cout2,L and C2,R := Cin2,R ∪ Cout2,R,

S1 := C1,L ∪ C2,R,

and
S2 := C1,R ∪ C2,L

We also introduce the measure

dµ(w) :=


−z1
1−z1 dz, w ∈ Cout2,L ∪ Cout2,R

1
1−z1 dz, w ∈ Cin2,L ∪ Cin2,R
dz
2πi w ∈ C1,L ∪ C1,R

With this setup we define Dstep(z1) as the following Fredholm determinant

Definition 2.1.
Dstep(z1) := det (1−K1Kstep)

where the operators

K1 : L2(S2, dµ)→ L2(S1, dµ), Kstep : L2(S1, dµ)→ L2(S2, dµ)
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are integral operators with kernels

K1(w,w′) =


exp(− 1

3τ1w
3 + x1w

2 + h1w) 1
w−w′ (1− z1), w ∈ C1,L, w

′ ∈ C1,R

exp(− 1
3τ1w

3 + x1w
2 + h1w) 1

w−w′ (1− z
−1
1 ), w ∈ C1,L, w

′ ∈ C2,L

exp( 1
3 (τ2 − τ1)w3 − (x2 − x1)w2 − (h2 − h1)w) 1

w−w′ (1− z1), w ∈ C2,R, w
′ ∈ C1,R

exp( 1
3 (τ2 − τ1)w3 − (x2 − x1)w2 − (h2 − h1)w) 1

w−w′ (1− z
−1
1 ), w ∈ C2,R, w

′ ∈ C2,L

and

Kstep(w
′, w) =


exp( 1

3τ1(w′)3 + x1(w′)2 + h1w
′) 1
w−w′ , w ∈ C1,L, w

′ ∈ C1,R

exp(− 1
3 (τ2 − τ1)(w′)3 + (x2 − x1)(w′)2 + (h2 − h1)w′) 1

w−w′ , w ∈ C2,R, w
′ ∈ C2,L

0 otherwise

Finally, the formula of Fstep obtained in [Liu, 21] is the following:

Definition 2.2. We have

Fstep(h1, h2, (x1, τ1), (x2, τ2)) :=

∮
|z1|=1/2

1

1− z1
Dstep(z1)

dz1

2πiz1
(2.1)

where the contour integral is oriented counter-clockwise.

Going forward I will let K := K1Kstep

2.2 Main Conjecture

We are interested in the right tail of the two-point function

Fstep((h1, (x1, τ1)), (h1 + h2, (x1 + x2, τ1 + τ2)))

We will focus only on the case when x1 = x2 = 0. Furthermore, we will consider
the case that

h2 = αh1, τ1 = ατ2

for a fixed constant α ∈ (0, 1)

Going forward it will also be convenient to define the quantities ĥ1 :=

τ
−1/3
1 h1 and ĥ2 := τ

−1/3
2 h2. It is worth noting that ĥ2 = α4/3ĥ1 < ĥ1.

With these constraints I will be interested in the asymptotics of Fstep((h1, (x1, τ1)), (h1+
h2, (x1 + x2, τ1 + τ2)) as h1 → +∞. I will provide calculations which will lead
to the following asymptotic formula.

Conjecture 2.3. Taking h2 = αh1 and τ1 = ατ2 for a fixed 0 < α < 1 and
letting h1 → +∞ we have

Fstep(h1, h1 + h2, (0, τ1), (0, τ1 + τ2)) =

Fstep(h1, (0, τ1))− 3

64π
α−1ĥ

−3/2
1 e−

4
3 (1+α2)ĥ

3/2
1 (1 +O(ĥ

−3/4
1 ))

(2.2)

where ĥ1 := τ
−1/3
1 h1

The statement above is labeled as a conjecture, because although the calcu-
lations are detailed, there are error terms appearing in the analysis which have
been neglected.

