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Abstract

This project is aimed to construct a simplified, but justifiable model, for vi-
brating strings so that we are able to explore questions related to musical in-
struments. We begin with solutions to the 1-dimensional wave equation with
fixed, and later, mixed boundary conditions given by Fourier coefficients. For
the mixed boundary condition the eigenvalues are unsolvable, instead we find a
numerical approximation for the solution. Following, we investigate the energy
and distribution of energies of each solution.

Finally, we construct a mathematical model for the advanced musical per-
formance technique, vibrato. The exact solution of this mathematical model is
discussed by Gaffour in [3], [7]. In our paper, we adopted an adiabatic approx-
imation [15] in order to obtain an approximate solution with a simpler form.
Additionally, justification is provided that our adiabatic approximation is within
good reason of the exact solution given by Gaffour [3], [7].
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1 Introduction

String instruments are played via a plucking or bowing method to produce a
sound, which we recognize as string music. The process of playing a string
instrument produces an oscillation in the string. These oscillations of the string
are described by the famous second-order linear partial differential equation for
waves, also known as the 1-dimensional wave equation. The 1-dimensional wave
equation is as follows:

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) (1)

where u(x, t) is a valid solution to the 1-dimensional wave equation (1). The c2

constant value represents physical constants of the string being modeled:

c2 =
T

ρ

where T is the tension on the string and ρ is the density of the string.
Notice that the 1-dimensional wave equation is a second order differential

equation, and thus a unique solution requires two initial conditions:

u(x, t = 0) = Φ(x) (2)

∂u

∂t
(x, t = 0) = Ψ(x) (3)

where Φ(x, t = 0) is the initial position and Ψ(x, t = 0) is the initial velocity.
The energy of the string is given by the sum of potential energy and the

kinetic energy, and can be defined as the integral:

E(u) =
1

2

∫ L

0

ρ

(
∂u

∂t
(x, t)

)2

+ T

(
∂u

∂x
(x, t)

)2

dx (4)

Beginning with the simplest model for various musical instruments, such as
guitar, violin, cello, is to assume both ends are fixed, and the act of plucking
or striking the string yields the initial condition of the string. In the following
section, we provide a mathematical model with both ends of string being fixed;
solutions to this model are found by solving the 1-dimensional wave equation
with the Dirichlet Boundary Conditions. In Section 3, we computed the energy
of each mode of the solution using equation (4), as well as the distribution of
energy. This computation shows the mathematical association between the tim-
bre and the given initial conditions.

However, string instruments are not commonly built with two fixed ends,
rather the string rests on the bridge of the instrument. The bridge on violins is
made of a softer wood than the rest of the instrument, acting as a spring, yield-
ing our second model: a model with one spring end and one fixed. In Section 4
we provide the formerly defined model, in which, the eigenvalues are unsolvable,
so we find a numerical approximation for the solution. Similar to the Dirichlet
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Boundary Conditions, we also investigated the energy of each mode and distri-
bution for these boundary conditions.

Finally, music performance is not just about plucking, striking, or bowing
strings, as noted by Daniel Leech-Wilkinson, ”performing musically, or stylishly,
involves modifying those aspects of the sound that our instrument allows us to
modify, and doing it in a way that beings to the performance a sense that
the score is more than just a sequence of pitches and duration.” [14]. Profes-
sional musicians adopted various expressive devices, such as tempo variation,
dynamic shaping, pitch variation, and timbre modulation to create an emo-
tional performance. One of these techniques is vibrato, which is an expressive
device involving continuous pitch modulation. Vibrato is widely employed in
string, voice, wind instrumental performance [14]. It is employed by string mu-
sicians by moving their finger a small distance back and fourth on the string.
In Section 6, we construct a mathematical model for this technique. The exact
solution of the 1-dimensional wave equation with moving boundary conditions
is discussed by Gaffour in [3], [7] by transforming the original moving boundary
domain into a fixed boundary domain using the conformal mapping method. In
our paper, we adopted an adiabatic approximation [15] in order to obtain an
approximate solution with simpler form. Additionally, justification is provided
that the adiabatic approximation is within good reason of the exact solution.

2 Dirichlet Boundary Conditions

We begin with a review of the solution of 1-dimensional wave equation with
Dirichlet boundary conditions. First of all, we need to determine the boundary
conditions: take some L, the length of the string on the instrument at a specific
note, then the Dirichlet Boundary Condition is mathematically defined as: ∀t ≥
0

u(x = 0, t) = 0 = u(x = L, t), (5)

Specifying a string with fixed endpoints at the equilibrium, or zero, position of
the string.

Now, Equation 5 can be used, in conjunction with Equations 2 and 3 to ob-
tain a solution for the 1-dimensional wave equation, with initial conditions Φ(x)
and Ψ(x), with Dirichlet boundary conditions. To begin, rewrite the partial
differential equation as an operator on u(x, t):[

∂2

∂t2
− c2 ∂

2

∂x2

]
u(x, t) = 0

Then, using separation of variables method, we have:

u(x, t) = F (x)G(t) (6)

Where F (x) andG(t) are functions of x and t respectively and when the operator
is applied, we see two Ordinary Differential Equations (below) that can be solved
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using the eigen-values and eigen-functions of some λ.

G′′(t) = λc2G(t)

F ′′(x) = λF (x)

With fixed boundary conditions.
In order to satisfy the Dirichlet Boundary Conditions, λ < 0, and we obtain

the eigen-values (top) and eigen-functions (bottom) below.

λn =
(nπ
L

)2
(7)

Fn(x) = sin
(nπx
L

)
,∀n ∈ N (8)

In order to continue, we must define the inner product and norm of F and G.
Let the inner product of two function be defined as:

〈f, g〉 =

∫ L

0

f(x)g(x)dx (9)

The norm of the eigen-function Fn(x) is given by:

‖Fn(x)‖ =

(∫ L

0

|Fn(x)|2dx

) 1
2

=

√
L

2
(10)

After normalizing the eigen-function, we obtain the following orthonormal
system of functions: {√

2

L
sin
(nπx
L

)}
∀n ∈ N

Theorem 2.1. The orthonormal system, is a ’basis’ of C∞D [0, L] and of every
function, f ∈ C∞D is a linear combination of the normalized eigen-functions

(
{√

2
L sin (nπxL )

}
).

Proof. A proof can be found in Chapter 2 of Folland’s 1992 book: Fourier
Analysis and its Applications [2]

An important note to make, in regards to Theorem 2.1, is that the term
’basis’ is not in the usual sense of algebra, because it requires the use of infinite
series, rather than finite sums.

