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Abstract
Market incompleteness arises from frictions or transaction costs. When investors trade in such markets,

due to non-uniqueness of stochastic discount factor, the standard risk-neutral pricing formula under the set
of equivalent martingale measures would be practically too wide to be useful for implementation. In this
report, we show the motivations of good-deal bounds in the framework of asset pricing from Cocharane
and Saa-Requejo (2000). Then we study mechanisms of stochastic control approach with rigorous math
formulations for a factor market model with Hansen-Jagannathan bounds. With this technique of good-deal
bounds for pricing assets, we consider a specific application on a partially observed information model with
an unobserved Markov chain over a finite time horizon.

1 Introduction

1.1 Background
In Lucas Asset Pricing, an economy populated by infinitely many identical individual consumers, in which
assets are all identical, the representative agent is supposed to maximize her utility function along with the
abilities to trade stocks in equity markets as an intertemporal problem. In this section, we introduce a similar
yet much simpler version of Lucas’ model in discrete-time state space for economic illustrations of stochas-
tic discount factor.

Given (Ω,F ,P), where P is the underlying objective probability measure, i.e the measure with respect
to the real world, then we state the following problem

max
ξ

u(ct)+EP
t [βu(ct+1)]

such that ct = et− ptξ

ct+1 = et+1 + xt+1ξ

where shortened symbols represent

u(): a strictly increasing and concave utility function of investors
β : the measure of agent’s impatience
c() : the consumption function over the time horizon [0,T]
e(): the original consumption level
x: future payoff of assets
p: corresponding prices of the assets
ξ : the amount of assets to trade
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Then First-Order-Condition (FOC) is derived by Lagrange multipliers methods as follows:

Pt = EP
t [

βu′(ct+1)
u′(ct)

xt+1]

If we denote the stochastic factor factor (pricing kernel) as m = βu′(ct+1)
u′(ct)

, then it leads to the below definition
of stochastic discount factor.

Definition 1. A stochastic discount factor (discrete case) is a stochastic process {mt,t+s} such that for any
security with payoff xt+1 at time t+1 the price of that security at time t is

pt = EP
t [mt+1xt+1] ∀t

For economic interpretations of consumption models, one may also define it as the marginal utility growth
rate: the rate at which the investor is willing to substitute consumption at time t +1 for consumption at time
t.

1.2 Motivations of Incomplete Markets
However, if the market completeness fails, investors will not be able to have perfect risk sharing for hedging
risks away. Mathematically, there does not exist an equivalent martingale measure Q to P anymore, where
we use Radon-Nikodym theorem to connect equivalence for probability measures.

Definition 2. Two probability measures P and Q are equivalent if and only if ∃ a random variable X such that
EX = 1,X > 0 and Q satisfies that Q(A) = EX1A =

∫
A XdP. Then, given the payoff function of a contingent

claim Z, the corresponding Radon-Nikodym derivative is given by EP(Z) = EQ(Z dP
dQ),

Therefore {m : p(x) = E[mx]} such that {m = x′+ε|E(x′ε) = 0} are all potential stochastic discount factors.

Given the above background, the motivation of good-deal bounds is to add a layer of economic interpretation
and the method aims to rule out not only ridiculously good deals by arbitrage bounds, but also unreasonable
good deal bounds (Cochrane & Saa-Requejo 2000). They stated the optimization problem as follows and
one may use duality to attain the upper good-deal bound easily.

C = min
|m|

E(mxc)

such that p = E(mx);m≥ 0;σ(m)≤ h
R f

where xc is the focus payoff to be valued and R f stands for risk-free rate.

First two constraints give out well-known arbitrage bounds on the value, where one uses the idea of rel-
ative pricing and guarantees the marginal utility growth rate to be non-negative. That said, we have reached
the arbitrage-free property, i.e when the payoff is non-negative, the price will also be non-negative. Practi-
cally, this bound is too wide to be useful. Adding another constraint shrinks the feasible region on the convex
hull. The innovation relies on Hansen and Jagannathan (1991)’s statement that

E(mRe) = 0 if and only if |E(R
e)|

σ(Re) ≤
σ(m)
E(m)

Given E(m) = 1/R f and a pre-specified Sharpe-Ratio h when investors start to trade at the margin for
arbitrages, we derived the last constraint for one’s marginal utility to satisfy.
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2 Asset Pricing in Continuous Time
Until this moment, all equations and statements are specified for discrete time cases, but we could easily
transform them into continuous scenarios, which we will do in this section.

2.1 Dynamics of T-period contingent claim
Suppose we are given a martingale probability measure Q on (Ω,F ) which is equivalent to the underlying
objective probability measure P. Due to market incompleteness, Q may not be unique.

Definition 3. A T-period contingent claim is a derivative whose future payoff depends on the value of another
underlying asset on finite time horizon [0,T ].