As an added consequence if this conjecture holds then we can compute the
limiting conditional probability
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Conjecture 2.4. Taking h2 = αh1 and τ1 = ατ2 for a fixed 0 < α < 1 and
letting h1 → +∞ we have

lim
T→∞

P

(
H(0, 2τ2T )− τ2T

−T 1/3
≤ h2

∣∣∣∣H(0, 2τ1T )− τ1T
−T 1/3

≤ h1

)
= 1− 3

64π
α−1ĥ

−3/2
1 e−

4
3 (1+α2)ĥ

3/2
1 (1 +O(ĥ

−3/4
1 ))

(2.3)

where ĥ1 := τ
−1/3
1 h1

Proof of Conjecture 2.4 assuming Conjecture 2.3 holds.

Simply apply Baye’s Rule.

limT→∞P
(
H(2x2T

2/3,2τ2T )−τ2T
−T 1/3 ≤ h2

∣∣∣H(2x1T
2/3,2τ1T )−τ1T
−T 1/3 ≤ h1

)
=

Fstep(h1,h2,(x1,τ1),(x2,τ2))
Fstep(h1,(x1,τ1))

= 1 +
− 3

64πα
−1ĥ

−3/2
1 e−

4
3
(1+α2)ĥ

3/2
1 (1+O(ĥ

−3/4
1 ))

1−O(ĥ
−3/2
1 e−

4
3
ĥ
3/2
1 )

= 1− 3
64πα

−1ĥ
−3/2
1 e−

4
3 (1+α2)ĥ

3/2
1 (1 +O(ĥ

−3/4
1 ))

2.3 Trace Computation

The main result of this section is

Proposition 2.5.

tr(K) = (1− z1)J1 + (1− z−1
1 )J2 (2.4)

where

J1 :=

∫
C1,L

∫
C1,R

exp(−1

3
τ1(w3 − z3) + h1(w − z)) 1

(z − w)2

dz

2πi

dw

2πi
(2.5)

and
J2 :=∫

C1,R

∫
C1,L

exp(−1

3
τ2(z3 − w3) + h2(z − w))

1

(w − z)2

dz

2πi

dw

2πi
(2.6)

Proof. Simply unraveling the definitions and recalling that for Kstep(z, w) 6= 0
we must have w ∈ C1,L and z ∈ C1,R or w ∈ C2,R and z ∈ C2,L,

tr(K) =

∫
S1

∫
S2

K1(w, z)Kstep(z, w) dµ(z) dµ(w)

= I1 + I2 + I3 + I4 + I5
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where

I1 :=

∫
C1,L

∫
C1,R

K1(w, z)Kstep(z, w) dµ(z) dµ(w)

=

∫
C1,L

∫
1,R

exp(−1

3
τ1(w3 − z3) + h1(w − z)) 1

(z − w)2
(1− z1)

dz

2πi

dw

2πi

= (1− z1)J1

I2 :=

∫
Cin2,R

∫
Cin2,L

K1(w, z)Kstep(z, w) dµ(z) dµ(w)

=

∫
Cin2,R

∫
Cin2,L

exp(−1

3
τ2(z3 − w3) + h2(z − w))

· 1

(w − z)2
(1− z−1

1 )
dz

2πi

dw

2πi

1

(1− z1)2

= (1− z−1
1 )

1

(1− z1)2
J2

where the last line follows from using Cauchy’s theorem to deform the contours
Cin2,R and Cin2,L to C1,R and C1,L respectively.
Similarly

I3 :=

∫
Cin2,R

∫
Cout2,L

K1(w, z)Kstep(z, w) dµ(z) dµ(w)

= (1− z−1
1 )

−z1

(1− z1)2
J2,

I4 :=

∫
Cout2,R

∫
Cin2,L

K1(w, z)Kstep(z, w) dµ(z) dµ(w)

= (1− z−1
1 )

−z1

(1− z1)2
J2,

and

I5 :=

∫
Cout2,R

∫
Cout2,L

K1(w, z)Kstep(z, w) dµ(z) dµ(w)

= (1− z−1
1 )

(
−z1

1− z1

)2

J2

So summing everything,

I1 + I2 + I3 + I4 + I5 = (1− z1)J1 + (1− z−1
1 )

(
1

1− z1
+
−z1

1− z1

)2

J2

= (1− z1)J1 + (1− z−1
1 )J2

Corollary 2.6. tr(K) is completely independent of τ2, h2. Moreover keeping
x1, τ1 fixed and letting h1 →∞,∮

|z1|=1/2

1

1− z1
(1− tr(K))

dz1

2πiz1
= Fstep(h1, (0, τ1)) +O(e−

8
3 ĥ

3/2
1 )