Continuing, we apply the same process from Fn(x) to Gn(t):

Gn(t) = An cos

(
cnπt

L

)
+Bn sin

(
cnπt

L

)
(11)
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Using principle of superposition to combine equation 7 and equation 11, the
general separated solution is obtained by multiplying together the separated
solutions, Fn(x) and Gn(t):

u(x, t) =

∞∑
n=1

Fn(x)Gn(t) (12)

=

∞∑
n=1

(An cos
cnπt

L
+Bn sin

cnπt

L
) sin

nπx

L
(13)

To obtain the exact solution, we use the initial conditions to determine the
An and Bn. In order to determine An, recall that the initial position is given
by

Φ(x) = u(x, 0) =

∞∑
n=1

An sin
nπx

L
, (14)

so that the Fourier coefficient, An is given by:

An = 〈Φ(x),

√
2

L
sin
(nπx
L

)
〉 =

2

L

∫ L

0

Φ(x) sin
nπx

L
dx (15)

Then, in order to obtain Bn, apply term by term differentiation to get

Ψ(x) =
∂u

∂t
(x, 0) =

∞∑
n=1

Bn
cnπ

L
sin

nπx

L
(16)

so that the Fourier coefficient Bn is given by:

Bn =
2

cnπ

∫ L

0

Ψ(x) sin
nπx

L
dx (17)

Finally, evaluating equations 12, 15, and 17, an exact solution to the 1-
dimensional wave equation can be found. In order to further understand our
solution, we will investigate the periodicity of the general solution.

2.1 Overtones

In order to further understand the periodicity of the general solution to the
1-dimensional wave equation. A function u(x, t) is periodic in time, of period
τu if and only if u(x, t + τu) = u(x, t). This is saying that, if the period of
u(x, t) is added to the time, then the result should be the same, showing that
the function is indeed periodic on said period.

Theorem 2.2. All solutions to the 1-dimensional wave equation (Equation 1)
with Dirichlet Boundary Conditions are periodic in time, with period τu = 2L

c =
1
f1

. Where f1 is the fundamental frequency and is related to the period by the
inverse period-frequency physical relationship.
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Proof.

cos

(
cnπ(t+ τu)

L

)
= cos

(
cnπ

L
(t+

2L

c
)

)
= cos

(
cnπt

L
+
cnπ(2L)

c

)
= cos

(
cnπt

L
+ 2πn

)
= cos

(
cnπt

L

)

It’s also important to note that n, now plays an important role in the general
and specific solutions of the 1-dimensional wave equation. For each n ∈ N, there
exists is a wave form, where as n increases, the respective wave form is the nth−1
overtone of the fundamental wave form. Harmonically, the n = 1 waveform is
the fundamental wave form and frequency. With the periodicity, we can now
investigate a more specific model.

2.2 Plucked String Model with Dirichlet Boundary Con-
ditions

In order to form a specific model, recall that An and Bn are defined as:

An =
2

L

∫ L

0

Φ(x) sin
nπx

L
dx

Bn =
2

cnπ

∫ L

0

Ψ(x) sin
nπx

L
dx

A plucked string has non-trivial initial displacement and zero initial velocity,
hence Φ(x) = f(x) and that Ψ(x) = 0, for some function f(x).

In contrast, a struck (or hammered) string, such as in a piano, will have
zero initial displacement and non-trivial initial velocity, hence Φ(x) = 0, and
Ψ(x) = g(x), for some function g(x). This pair of initial conditions exists be-
cause the string has an initial velocity from the strike (due to the transfer of
mechanical energy from the hammer to the string), but no change initial po-
sition from the equilibrium. Models can be obtained for both the plucked and
hammered string with relative ease using equations from the previous section,
but since the objective of this project is to model orchestral string instruments,
the focus will remain on modeling a plucked string.

To continue to model the plucked string, the initial condition function must
be defined. Often times a plucked string can be modeled by a tent function as
shown below:
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Figure 1: Tent Function for a Plucked String

In the tent function, the height, h, of the pluck is the vertical distance from
the equilibrium position of the string, and the horizontal distance, d, from the 0
point on the string (the bridge) is the pluck distance. This results in a plucked
string peak at the location (d, h). The orange function in Figure 1 is the tent
function for the initial condition, Φ(x), which can be defined by the following
system of equations:

Φ(x) =

{
h
dx, x ∈ [0, d]

h+ dh−hx
L−d , x ∈ (d, L]

The next section investigates the energy of the systems of plucked strings
with Dirichlet boundary conditions, which can be further utilized to understand
the energy of the overtones and the significance of fourth and fifth overtones.

3 Energy of the Plucked String Model with Dirich-
let Boundary Conditions

As mentioned, the energy of all solutions to the 1-dimensional wave equation
with Dirichlet Boundary Conditions is given by the following function:

E(u) =
1

2

∫ L

0

ρ

(
∂u

∂t
(x, t)

)2

+ T

(
∂u

∂x
(x, t)

)2

dx (18)

The first portion of the integral represents the potential energy of the wave
form, and the second portion represents the kinetic energy.
To begin, we prove that the energy is preserved in the string.

Theorem 3.1. E(u) is time independent.
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Proof. In order to show E(u) is time independent, we want to show: ∂E(u)
∂t = 0

∂E(u)

∂t
=

1

2

∂

∂t

∫ L

0

ρ

(
∂u

∂t
(x, t)

)2

+ T

(
∂u

∂x
(x, t)

)2

dx

=

∫ L

0

ρ
∂u

∂t

∂2u

∂t2
+ T

∂u

∂x

∂2u

∂t∂x
dx

Then, via integration by parts for the second portion of the integral:

∂E(u)

∂t
= T

∂u

∂x

∂u

∂t
|L0 +

∫ L

0

ρ
∂u

∂t

∂2u

∂t2
− T ∂

2u

∂x2
∂u

∂t
dx

= T
∂u

∂x

∂u

∂t
|L0 +

1

ρ

∫ L

0

∂u

∂t
(
∂2u

∂t2
− T

ρ

∂2u

∂x2
)dx

= 0

By the fixed boundary condition, the first portion of the integral is 0, and the
latter is 0 by the 1-dimensional wave equation operator.

Next, we prove how the total energy is related to the energies of the modes:

Theorem 3.2. If u(x, t) =
∑∞
n=1 un(x, t), then ∀ n E(un) is constant in time

and E(u) =
∑∞
n=1E(un).

Proof. The proof for E(un) is constant in time is exactly the same as previous
proof since un also satisfies the 1-D wave equation and the Dirichlet Boundary
Condition.
Continuing, we want to show:

E(u) = E(

∞∑
n=1

un(x, t)) =

∞∑
n=1

E(un(x, t))

We prove by induction:

E(u1 + u2) =
1

2

∫ L

0

ρ(
∂

∂t
(u1 + u2))2 + T (

∂

∂x
(u1 + u2))2dx

Since the partial derivative is linear, then

E(u1 + u2) =
1

2

∫ L

0

ρ(
∂

∂t
(u1) +

∂

∂t
(u2))2 + T (

∂

∂x
(u1) +

∂

∂x
(u2))2dx

=
1

2

∫ L

0

ρ(
∂u1
∂t

)2 + T (
∂u1
∂x

)2dx+
1

2

∫ L

0

ρ(
∂u2
∂t

)2 + T (
∂u2
∂x

)2dx+

∫ L

0

ρ
∂u1
∂t

∂u2
∂t

+ T
∂u1
∂x

∂u2
∂x

dx

= E(u1) + E(u2) +

∫ L

0

ρ
∂u1
∂t

∂u2
∂t

+ T
∂u1
∂x

∂u2
∂x

dx

∂u1
∂t

∂u2
∂t

=
dG1(t)

dt
F1(x)

dG2(t)

dt
F2(x) = 0
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Then, since F1(x) and F2(x) are orthogonal:

∂u1
∂x

∂u2
∂x

=
dF1(x)

dx
G1(t)

dF2(x)

dx
G2(t) = 0

Since dFn(x)
dx is of the form nπ

L cos nπxL , which we know are orthogonal, we can
end by induction.

Recall that the general solution for the 1-dimensional wave equation for a
plucked string is given by:

un = An cos
cnπt

L
sin

nπx

L

Then, solving for An from equation 15:

An =
2L

n2π2

(
h

d
+

h

L− d

)
sin

(
nπ

d

L

)
. (19)

Since E(un) is independent of time, we can evaluate the integral at t = 0,
thus obtaining the following general equation for the energy of the nth mode
waveform:

E(un) =
Tn2A2

nπ
2

4L
(20)

Theorem 3.3. The total energy of the plucked string model is:

E(u) =
Th2

2

L

d(L− d)
(21)

Proof.

E(u) =

∞∑
1

E(un) =

∞∑
1

Tn2π2

4L
A2
n

Since Φ′(x) =
∑∞
n=1An

nπ
L cos (nπxL ), when t = 0∫ L

0

Φ′2 dx =
1

2

∞∑
n=1

n2π2

L
A2
n

∞∑
1

E(un) =
T

2

∫ L

0

Φ′2dx

Using the initial position for plucked string:

∞∑
1

E(un) =
T

2

(∫ d

0

h2

d2
dx+

∫ L

d

h2

(L− d)2
dx

)

=
T

2
(
h2

d
+

h2

L− d
)

=
Th2

2

L

d(L− d)
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Since we have both an equation for the total energy and the energy of the
nth mode, it’s logical to next investigate the distribution of energies across the
modes.

3.1 Distribution of Energies

In order to explore the distribution of the energies, we must first find an ex-
pression that defines the distribution of the energies. We use the following
definition:

Definition 3.1. The distribution of energies, Pn, is the ratio of the nth mode
energy to the total energy.

Pn =
E(un)

E(u)
(22)

Proposition 3.1. The distribution of energies for the plucked string model is
given by:

Pn =
E(un)

E(u)
(23)

=
2L2

n2π2d(L− d)
sin2 nπd

L
(24)

The proof of the following is a straightforward evaluation of Equation 20
and 21, as shown below:

Proof.

Pn =
E(un)

E(u)
=
Tn2π2

4L

2d(L− d)

Th2L

4L2

n4π4

h2L2

d2(L− d)2
sin2 nπd

L

After simplification:

Pn =
2L2

n2π2d(L− d)
sin2 nπd

L

Let L = π, Figure 2 shows P1,P2,P3,P4 with varying initial position.
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Figure 2: Distribution of energies at n = 1, 2, 3, 4 for varying d

We observe that for all d > 0, fundamental frequency has the most energy,
whereas the each of the rest of the modes has the most energy, until the mode
reaches the distance of d = L

n , The exception to this is at distances = when
d is very very small and at d = L. So we observe at the second frequency, or
the first overtone, that there is no energy at d = L

n . Additionally, we make
the observation that Pn solely depends on d, and further, because Pn depends
on d, we can establish that E(u) and furthermore, E(un) also depend on d.
The following propositions demonstrate our observation regarding distribution
of energy:

Proposition 3.2. The fundamental frequency, n = 1 gets largest distribution
of energy, regardless of the pluck position d.

Proof. W.T.S P1 − Pn ≥ 0,∀n ∈ N,∀d ∈ [0, L]

P1 − Pn =
2

d(π − d)
sin2 d− 2

n2d(π − d)
sin2 nd

=
2

d(π − d)
(sin2 d− sin2nd

n2
)

Since 2
d(π−d) ≥ 0, we are now left to show that sin2 d− sin2nd

n2 ≥ 0:

| sin d| ≥ | sinnd
n
|,∀n ∈ N

Then a proof by induction:

| sin (n+ 1)x| = | sin (nx+ x)| = | sinnx cosx+ cosnx sinx|
≤ | sinnx cosx|+ | cosnx sinx|
≤ | sinnx|+ | sinx|

Hence sin2 d ≥ sin2nd
n2 , P1 ≥ Pn,∀n ∈ N.
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Proposition 3.3. When d → 0, all overtones will have the same distribution
of energy.

Proof. Choose some arbitrary m,n ∈ N, then:

Pm − Pn =
2

m2d(π − d)
sin2md− 2

n2d(π − d)
sin2 nd

lim
d→0
Pm − Pn = lim

d→0

2

mπ

sin2md

md
− lim
d→0

2

nπ

sin2 nd

nd

= lim
dm→0

2

mπ

sin2md

md
− lim
dn→0

2

nπ

sin2 nd

nd

= 0

Proposition 3.4. The distribution of the energy, Pn is independent of height,
h, and thus depends on the distance, d. Furthermore, we also observe the energy
E(u) only depends on d.

Proposition 3.5. If the string is plucked at position d, where k = L
d , is an

integer, then E(un) = 0 for all n being multiples of k.

Proof. We have a missing overtone when E(un) = 0, and furthermore, when
An = 0

E(un) =⇐⇒ An = 0

An = 0 ⇐⇒ nπd

L
= kπ ⇐⇒ n =

kL

d
, k = 1, 2, 3...

This observation also leads to an additional exploration: the missing over-
tone. From Figure 3 it can be observed that the distribution of energy goes to
0, at each point d = L

n . When Pn = 0, then we know that:

0 = Pn

=
E(un)

E(u)

=
0

E(u)

This observation can also be illustrated as a plot of the discrete energies.
We plot the energies of the modes, discretely by n = 1, 2, ...., for the plot take
L = π, d = π

4 , h = 2, and T = 60:
Note that in this figure, the horizontal 0 is not at the bottom of the plot, but

rather slightly above, so that 0 energies, or missing overtones, can be easily seen.
By a choice of d = π

4 , we observe a missing harmonic at every n = 4, 8, 12, ...,
which follows with Proposition 3.5. Continuing, the plot of An in orange, also
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Figure 3: Discrete Plots of E(un), in blue, and An, in orange.

follows the same patterns of missing harmonics at d = L
n . This furthers the

conclusion that when An = 0, then E(un) = 0, and Pn = 0.
Continuing with the distribution of energies, it is important to understand

to what modes most of the energy goes to. Notice, in Figure 4, it seemed as if,
in both An and E(un), most of the energy was in the first few modes, until the
missing mode, and then a near negligible amount following that missing mode.
After a great deal of experimentation with various initial conditions, string
lengths, and physical constants, we were able to make the following conjecture:

Conjecture 3.1. A minimum of 80% of the total energy can be obtained by
summing the energy of the modes to the first missing harmonic.

Rather than verifying this symbolically, we verify numerically using the fol-
lowing cases: L = π and d = {π2 ,

π
4 ,

π
10}.