=
1

16π
e−

4
3 ĥ

3/2
1 ĥ

−3/2
1 (1− 35

24
ĥ
−3/2
1 +O(ĥ−3

1 ))

(2.7)
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where ĥ1 := τ
−1/3
1 ĥ1

Proof. Using the residue theorem,∮
|z1|=1/2

1

1− z1

dz1

2πiz1
= 1,

∮
|z1|=1/2

1

1− z1
(1− z1)

dz1

2πiz1
= 1,

and ∮
|z1|=1/2

1

1− z1
(1− z−1

1 )
dz1

2πiz1
= −

∮
|z1|=1/2

dz1

2πiz2
1

= 0.

So ∮
|z1|=1/2

1

1− z1
(1− tr(K))

dz1

2πiz1
= 1− J1

where

J1 =

∫
C1,L

∫
C1,R

exp(−1

3
τ1(w3−z3)+x1(w2−z2)+h1(w−z)) 1

(z − w)2

dz

2πi

dw

2πi

precisely (1.4), the trace term in the m = 1 case. The asymptotics (1.5) are
then obtained using the steepest descent method and the error term is obtained
through bounding the kernel appropiately and applying Hadamard’s inequality
to the higher order terms in the Fredholm determinant expansion (1.3).

2.4 Second Order Term

The next term in the Fredholm determinant det(1−K) is

1

2

∫
S1

∫
S1

det((K(wi, wj))1≤i,j≤2)dµ(w1)dµ(w2)

=
1

2
[tr(K)2 − tr(K2)]

(2.8)

From the previous section we know that

tr(K)2 = (1− z1)2J2
1 + 2(1− z1)(1− z−1

1 )J1J2 + (1− z−1
1 )2J2

2

so that ∮
|z1|=1/2

1

1− z1
tr(K)2 dz1

2πiz1

= J2
1

∮
|z1|=1/2

(1− z1)
dz1

2πiz1
+ 2J1J2

∮
|z1|=1/2

(1− z−1
1 )

dz1

2πiz1

+ J2
2

∮
|z1|=1/2

(1− z−1
1 )

dz1

−2πiz2
1

= J2
1 + 2J1J2 = O(ĥ−3

1 e−
4
3 (1+α2)ĥ

3/2
1 )

(2.9)
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Turning to tr(K2), we have

tr(K2) =

∫
S1

∫
S1

K(w1, w2)K(w2, w1) dµ(w1) dµ(w2)

=

∫
S1

∫
S1

∫
S2

∫
S2

K1(w1, ζ1)Kstep(ζ1, w2)K1(w2, ζ2)Kstep(ζ2, w1)

dµ(ζ1) dµ(ζ2) dµ(w1) dµ(w2)

But in order for Kstep(ζ1, w2) 6= 0 either ζ1 ∈ C1,R and w2 ∈ C1,L or ζ1 ∈ C2,L

and w2 ∈ C2,R. Similarly for Kstep(ζ2, w1) 6= 0 either ζ2 ∈ C1,R and w1 ∈ C1,L

or ζ2 ∈ C2,L and w1 ∈ C2,R. Therefore

tr(K2) = A1 +A2 +A3 +A4

where

A1 :=

∫
C1,L

∫
C1,L

∫
C1,R

∫
C1,R

K1(w1, ζ1)Kstep(ζ1, w2)K1(w2, ζ2)Kstep(ζ2, w1)
dζ1
2πi

dζ2
2πi

dw1

2πi

dw2

2πi
,

A2 :=
∑

a,b∈{in,out}

∫
C1,L

∫
Ca2,R

∫
Cb2,L

∫
C1,R

K1(w1, ζ1)Kstep(ζ1, w2)K1(w2, ζ2)Kstep(ζ2, w1)

dµ(ζ1) dµ(ζ2) dµ(w1) dµ(w2),

A3 :=
∑

a,b∈{in,out}

∫
Ca2,R

∫
C1,L

∫
C1,R

∫
Cb2,L

K1(w1, ζ1)Kstep(ζ1, w2)K1(w2, ζ2)Kstep(ζ2, w1)

dµ(ζ1) dµ(ζ2) dµ(w1) dµ(w2),

and

A4 :=
∑

a,b,c,d∈{in,out}

∫
Ca2,R

∫
Cb2,R

∫
Cc2,L

∫
Cd2,L

K1(w1, ζ1)Kstep(ζ1, w2)K1(w2, ζ2)Kstep(ζ2, w1)

dµ(ζ1) dµ(ζ2) dµ(w1) dµ(w2)