Proof. Case 1: For a large d, we know that, we will need to sum to n = 2 to
achieve a minimum of 80% of the total energy. We first obtain Pn for L = π
and d = π

2 :

Pn =
8 sin2 nπ

2

n2π2

Then, summing from 1 to 2:

.8 ≤
2∑

n=1

8 sin2 nπ
2

n2π2

=
8

π2

.8 ≤ .810
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Case 2: For a smaller d, for this case we will need to sum to n = 4 to achieve
a minimum of 80% of the total energy. We begin, again by obtaining Pn for
L = π and d = π

4 :

Pn =
32 sin2 nπ

4

3n2π2

Then summing from 1 to 4:,

.8 ≤
4∑

n=1

32 sin2 nπ
4

3n2π2

=
232

27π2

.8 ≤ .870

Case 3: For a further smaller d, for this case we will need to sum to n = 10
to achieve a minimum of 80% of the total energy. We begin, again by obtaining
Pn for L = π and d = π

4 :

Pn =
200 sin2 nπ

10

9n2π2

Then, summing from 1 to 10:

.8 ≤
200 sin2 nπ

10

9n2π2

.8 ≤ .892

We numerically see that this works, and can thus support the conjecture, that
by summing to the first missing harmonic, a minimum of 80% of the energy can
be obtained.

3.2 Can We Hear the Initial Conditions?

Moving in a different direction, Mark Kac [6] explores if the different shapes
of drums can be heard by an ear that is unknown of the drum shape in his
paper ”Can we hear the shape of the drum” [6]. This paper prompted our own
question, can we hear the initial conditions for the plucked string model with
Dirichlet Boundary Conditions? A more formalized version of the problem is
presented as follows:

Proposition 3.6. Suppose a listener has perfect pitch and knows E(un) for
all n, then they can determine the initial condition for a plucked string with
Dirichlet boundary conditions.

Recall, the period of any solution to the 1-dimensional wave equation is:

τu =
2L

cn
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Then, by the inverse period-frequency relationship, the frequency for any
solution to the 1-dimensional wave equation is given by:

fn =
cn

2L

Where the fundamental frequency of the wave is:

f1 =
c

2L

Furthermore, recall the eigen-values, λn, for the wave equation:

λn = −(
nπ

L
)2

Using algebra, we can define λn as a function of the frequency of the wave form:

λn = −(
2πfn
c

)2 (25)

Suppose a listener has perfect pitch and know T
ρ , meaning that when they

hear a note they can name the note and frequency of the note, and the physical
constant c is given, then the listener can determine all λn of the solution from
the frequency. Furthermore,

L =
c

2f1
(26)

Thus we can determine the length of the string. Suppose we know the
E(un) for all n, recall from previous section (Equation 20) that An is associated
to E(un) by

An =

√
4E(un)L

Tnπ
(27)

Therefore, by knowing E(un) for all n, we can determine all An. Note that An is
the Fourier coefficient of initial position with the orthogonal system {sin nπx

L },
we can reconstruct the initial position using Fourier series:

Φ(x) =

∞∑
n=1

An sin
nπx

L

Finally, the initial velocity of the plucked string is zero. Thus, by these assump-
tion we can hear the initial condition for a plucked string with the Dirichlet
boundary conditions. This conclusion is especially interesting because we’ve
come to a different conclusion than in Kac’s [6] paper.

4 Mixed Boundary Conditions

After using the Dirichlet Model, we realize that, while the strings are fixed at
the end of the neck of the instrument, they rest on a bridge made of a light
wood, which is not nearly as rigid as a fixed end. In this model, the left end
of the string rests on a spring system, as shown in the diagram below, and the
right remains fixed:

17



Figure 4: Spring-mass system with an attached string

4.1 Derivation of Boundary Conditions

Suppose we have a string where one end is attached on the system shown in
Figure 4, and the other end is fixed such as in the Dirichlet boundary conditions.
This yields a set of mixed boundary conditions, one following the Robin (both
ends are attached to a spring-mass system) boundary condition, and the other
with the Dirichlet boundary conditions (both ends are fixed).

Denote y(t) = u(0, t), where y(t) satisfies the following ODE:

m
∂

∂t2
y(t) = −k[y(t)− yE(t)] + T (0, t) sin (θ(0, t)) + γ (28)

yE(t) represents the equilibrium position of the string and k the spring constant
(the physical stiffness of the spring). The second term of the ODE in (28)
represents the vertical component of the tensile force of the string. Then, since
θ is always small:

T (0, t) sin (θ(0, t)) ≈ T (0, t)
sin (θ(0, t))

cos (θ(0, t))

= T (0, t) tan (θ(0, t))

= T (0, t)
∂

∂x
u(0, t)

Next, since the string is resting on the spring and then continues to a fixed
end, we can consider the mass in the spring-mass system to be small enough
to be negligible. More specifically, the mass that would exist on the spring, is
the point mass of the string on the spring, which is so small, that we consider
it to be 0. Furthermore, there are no additional external forces in this system,
so γ = 0, as is the yE(t) term, because the equilibrium position of the system
is at x = 0. Finally, the vertical component of the tensile force is non-changing
because we have previously defined constant tension T in the system and we are
only working in 1-dimension, and thus T (0, t) = T . With these simplifications,
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equation (28) becomes the following:

T
∂u

∂x
(0, t) = ku(0, t) (29)

Furthermore, the boundary conditions for the Mixed Boundary Condition model
are now:

T
∂u

∂x
(0, t) = ku(0, t) (30)

0 = u(L, t) (31)

Together with the 1-dimensional wave equation:

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t)

where c2 = T
ρ and the initial conditions Ψ(x) and Φ(x).

u(x, t = 0) = Φ(x)

∂u

∂t
(x, t = 0) = Ψ(x)

we can solve for the unique solution to the 1-dimensional wave equation with
the mixed boundary conditions.

4.2 Series Solution to the Mixed Boundary Conditions

Using separation of variables method, let u(x, t) be composed of the product of
two functions:

u(x, t) = F (x)G(t)

Then, we apply the same 1-dimensional wave equation operator from the Dirich-
let model, resulting:

∂

∂t2
G(t)− λc2G(t) = 0 (32)

∂

∂x2
F (x)− λF (x) = 0 (33)

Then, applying the boundary conditions: F ′(0) = k
T F (0) and F (L) = 0. Now

we obtain the general solution for F (x):

F (x) = c1 cos (vnx) + c2 sin (vnx) (34)

Because F (L)G(t) = 0, by the fixed boundary condition at L, and since G(t) 6=
0, F (L) = 0. Additionally, λ = v2n. Further using the boundary condition
explained above, we see that c2 = k

Tvn
c1, thus the specific solution for Fn(x):

F (x) = c1 cos vnx+ c1
k

Tvn
sin vnx
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Multiplying F (x) by 1
c1

, it will remains to be a solution of 1-dimensional wave
equation, hence

F (x) = cos vnx+
k

Tvn
sin vnx (35)

Substituting for F (L) = 0, we have vn is the solution of:

tan vnL = −T
k
vn (36)

Then for G(t), we apply the same process as in the Dirichlet model, resulting
in:

G(t) = An cos (cvnt) +Bn sin (cvnt)

where An and Bn are the n-th Fourier coefficients. Now, the solutions to the
1-dimensional wave equation with mixed boundary conditions is:

un(x, t) = (An cos (cvnt) +Bn sin (cvnt))(cos (vnx) +
k

Tvn
sin (vnx)) (37)

The following theorem shows the orthogonality of eigenfunction Fn in Mixed
boundary condition

Theorem 4.1. The eigenfunction {cos vnx+ k
Tvn

sin vnx, ∀n = 1, 2, ...} are mu-
tually orthogonal to each other.