First to estimate A1, make the usual change of variables (w1, w2, ζ1, ζ2) 7→
ĥ

1/2
1 τ

−1/2
1 (w1, w2, ζ1, ζ2), and recall that ĥ1 = τ−1/3h1. Then deform the up-

dated contours of integration C1,L and C1,R to be the steepest descent contours
for the Airy function, so

A1 =
1

16π4

∫
C1,L

∫
C1,L

∫
C1,R

∫
C1,R

exp(ĥ
3/2
1 [−1

3
(w3

1 + w3
2 − ζ3

1 − ζ3
2 ) + (w1 + w2 − ζ1 − ζ2)])

· dw1 dw2 dζ1 dζ2
(w1 − ζ1)(w2 − ζ1)(w1 − ζ2)(w2 − ζ2)

and since |w1−ζ1|, |w2−ζ1|, |w1−ζ2|, |w2−ζ2| ≥ 2 on the curves of integration,
a steepest descent analysis identical to that for the Tracy-Widom distribution
shows that

A1 = O(ĥ−3
1 e−

8
3 ĥ

3/2
1 )

and therefore ∮
|z1|=1/2

1

1− z1
A1

dz1

2πiz1
= A1 = O(ĥ−3

1 e−
8
3 ĥ

3/2
1 ) (2.10)
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Next to analyze A4 we first look at one of the quadruple integrals in the
sum,∫
Cin2,R

∫
Cin2,R

∫
Cin2,L

∫
Cin2,L

K1(w1, ζ1)Kstep(ζ1, w2)K1(w2, ζ2)Kstep(ζ2, w1)

dµ(ζ1) dµ(ζ2) dµ(w1) dµ(w2)

=
1

16π4

∫
Cin2,R

∫
Cin2,R

∫
Cin2,L

∫
Cin2,L

exp(
τ2
3

(w3
1 + w3

2 − ζ3
1 − ζ3

2 )− h2(w1 + w2 − ζ1 − ζ2)])

· dw1 dw2 dζ1 dζ2
(w1 − ζ1)(w2 − ζ1)(w1 − ζ2)(w2 − ζ2)

· (1− z−1
1 )2 · 1

(1− z1)4

The terms in the denominators |w1 − ζ1|, |w2 − ζ1|, |w1 − ζ2|, |w2 − ζ2| can re-
main bounded below by a fixed constant while deforming Cin2,L → C1,L and

Cin2,R → C1,R.

Arguing similarly for all 16 quadruple integrals in the sum defining A4, we
find that

A4 = (1− z−1
1 )2

(
1

1− z1
+
−z1

1− z1

)4

A = (1− z−1
1 )2A

where

A =

∫
C1,R

∫
C1,R

∫
C1,L

∫
C1,L

exp(
τ2
3

(w3
1+w3

2−ζ3
1−ζ3

2 )−h2(w1+w2−ζ1−ζ2)])· dw1 dw2 dζ1 dζ2
16π4(w1 − ζ1)(w2 − ζ1)(w1 − ζ2)(w2 − ζ2)

does not depend on z1. Hence observe that∮
|z1|=1/2

1

1− z1
A4

dz1

2πiz1
= A

∮
|z1|=1/2

1− z1

z3
1

dz1

2πi
= 0 (2.11)

Moving on to A2 and A3 we first observe that through interchanging w1 with
w2 and ζ1 with ζ2 it is clear that A2 = A3.

A2 is the most difficult part to deal with because of the singular integrals
involved, so we will need the following lemma

Lemma 2.7. Suppose CL = {(−
√

1 + t2

3 , t) : t ∈ R} the steepest descent con-

tour, and let CLL (CRR ) be a curve which lies strictly to the left (right) of C which

also goes from e−
2
3πi∞ to e

2
3πi∞. Then∫

CLL

exp(h3/2(−1

3
z3 + z)))

1

z + 1
dz = −πie− 2

3h
3/2

(1 +O(h−3/4)) (2.12)

and ∫
CRL

exp(h3/2(−1

3
z3 + z)))

1

z + 1
dz = πie−

2
3h

3/2

(1 +O(h−3/4)) (2.13)

as h→ +∞.
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Similarly for CR = {(
√

1 + t2

3 , t) : t ∈ R} the steepest descent contour on the

right, and CLR (CRR ) be a curve which lies strictly to the left (right) of C which
also goes from e−

π
3 i∞ to e

π
3 i∞∫

CLR

exp(h3/2(
1

3
z3 − z))) 1

z − 1
dz = −πie− 2

3h
3/2

(1 +O(h−3/4)) (2.14)

and ∫
CRR

exp(h3/2(
1

3
z3 − z))) 1

z − 1
dz = πie−

2
3h

3/2

(1 +O(h−3/4)) (2.15)

as h→ +∞

Proof. Addressing (1), Using the opening and ending angle condition, it is easy
to deform the contour CLL to be near enough CL, so that outside of B1(−1),
for Φ(z) = − 1

3z
3 + z, <Φ(z) < −( 2

3 + ε) for some fixed ε > 0. Furthermore
this contour can enter B1(−1) at −1 − i and exit at 1 + i since <Φ(1 + i) =
<Φ(1− i) = −5/3. Then for h ≥ 1, on this newly deformed CLL ,∫

CLL∩B1(−1)c
exp(h3/2(−1

3
z3 + z)))

1

z + 1
dz

= e−( 2
3 +ε)h3/2

∫
CLL∩B1(−1)c

exp(h3/2(Φ(z) + (
2

3
+ ε)))

1

z + 1
dz

≤ e−( 2
3 +ε)h3/2

∫
CLL∩B1(−1)c

exp(Φ(z) + (
2

3
+ ε))

1

z + 1
dz = O(e−( 2

3 +ε)h3/2

)

So focusing on the behaviour near z0 = −1, we Taylor expand Φ(z) =
− 1

3z
3+z = − 2

3 +(z−1)2− 1
3 (z−1)3, and making the substitution w = h3/4(z−1),∫

CLL∩B1(−1)

exp(h3/2(−1

3
z3 + z)))

1

z + 1
dz

= e−
2
3h

3/2

∫
Γ

exp(w2 − h−3/4w3)
dw

w

= e−
2
3h

3/2

∫
Γ

exp(w2)(1 + h−3/4O(w3))
dw

w

where Γ = h3/4((CLL − 1) ∩ B1(0)). Notice that Γ starts at −ih3/4 and ends at
ih3/4 so we can use Cauchy’s theorem to deform Γ to be a contour composed
of a line segment from −ih3/4 to −i followed by a radius 1 clockwise semicircle
from −i to i, finally followed by another line segment from i to ih3/4.
It’s clear that h−3/4

∫
Γ

exp(w2)O(w2)dw = O(h−3/4) so it suffices to consider

the integral
∫

Γ
exp(w2) dww .

We immediately see that the integral on the two parts of Γ on the imaginary
line cancel. Then using this symmetry again we can use Cauchy’s theorem to
shrink the remaining semicircle, so that∫

Γ

exp(w2)
dw

w
= lim

δ↓0

∫ π/2

3π/2

e2δeiθ i dθ = −πi

This completes the proof for (1). The other asymptotics are obtained in a
very similar manner.
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Returning to A2, we analyze one of the terms in the sum,

Iin,in :=

∫
C1,L

∫
Cin2,R

∫
Cin2,L

∫
C1,R

K1(w1, ζ1)Kstep(ζ1, w2)K1(w2, ζ2)Kstep(ζ2, w1)

dµ(ζ1) dµ(ζ2) dµ(w1) dµ(w2)

First making our usual change of variables,

Iin,in =

∫
C1,L

∫
Cin2,R

∫
Cin2,L

∫
C1,R

exp(−τ1
3

(ζ3
2 − w3

1) + h1(ζ2 − w1))