Proof. W.T.S:
∫
Fn(x)Fm(x)dx = 0, if m 6= n.

Note that

(−F ′nFm + FnF
′
m)′ = −(F ′′nFm + F ′nF

′
m) + (F ′nF

′
m + FnF

′′
m) (38)

= −F ′′nFm − F ′nF ′m + F ′nF
′
m + FnF

′′
m (39)

= −F ′′nFm + FnF
′′
m (40)

Using F ′′n = λnFn, and F ′′m = λmFm

(−F ′nFm + FnF
′
m)′ = −λnFnFm + λmFnFm = (λm − λn)FnFm

∫
FmFndx =

∫ L

0

1

λm − λn
(FnF

′
m − F ′nFm)′dx (41)

=
1

λm − λn
(FnF

′
m − F ′nFm)|x=Lx=0 (42)

=
1

λm − λn
(F ′n(0)Fm(0)− Fn(0)F ′m(0)) (43)

Applying the boundary conditions:∫
FmFndx =

1

λm − λn
(
k

T
Fn(0)Fm(0)− Fn(0)

k

T
Fm(0)) = 0 (44)

Hence {Fn(x)} = {cos vnx+ k
Tvn

sin vnx}n = 1, 2, ... are orthogonal sets.
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4.3 Numerical Approximations for vn

Recall vn’s are the solution of the following equation:

tan vnL = −T
k
vn

Notice, that vn appears on both sides of the last equation and thus cannot be
symbolically solved, but rather numerical approximation must be used. In order
to obtain a numerical approximation, we began by plotting tan (vnL) against
−T
k vn. In the following plot, figure 5, vn has just been called v for ease of

plotting, additionally, just for this plot T = 300 and k = 200.

Figure 5: tan (vnL) in blue, plotted against −Tk vn, in orange in order to deter-
mine a numerical approximation for vn.
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4.3.1 Approximation of vn when n is Large

By further observation, we see that when n is sufficiently large, or when k is
very small, vn lies approximately on the vertical asymptotes of the tangent line
function. Note that vn can not be 0, since if vn is 0, then solution with 0 as an
eigenvalue does not satisfy the boundary condition. From the plot in Figure 5,
the vertical asymptotes of tan (vnL) occur at 1

2 + n. Thus. our first method of
numerical approximation for vnL (and vn) is as follows:

vnL ≈ π

2
+ (n− 1)π

vn ≈ π

2L
+

(n− 1)π

L

Although, at higher degrees, a correction is required. Let vn = π
2L+ (n−1)π

L −
εn, where εn is the correction factor, and n ∈ Z:

tan vnL = tan (
π

2
+ (n− 1)π − εnL) = tan (

π

2
− εnL)

Notice that tan (π2 − x) is not smooth, meaning not continuously differentiable,
at x = 0 and thus we can rewrite tan π

2 − x as:

tan (
π

2
− x) =

1

x

x cosx

sinx

Now, taking the Taylor Expansion of x cos x
sin x , in order to find a better approxi-

mation:
x cosx

sinx
= 1− x2

3
− x4

45
− 2x6

925
− ...

We find through the Taylor Expansion, that tan (π2 − x) ≈ 1
x = −Tvnk . Then

further substituting into the equation for the correction, we have:

1

εnL
= −T

k
(
π

2
+ (n− 1)π − εn)

⇐⇒ TL

k
ε2n −

π + (2n− 2)π

2

TL

k
εn − 1 = 0

hence, let a = TL
k , the solution of the quadratic formula is given by:

εn =
(π + 2(n− 1)π)a+

√
a2(π + 2(n− 1)π)2 + a

4a

εn =
(π + 2(n− 1)π)a−

√
a2(π + 2(n− 1)π)2 + a

4a

With a positive and a negative answer, we chose the sign of εn based on the
sign of vn that we are trying to approximate. If we are trying to approximate
positive vn, we will chose positive εn, while if we are trying to approximate
negative vn, we will chose negative εn, since we want to use the correction to
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Figure 6: Taylor expansion of tanx around εn ≈ 0

make vn as close as possible. Then we plot tan π
2 − x and 1

x in Figure 6 in order
to see how the approximation performs.

Exmaple 1: Suppose k = 1, T = 1, L = 3, the numerical solution of v10 is
given by mathematica as

v10 ≈ 9.98166025783878,

where our numerical approximation methods gives

v′10 ≈ 9.949074768037809.

Exmaple 2: Suppose k = 1, T = 1, L = 3, the numerical solution of v20 is
given by mathematica as

v20 ≈ 20.436649815855155,

where our numerical approximation methods gives

v′20 ≈ 20.420692321110568

In Figure 6, we can see that the approximation performs very well for small
correction, i.e εn ≈ 0. Thus we can consider this our numerical approximation
for vn when n is large. We will use the other approximation for when n is small,
and this is more important to our project since fundamental frequency plays
the largest role in sound spectrum.

4.3.2 Approximation of Fundamental Frequency

Noted that in real life, k is substantially large and the slope of the linear line,
−Tk , is close to zero, hence v1

L is approximately π and v1 is approximately π
L .

The numerical approximation method is follows:
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Let y = v1L− π, hence y is a function that depends on v1.
Consider the following equation:

y +
1

3
y3 +

2

15
y5 + · · · = −κy + π

L
(45)

Where κ is T
k . Note that the right hand side is equivalent to −Tk v1 and the left

hand side of the equation is the Taylor expansion of tanx around x = v1L− π.
Regard (45) as a function of y that depends on κ:

y = y(κ) with y(0) = 0 (46)

By definition of y, v1 can be written as a function of y

v1 =
y + π

L
; hence v1(0) =

π

L
(47)

Next, we are trying to expand y(κ) around κ ≈ 0 with only the first order
correction.
Using implicit differentiation, and apply d

dκ to both sides of the defining equation
(45), we obtain

y′ + y′y2 +
2

3
y′y4 + · · · = −y + π

L
(48)

Evaluating at κ = 0, and note that y(0)=0, we obtain y′(0) = − π
L . Hence

the first order Taylor expansion of y(κ) is as follows

y(κ) = y(0) + κ
y′(0)

1
= −κπ

L

by equation (47), when κ is small (i.e when k is large)

v1(κ) ≈ 1

L
(π − κπ

L
) (49)

Equation (45) is interpreted as follows: when κ is zero, then v1 = π
L , when κ is

close to zero, then the correction term is −κπL2 .

Exmaple 3: Suppose k = 500, T = 1, L = 3, the numerical solution of v1
is given by mathematica as

v1 ≈ 1.0464998856249224,

where our numerical approximation methods gives

v′1 ≈ 1.0464994194958.

Exmaple 4: Suppose k = 50, T = 1, L = 3, the numerical solution of v1 is
given by mathematica as

v1 ≈ 1.040263461830458,
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where our numerical approximation methods gives

v′1 ≈ 1.0402162341886205.

Therefore, the numerical solution supports that our approximation method
works well when k is large. Moreover, the larger k is, the better aprroxima-
tion this method performs.

Observation 4.1. un has period 2π
cvn

.

Proof. Modes of solution has the form:

un(x, t) = (An cos cvnt+Bn sin cvnt)(cos vnx+
k

Tvn
sin vnx)

un(x, t+
2π

cvn
) =

(
An cos cvn(t+

2π

cvn
) +Bn sin cvn(t+

2π

cvn
)

)
(cos vnx+

k

Tvn
sin vnx)

= (An cos (cvnt+ 2π) +Bn sin (cvnt+ 2π)) (cos vnx+
k

Tvn
sin vnx)

= (An cos cvnt+Bn sin cvnt)
k

Tvn
sin vnx) = un(x, t)

Hence the frequency of each solution is given by:

fn =
cvn
2π

Observation 4.2. Since vn’s are not multiple of each other, we don’t have
overtone anymore.

Furthermore, by our approximation method, the fundamental frequency of
the vibrating string with Mixed Boundary Conditions is given by:

f1M =
c(π − κ πL )

2πL
=

c

2L
(1− κ

L
)

Recall from a previous section that the fundamental frequency in Dirichlet
boundary condition is

f1D =
c

2L

Theorem 4.2. With same physical constants ρ, T and L, the fundamental
frequency of the mixed boundary condition is approximately a factor of that of
the Fixed boundary condition, i.e

f1M ≈ f1D (1− κ

L
) (50)

Remark: since T
kL is positive, the fundamental frequency of the mixed bound-

ary condition is always less than the fundamental frequency in Dirichlet bound-
ary condition, with same physical constants ρ, T and L.
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4.4 Plucked String Model with Mixed Boundary Condi-
tions

Now that the wave equation for the mixed boundary conditions is complete and
we have a numerical approximation for vn, we can build a model for plucked
strings. Recall that the initial position of the plucked string is the tent function
and the initial velocity of the plucked string is 0, thus Bn = 0.
The solution of 1D wave equation with mixed boundary condition for plucked
string is given by:

u(x, t) =

∞∑
n=1

(An cos (cvnt)) (cos (vnx) +
k

Tvn
sin (vnx)) (51)

where An is related to the initial position as:

Φ(x) = u(x, 0) =

∞∑
n=1

un(0, t) =

∞∑
n=1

An(cos (vnx) +
k

Tvn
sin (vnx)) (52)

Given (cos (vnx)+ k
Tvn

sin (vnx)) as the eigen-function of F ′′n (x) = λFn(x), there-
fore An is the Fourier coefficient of initial position given by inner product of
initial position and the eigenfunction:

An = 〈Φ(x),
Fn(x)

‖Fn(x)‖
〉 (53)

An =
1

‖Fn(x)‖

(∫ d

0

h

d
xFn(x)dx+

∫ L

d

(
hL

L− d
− h

L− d
x)Fn(x)dx

)

=
1

‖Fn(x)‖
(
h

d

(T − dk)vn cos (dvn) + (k + Tv2n) sin (dvn)− Tvn
Tv3n

+
h

d− L
k sin vnL− vn(T + kL− kd) cos vnd+ Tvn cos vnL− (k + (d− L)Tv2n) sin vnd

Tv3n
)

Where the norm of the eigen-function is given by:

‖Fn(x)‖ =
1

2

√
−k2 sin 2vnL+ vn(2k(kL+ T − T cos 2vnL) + T 2vn(sin 2vnL+ 2vnL))

T 2v3n
(54)

Note that when k is large, vnL is approximately π
2 + nπ, hence

sin 2vnL ≈ sin (π + 2nπ) = 0,

additionally
cos 2vnL ≈ cos (π + 2nπ) = −1

Thus, ‖Fn(x)‖ is approximately

‖Fn(x)‖ ≈ 1

2

√
2k(kL+ 2T )

T 2v2n
+ 2L
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As n tends to infinity,

lim
n→∞

‖Fn(x)‖ =

√
L

2

Thus, when k is large, the norm of eigen-function in the mixed boundary con-
dition model will converge to the norm of eigen-function in fixed boundary
condition model (Dirichlet Model).

Furthermore, the |An| is bounded:

1

‖Fn(x)‖
(
h(k + Tvn + (dk + T )vn + dTv2n)

dTv3n
+
h(2k + Tvn + (dk + kL+ T )vn + (L− d)Tv2n)

(L− d)Tv3n
)

Since when k is large, ‖Fn(x)‖ has lower bound
√

L
2 , hence 1

‖Fn(x)‖ has an upper

bound
√

2
L

The absolute value of An is bounded by:√
2

L
(
h(k + Tvn + (dk + T )vn + dTv2n)

dTv3n
+
h(2k + Tvn + (dk + kL+ T )vn + (L− d)Tv2n)

(L− d)Tv3n
)

For example, suppose L = π, d = π
3 , h = 0.1, T = 60, ρ = 1.15, k = 500, then

we observe in Figure 7 Since the upper bound of absolute value of An converges

Figure 7: An plotted in orange, against the upper and lower bounds, in blue
and green respectively. In this plot, n is plotted on the horizontal axis.

to zero when n tends to infinity, we can conclude that An also converges to 0
when n tends to infinity. From these observations, we can go on to investigate
the energy of this model.
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5 Energy of the String with the Mixed Bound-
ary Conditions

Similar to the Dirichlet model, we investigate the energy of the model with
the mixed boundary conditions. In the Dirichlet model, the energy is sum of
the potential and kinetic energies of the string. However, because of the added
spring, the energy is not preserved in the string. Therefore, we add the potential
energy of the spring into the system, giving us with a modified energy equation:

E(u) =
k

2
u(0, t)2 +

1

2

(∫ L

0

ρ

(
∂u

∂t

)2

+ T

(
∂u

∂x

)2

dx

)
(55)

E(ustring) =
1

2

(∫ L

0

ρ

(
∂u

∂t

)2

+ T

(
∂u

∂x

)2

dx

)
= E(u)− k

2
u(0, t)2 (56)

In equation 55, the first term is the potential energy of the spring, and the
latter two terms are the sum of the potential and kinetic energies of the string.
Making the second two terms in equation 55, the energy of the string. Further-
more, we call 56, as the energy of the string. In order to further understand the
energy of the model with the mixed boundary conditions, we begin with a sim-
ilar theorem and proof to the Dirichlet, for the time independence of the energy.

Theorem 5.1. E(u) is time independent.

Proof.