· exp(−τ2
3

(w3
2 − ζ3

1 ) + h2(w2 − ζ1)) · dw1 dw2 dζ1 dζ2
(w1 − ζ1)(w1 − ζ2)(w2 − ζ1)(w2 − ζ2)

=

∫
τ
1/2
1 h

−1/2
1 C1,L

∫
τ
1/2
2 h

−1/2
2 Cin2,R

∫
τ
1/2
2 h

−1/2
2 Cin2,L

∫
τ
1/2
1 h

−1/2
1 C1,R

exp(ĥ
3/2
1 (−1

3
(ζ3

2 − w3
1) + (ζ2 − w1)))

· exp(ĥ2(−1

3
(w3

2 − ζ3
1 ) + (w2 − ζ1)))

· τ
−1/2
1 h

1/2
1 dw1 τ

−1/2
2 h

1/2
2 dw2

(τ
−1/2
1 h

1/2
1 w1 − τ−1/2

2 h
1/2
2 ζ1)(τ

−1/2
1 h

1/2
1 w1 − τ−1/2

1 h
1/2
1 ζ2)

· τ
−1/2
2 h

1/2
2 dζ1 τ

−1/2
1 h

1/2
1 dζ2

(τ
−1/2
2 h

1/2
2 w2 − τ−1/2

2 h
1/2
2 ζ1)(τ

−1/2
2 h

1/2
2 w2 − τ−1/2

1 h
1/2
1 ζ2)

Now from the key assumption that h2/h1 = τ2/τ1 it follows that h
1/2
1 τ

−1/2
1 =

h
1/2
2 ]tau

−1/2
2 so that the order of the contours remains unchanged and the inte-

grand greatly simplifies. Therefore after deforming back to the original contours.

Iin,in =

=

∫
C1,L

∫
Cin2,R

exp(ĥ
3/2
1 (−1

3
ζ3
2 + ζ2)) exp(ĥ

3/2
2 (

1

3
ζ3
1 − ζ1))g1(ζ1, ζ2)g2(ζ1, ζ2) dζ1 dζ2

× (1− z1)(1− z−1
1 )

1

2πi

(
1

1− z1

)
1

2πi

1

2πi

(
1

1− z1

)
1

2πi

=: − 1

16π4z2
1

I ′in,in

where

g1(ζ1, ζ2) :=

∫
C1,R

exp(ĥ
3/2
1 (

1

3
w3

1 − w1))
dw1

(w1 − ζ1)(w1 − ζ2)

g2(ζ1, ζ2) :=

∫
Cin2,L

exp(ĥ
3/2
2 (−1

3
w3

2 + w2))
dw2

(w2 − ζ1)(w2 − ζ2)

Taylor expanding 1
(w1−ζ1)(w1−ζ2) up to first order in w1, and 1

(w2−ζ1)(w2−ζ2) up

to first order in w2, and further assuming Cin2,R and C1,L avoid the steepest

descent contours so that we can deform C1,R and Cin2,L to the steepest descent
contours,

g1(ζ1, ζ2) ∼ 1

(1− ζ1)(1− ζ2)

∫
C1,R

exp(ĥ
3/2
1 (

1

3
w3

1−w1)) dw1 ∼ i
√
πĥ
−3/4
1 e−

2
3 ĥ

3/2
1

1

(ζ1 − 1)(ζ2 − 1)
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g2(ζ1, ζ2) ∼ 1

(−1− ζ1)(−1− ζ2)

∫
Cin2,L

exp(ĥ
3/2
2 (−1

3
w3

2+w2)) dw2 ∼ i
√
πĥ
−3/4
2 e−

2
3 ĥ

3/2
2

1

(ζ1 + 1)(ζ2 + 1)

where I have used the asymptotic analysis of the Airy function to evaluate
each of the asymptotics above.