∂E(u)

∂t
= ku(0, t)

∂u(0, t)

∂t
+ T

∂u

∂x

∂u

∂t
|L0 +

1

ρ

∫ L

0

∂u

∂t
(
∂2u

∂t2
− T

ρ

∂2u

∂x2
)dx

= ku(0, t)
∂u(0, t)

∂t
− T ∂u

∂x

∂u

∂t
|x=0

Using the boundary conditions from above, we have:

∂E(u)

∂t
= T

∂u

∂x
(0, t)

∂u(0, t)

∂t
− T ∂u

∂x

∂u

∂t
|x=0 = 0

Thus E(u) is constant in time.

Remark: the sum of the energies of the spring and the string is constant in
time, but each of those energies are not as it is specifies in 56.

Continuing, we will prove that the total energy is equal to the sum of the
energies of the modes.

Theorem 5.2. If u(x,t) =
∑
n=1∞ un(x, t)as above, then ∀n, E(un) is constant

in time and the total energy is equal to the sum of the energies of the modes.
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Proof. Prove by induction:

E(u1 + u2) =
k

2
(u1(0, t)2 + 2u1(0, t)u2(0, t) + u2(0, t)2)

+
1

2

∫ L

0

ρ((
∂u1
∂t

)2 + 2
∂u1
∂t

∂u2
∂t

+ (
∂u2
∂t

)2) + T ((
∂u1
∂x

)2 + 2
∂u1
∂x

∂u2
∂x

+ (
∂u2
∂x

)2)dx

= E(u1) + E(u2) + ku1(0, t)u2(0, t) + ρ

∫ L

0

∂u1
∂t

∂u2
∂t

dx+ T

∫ L

0

∂u1
∂x

∂u2
∂x

dx

∫ L
0

∂u1

∂t
∂u2

∂t dx = 0, by Theorem (4.1).∫ L

0

F ′nF
′
mdx = Fn′Fm|x=Lx=0 − λn

∫ L

0

FnFmdx = − k
T
Fn(0)Fm(0)

T

∫ L

0

∂u1
∂x

∂u2
∂x

dx = TG1(t)G2(t)[− k
T
F1(0)F2(0)] = −ku1(0, t)u2(0, t)

E(u1 + u2) = E(u1) + E(u2)

5.1 Energies of the nth mode of the Plucked String

Recall from previous section that:

u(x, t) =

∞∑
n=1

(An cos (cvnt)) (cos (vnx) +
k

Tvn
sin (vnx)) (57)

Where An is:

An =
1

‖Fn(x)‖
(
h

d

(T − dk)vn cos (dvn) + (k + Tv2n) sin (dvn)− Tvn
Tv3n

+
h

d− L
k sin vnL− vn(T + kL− kd) cos vnd+ Tvn cos vnL− (k + (d− L)Tv2n) sin vnd

Tv3n
)

and the norm of the eigen-function is given by:

‖Fn(x)‖ =
1

2

√
−k2 sin 2vnL+ vn(2k(kL+ T − T cos 2vnL) + T 2vn(sin 2vnL+ 2vnL))

T 2v3n
(58)

With these equations, we can evaluate E(un) in order to understand the energy
of each mode. Recall, that E(un) is time independent, and we can further
evaluate at t = 0, giving the energy of each mode:

E(un) = A2
n

k
2

+ ρ
−2kT + 2kT cos 2vnL+ sin 2vnL

k2−T 2v2n
vn

+ 2L(k2 + T 2v2n)

4T 2


(59)
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Recall, when k is large, vnL ≈ π
2 + nπ, thus:

sin 2vnL ≈ sin (π + 2nπ) = 0

additionally,
cos 2vnL ≈ cos (π + 2nπ) = −1

Then, with these evaluations, we can simplify E(un) into the following:

E(un) = A2
n(
k

2
+ ρ
−4kT + 2L(k2 + T 2v2n)

4T 2
) (60)

Next, we plot E(un) to visually see the energy of the string at each mode:

Figure 8: Plot of E(un) for n = (1, 10)

Additionally, we can plot E(un) against d, in order to see how E(un) changes
with d. In the following plot, we plotted E(u1), E(u2), E(u3), and E(u4)

From Figure 9, it’s difficult to understand the relationship between d and
E(un), we can change the bounds of the graph, to get a closer look of what
happens as d approaches 0.

From Figure 10, we can see when d is very small the energy is very high,
and oscillates across the modes, and this pattern continues until the energies of
the modes are nearly equal as d approaches 1. This observation is also verified
by Figure 9.

Following the structure of the Dirichlet Model, it would be logical to inves-
tigate the distribution of the energies across the modes for the mixed boundary
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Figure 9: Plot of E(u1), E(u2), E(u3), and E(u4) against d. E(u1) is plotted in
blue, E(u2) in orange, E(u3) in green, and E(u4 in red.

Figure 10: Same plot as in Figure 9
, but with x-axis changed to 0, π4

condition model. In order to do this, we would need to again determine Pn
as the distribution of energies. More specifically, we would need to define the
average energy of the string across the period. Unfortunately, each solution has
a different period, and we are thus unable to take an average across the period.
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Furthermore, since we are unable to take this average, we are unable to simply
define the distribution of the energies for this model.

6 Vibrato Modeling

Vibrato is employed by string musicians by moving their finger a small distance
back and fourth on the string. Suppose the distance/amplitude of vibrato is
characterized as α and the frequency of vibrato is characterized as β, then the
boundary of the string is instead L(t) = L+α sinβ(2πt), where L is the original
length of the string.

The proposed mathematical model of the string is as following:
u(x, t) satisfies the 1-dimensional wave equation (1)

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) (61)

when 0 ≤ x ≤ L(t), u(x, t) = 0 for x ≤ 0, and x ≥ L(t). with boundary
condition

u(0, t) = 0, u(L(t), t) = 0

6.1 Conformal Mapping Approach

One method to solve this second order linear partial derivatives is discussed sys-
tematically by Gaffour in [3], [7] by transforming the original moving boundary
domain into a fixed boundary domain using a conformal map.
Consider the 1-dimensional wave equation (1):

∂2u

∂x2
− ∂2u

∂τ2
= 0

with the following initial conditions:

u(x, 0) = Ψ(x)

∂u

∂x
(x, 0) = Φ(x)

and the following moving boundary conditions:

u(0, τ) = 0; u(L(t), τ) = 0; τ ≥ 0 and 0 ≤ x ≤ L(t)

This approach uses the analogy between Laplace’s equation and the wave equa-
tion. The change x̃ = ix transforms Equation (61) into the following elliptic
equations:

∂2u

∂x̃2
+
∂2u

∂τ2
= 0 (62)
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Figure 11: Conformal Map

It is well known that that Laplace’s equation is invariant when subjected to a
conformal map transformation. More precisely, if:

Z = F (W ) = f̃(ξ, η̃) + ig̃(ξ, η̃)

with W = ξ + iη̃ and Z = τ + ix̃, then the change of variables:

τ = f̃(ξ, η̃); x̃ = g̃(ξ, η̃) (63)

transform equation (62) into the following equation:

∂2u

∂η̃2
+
∂2u

∂ξ2
= 0 (64)

We impose the following condition upon F:

F̄ (W ) = F (W̄ ). (65)

Then deduce by use of the McLaurin expansion that

f̃(ξ, iη) = f(ξ, η); g̃(ξ, iη) = ig(ξ, η)

where f(ξ, η) and g(ξ, η) are real functions of the real variable ξ, η.
Setting η̃ = iη in Equation (63), we find the original variables τ and x:

τ = f(ξ, η); x = g(ξ, η) (66)

Then Equation (64) takes the following form:

∂2u

∂η2
+
∂2u

∂ξ2
= 0

The right choice of F , produced a conformal map of the time domain variable
0 ≤ x ≤ L(t) to a band 0 ≤ η ≤ η0. In this case, the boundary conditions can
be expressed by:

u(ξ, 0) = 0; u(ξ, η0) = 0
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The solution for u(ξ, η) in the fixed domain is well known and can be expressed
in terms of the complex Fourier series.

u(ξ, η) =

∞∑
−∞

An

[
exp

(
iπn

η0
(ξ + η)

)
− exp

(
iπn

η0
(ξ − η)

)]
(67)

To find the solution with the original variables τ and x, we consider the inverse
function ψ(Z) = F−1(W ), note that this ψ is not the same as the initial position
function Ψ.
Finally, the exact solution with the original variables is given in terms of the
functional Fourier series:

u(τ, x) =

∞∑
−∞

An

[
exp

(
iπn

η0
ψ(τ + x)

)
− exp

(
iπn

η0
ψ(τ − x)

)]
(68)

where ψ(τ + x) = ξ + η, ψ(τ − x) = ξ − η, then we deduce:

η0 =
ψ(τ + L(t))− ψ(τ − L(t))

2
; η0 = η(x = L(t)). (69)

The expression for the coefficients (for the symmetric initial conditions) is:

An =
1

4iπn

∫ L(0)

−L(0)
κ(x) exp (iπnψ(x))dx (70)

κ(x) =

{
Φ(x) + Ψ(x), x ≥ 0
Φ(x)−Ψ(x), x ≤ 0

6.2 Adiabatic Approach

After some investigations using the conformal mapping method, we realized that
the solution yielding by the conformal map is complicated to calculate. There-
fore, we adapted the adiabatic approximation approach.

A very ”slow” change in the boundary conditions of a problem defines an
”adiabatic” process. More explanation of the ”adiabatic” process is explained
in [15].

With this intuition, the frequency of the vibrating string for A4 is 440 Hz,
while the frequency of vibrato is about 6-7 Hz, hence the boundary is changing
”slowly” comparing to the behavior of the vibrating string. An intuitive ”solu-
tion” to the moving boundary condition is given by the solution of the Dirichlet
Boundary Condition, but replace L with L(t).

uadiabatic =

∞∑
n=1

An cos
cnπt

L(t)
sin

nπx

L(t)
(71)

where L(t) = L+ α sinβ2πt.

We still need to justify that the adiabatic approximation is ”close” to the orig-
inal solution.
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Theorem 6.1. If the adiabatic condition is satisfied, then the norm of the
difference ||u− uadiabatic|| is small for a bounded interval of time.

Proof. Recall that the 1D wave equation (1) is

c2
∂2u

∂x2
=
∂2u

∂t

where u(x,t) is the exact solution of the 1-dimensional wave equation with mov-
ing boundary condition.
Introduce v-another functor of (x,t), and consider{ ∂u

∂t = v
∂v
∂t = c2 ∂

2u
∂x2

(72)

u(x,t) satisfies the above system if and only if it satisfies the 1-dimensional wave
equation.

Introduce the vector
−→
f (x, t) =

(
u(x, t)
v(x, t)

)
(72) is satisfied if and only if

∂
−→
f

∂t
=

(
0 In

c2 ∂2

∂x2 0

)
−→
f (73)

Denote A =

(
0 In

c2 ∂2

∂x2 0

)
Consider u(x,t) as the solution of the 1D wave equation with moving boundary
condition, then {

d
−→
f
dt = A

−→
f , ∀t

−→
f |t=0 =

−→
f0 is given

Then the solution is written formally as

−→
f (t) = etA

−→
f0

Let g(x, t) denote the solution given by the adiabatic approximation such that
it satisfies: {

∂−→g
∂t = A−→g +−→r (t)

−→g |t=0 =
−→
f 0 same as before

According to Duhamel’s formula

−→g =

∫ t

0

e(t−s)A−→r (s)ds+ etA
−→
f0 =

∫ t

0

e(t−s)A−→r (s)ds+
−→
f (74)

Our objective is to estimate ||
−→
f −−→g ||

||
−→
f −−→g || = ||

∫ t

0

e(t−s)A−→r ds|| ≤
∫ t

0

||e(t−s)A−→r ||ds
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by triangle inequality.
We choose energy as the norm of the vector functions, the operator eτA is
bounded within a bounded interval of time, since the energy can not be infinity,
hence,

||eτA−→r || ≤ cτ ||r||

where cτ is a constant that depends on τ . In the end, in order to show ||
−→
f −−→g ||

is small, we are left to show ||−→r || is small, where −→r = c2 ∂
2u
∂x2 − ∂2u

∂t2 , or in other
words, −→r is the 1D wave operator acting on the adiabatic approximation.
Let

f [x, t] = A sin
nπx

L
cos

cnπt

L

g[x, t] = A sin
nπx

α sinβt+ L
cos

cnπt

α sinβt
+ L

r[x, t] = c2
∂2g

∂x2
− ∂2g

∂t2

Norm of r is given by energy of r, which is

rNorm[x, t] =

∫ L

0

ρ(
∂r

∂t
)2 + T (

∂r

∂x
)2dx

Consider the integrand:

ρ(
∂r

∂t
)2 + T (

∂r

∂x
)2

By Mathematica, the integrand is given by Figure 12:
Notice that when the adiabatic condition is satisfied L >> α, 1 >> β > 0.
Hence

α

L
≈ 0 and

β

L
≈ 0 (75)

It is suffice to let L=1, and α be the proportion of the length that vibrato
oscillates, hence α << 1.
Applying the adiabatic condition, we have Figure 13

Notice that all terms without α, β cancel out nicely, which is Figure 14:
After cancellation, the upper bound of the solution is given by

ρ(2An3π3xαβ +An3π3tαβ + 8An2π2αβ)2 + T (2An2π2αβ + 2An3π3xαβ)2

Integral the upper bound from 0 to L, we have

(α2β2)
1

3
A2n4(4∗(12+nπ(6+nπ))T +(192+nπ(48(1+ t)+nπ(4+3t(2+ t))))ρ)

Since α << 1, β << 1 and the above integral has coefficients α2β2, the integral is
approximately 0. Hence we proof that the norm of the difference ||u−uadiabatic||
is approximately 0 for a bounded interval of time
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Figure 12: integrand given by Mathematica

Figure 13: Applying the adiabatic condition to the solution

Figure 14: After cancellation
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