So
I ′in,in = −πĥ−3/4

1 ĥ
−3/4
2 e−

2
3 (ĥ

3/2
1 +ĥ

3/2
2 )I

(1)
in,inI

(2)
in,in

where

I
(1)
in,in :=

∫
Cin2,R

exp(ĥ
3/2
1 (

1

3
ζ3
1 − ζ1))

dζ1
(ζ1 − 1)(ζ1 + 1)

and

I
(2)
in,in :=

∫
C1,L

exp(ĥ
3/2
1 (−1

3
ζ3
2 + ζ2))

dζ2
(ζ2 − 1)(ζ2 + 1)

Now Taylor expanding 1/(ζ1+1) and 1/(ζ2−1) up to first order, and applying
Lemma 2.5,

I
(1)
in,in ∼

1

2

∫
Cin2,R

exp(ĥ
3/2
1 (

1

3
ζ3
1 − ζ1))

dζ1
ζ1 − 1

∼ π

2
ie−

2
3 ĥ

3/2
1

and

I
(2)
in,in ∼ −

1

2

∫
C1,L

exp(ĥ
3/2
1 (−1

3
ζ3
2 + ζ2))

dζ2
(ζ2 + 1)

− π

2
ie−

2
3 ĥ

3/2
1

so that

I ′in,in ∼ −
π3

4
ĥ
−3/4
1 ĥ

−3/4
2 e−

4
3 (ĥ

3/2
1 +ĥ

3/2
2 )

Iin,in ∼
1

64πz2
1

ĥ
−3/4
1 ĥ

−3/4
2 e−

4
3 (ĥ

3/2
1 +ĥ

3/2
2 )

Next we can similarly define Iin,out, Iout,in, Iout,out.
Going through the same analysis for each we case we find that, I ′out,out =

I ′in,in and I ′in,out = I ′out,in = −I ′in,in. Now accounting for the measures and

the Q1(j) factors, Iin,out = Iout,in = (1 − z1)(1 − z−1
1 ) −z1

(1−z1)2
1

16π4 I
′
in,out, and

Iout,out = (1−z1)(1−z−1
1 )

(
−z1
1−z1

)2
1

16π4 I
′
out,out. So adding all the contributions

A2 +A3 = 2A2 = 2(Iin,in + Iin,out + Iout,in + Iout,out)

=
1

8π4
(1− z1)(1− z−1

1 )

(
1

(1− z1)2
− 2

−z1

(1− z1)2
+

z2
1

(1− z1)2

)
I ′in,in

= − (1 + z1)2

8π4z1
Iin,in

Hence∮
|z1|=1/2

1

1− z1
(A2 +A3)

dz1

2πiz1
= − 1

8π4
I ′in,in

∮
|z1|=1/2

(1 + z1)2

1− z1

dz1

2πiz2
1

= − 3

8π4
I ′in,in ∼

3

32π
ĥ
−3/4
1 ĥ

−3/4
2 e−

4
3 (ĥ

3/2
1 +ĥ

3/2
2 )
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Now recalling that ĥ2 = α4/3ĥ1 with 0 < α < 1,∮
|z1|=1/2

1

1− z1
(A2 +A3)

dz1

2πiz1
∼ 3

32π
α−1ĥ

−3/2
1 e−

4
3 (1+α2)ĥ

3/2
1 (2.16)

Therefore collecting all the terms, thus far, (2.7), (2.9), (2.10), and (2.16) we
have ∮

|z1|=1/2

1

1− z1
(1− tr(K) +

1

2
[tr(K)2 − tr(K2)])

dz1

2πiz1

= Fstep(h1, (x1, τ1))− 3

64π
α−1ĥ

−3/2
1 e−

4
3 (1+α2)ĥ

3/2
1 (1 +O(ĥ

−3/4
1 ))

So in order to further justify Conjecture 2.3, the higher order terms in the
Fredholm determinant defining Fstep must be estimated. The beginning of this
analysis is carried out in the next section.

2.5 Higher Order Terms

Throughout this subsection we assume C1,L = {(−
√

1 + t2

3 , t) : t ∈ R} and

C1,L = {(
√

1 + t2

3 , t) : t ∈ R}, the steepest descent contours.

First we need a lemma similar to lemma 2.7 to deal with singular integral terms.

Lemma 2.8. For w1 /∈ C1,R, w2 ∈ C1,L∫
C1,R

exp(ĥ
3/2
1 (

1

3
z3 − z)) 1

(w1 − z)(w2 − z)
dz = O(ĥ

3/4
1 e−

2
3 ĥ

3/2
1 ) (2.18)

where the implied constant is independent of d(w1, C1,R).
Similarly for w1 /∈ C1,L, w2 ∈ C1,R∫

C1,L

exp(ĥ
3/2
2 (−1

3
z3 + z))

1

(w1 − z)(w2 − z)
dz = O(ĥ

3/4
2 e−

2
3 ĥ

3/2
2 ) (2.19)

where the implied constant is independent of d(w1, C1,L).

Proof. I will only prove (1) since the proof of (2) is identical. I will also let
Φ(z) = 1

3z
3 − z

First suppose d(w1, C1,R) ≥ ĥ−3/2
1 . Then∣∣∣∣∣

∫
C1,R

exp(ĥ
3/2
1 Φ(z))

1

(w1 − z)(w2 − z)
dz

∣∣∣∣∣
≤ 1

2
ĥ

3/2
1

∫
C1,R

exp(ĥ
3/2
1 Φ(z))dz

= πĥ1Ai(ĥ1) = O(ĥ
3/4
1 e−

2
3 ĥ

3/2
1 )

I have used the fact that Φ(z) is real on C1,R and the asymptotics for the Airy
function above.
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Now in the event that d(w1, C1,R) < ĥ
−3/2
1 , we deform the contour C1,R

to a new contour C ′1,R which replaces the part where d(w1, z) < ĥ
−3/2
1 with

a circular arc which stays at distance ĥ
−3/2
1 from w1. On this new contour,

d(w1, C
′
1,R) ≥ ĥ

−3/2
1 , Furthermore choosing any z = (

√
1 + t2

3 , t) ∈ C1,R with

d(z, w1) < ĥ
−3/2
1 , then for any z′ in the deformed part of C ′1,R,

<Φ(z′) ≤ <Φ(z) + |Φ′(z∗)|ĥ−3/2
1

≤ −(
2

3
+ C|t|3) + C ′(1 + |t|2)ĥ

−3/2
1

so

ĥ
3/2
1 <Φ(z′) ≤ −2

3
ĥ

3/2
1 + C ′′

for ĥ1 > 1, and as a result∣∣∣∣∣
∫
C′1,R

exp(ĥ
3/2
1 Φ(z))

1

(w1 − z)(w2 − z)
dz

∣∣∣∣∣
≤ 1

2
ĥ

3/2
1

∫
C′1,R

exp(ĥ
3/2
1 <Φ(z))|dz|

= O(ĥ
3/4
1 e−

2
3 ĥ

3/2
1 )

Using this lemma to get bounds on the kernelK(z, z′) and applying Hadamard’s
inequality one should be able to show that with the given restrictions on the
parameters,

|Fstep(h1, h2, (0, τ1), (0, τ2))−∮
|z1|=1/2

1

1− z1
(1− tr(K) +

1

2
[tr(K)2 − tr(K2)])

dz1

2πiz1

∣∣∣∣∣
= O(e−

4
3 (min(2,1+2α2)−ε))

(2.20)

for any ε > 0. This would guarantee that the higher order terms would not
contribute to the leading asymptotics provided in Conjecture 2.3 or 2.4.

3 Discussion and Further Directions

Initially it was expected that the interesting asymptotic behaviour for Fstep(h1, h2, (x1, τ1), (x2, τ2))
would come from the trace term of the Fredholm determinant, but it turned out
to come from the second term in the expansion. This also produced an inter-
esting result because it seems that the value of the height function and two
different points at different times are quite far from being independent in the
1:2:3 scaling limit.

The relationship h2/h1 = τ1/τ2 does not seem necessary, but in other cases,
the order of the contours will have to be switched when computing A2 in order
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to complete a steepest descent analysis, forcing us to compute residue terms
from the beginning.

Going forward I will be filling in details of the proof and working on general-
izations. For instance what happens when h2/h1 6= τ1/τ2, h2 = αh1, h1 → +∞,
and similar generalizations in the case when m > 2. Additionally I am exploring
the behaviour as h1 → +∞ while holding h2 fixed.
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