Then we assume that an arbitrary T-period contingent claim has price and factor dynamics of underlying
objective measure P as follows

dSt

St
= α(St ,Yt , t)dt +σ(St ,Yt , t)dZt

dYt = a(St ,Yt , t)dt +bz(St ,Yt , t)dZt +bw(St ,Yt , t)dWt

rt = r(St ,Yt) risk-free rate

where Zt ,Wt denote the Brownian Motion(s)

The factor dynamics (dYt) corresponds to the systematic risk factors in asset pricing of economic mod-
els. Furthermore, we define the no-arbitrage price process of the T-period contingent claim Z as:

π(Z, t) = EP
[

ΛT

Λt
·Z|Ft

]
= EQ

[
e−

∫ T
t ru du ·Z|Ft

]
where Λ is a stochastic discount factor with respect to risk-free rate r such that

Λt = e−
∫ t

0 ru duLt Lt = E
[

dQ
dP
|Ft

]
∀t ∈ [0,T ]

As the Brownian motion W carries out new information and is orthogonal to the Brownian motion Z, by
techniques of decomposition of control processes, we observe that Lt has the following dynamics

dLt

Lt
= hz

t dZt +hw
t dWt

Then using Girsanov Theorem, one also has the following relation

dZt = hz
t dt +dZQ

t

dWt = hw
t dt +dW Q

t

where ZQ and W Q are Brownian Motions under the measure Q

Since the Girsanov kernel process can be represented as (hz,hw) = h(t,St ,Yt), a feedback form including dy-
namics of both St & Yt , this guarantees the usage of the Dynamic Programming Principle (DPP) later.
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Then the price and factor dynamics of equivalent measure Q become

dSt = St [α(St ,Yt , t)+σhz
t ]dt +Stσ(St ,Yt , t)dZQ

t

dYt = [a(St ,Yt , t)+bzhz
t +bwhw

t ]dt +bz(St ,Yt , t)dZQ
t +bw(St ,Yt , t)dW Q

t

2.2 Stochastic Control Problem of Upper Good-Deal Bounds

V (St ,Yt , t) := sup
h

EQ
[
e−

∫ T
t ru du ·Φ(ST ,YT )|Ft

]
s.t α +σh− r = 0 (arbitrage-free bounds)

|| h ||2Rd≤ A2 (volatility bounds)

where Φ(ST ,YT ) is a Ft-measurable random variable which represents the payoff of a derivative secu-
rity, e.g (ST −K)+ is a standard format for European call option with strike price K.

Note that the measure Q is a martingale measure if and only if the local rate of return of the asset under
the measure Q equals the short rate r, which is captured by the arbitrage-free bounds.

Also, to avoid tedious computations, a trick used here is that under continuous time, imposing the bound
on h rather than on Sharpe ratio directly is mathematically correct (Bjork & Irina 2006):

| SRt |2≤ || ht ||2Rd≤ A2 ∀t ∈ [0,T ]

where −ht = market price vector of (W +Z)-risk, i.e dLt
Lt

= hw
t dWt +hz

t dZt

Then by DPP, the problem is reduced to

V (s,y, t) = sup
h

EQ
[
e−

∫ t+δ

t ru due−
∫ T

t+δ
ru du ·Φ(ST ,YT )|Ft

]
= sup

h
EQ
[
EQ[e−

∫ t+δ

t ru due−
∫ T

t+δ
ru du ·Φ(ST ,YT )|Ft+δ ]|Ft

]
= sup

h
EQ
[
e−

∫ t+δ

t ru du ·V (st+δ ,yt+δ , t +δ )|Ft

]
, for anyδ > 0 (a)

Apply Itô’s lemma to V (st+δ ,yt+δ , t +δ ), then we have

V (st+δ ,yt+δ , t +δ ) =V (s,y, t)+
∫ t+δ

t

[
∂V
∂ t

+St(α +σhz
t )

∂V
∂ s

+(a+bzhz
t +bwhw

t )
∂V
∂y

]
dt

+
∫ t+δ

t

[
S2

t σ2

2
∂ 2V
∂ s2 +

b2
z +b2

w

2
∂ 2V
∂y2 +

Stσbz

2
∂ 2V
∂ s∂y

]
dt

+
∫ t+δ

t

[
Stσ

∂V
∂ s

+bz ∂V
∂y

]
dZQ

t +
∫ t+δ

t
bw ∂V

∂y
dW Q

t (b)
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2.3 The Purely-Wiener Driven PDE
Theorem 1 (Hamilton-Bellman-Jacobi Equation).

∂V (s,y, t)
∂ t

+ sup
h
{AhV (s,y, t)}− rV (s,y, t) = 0

V (s,y,T ) = Φ(s,y)

The infinitesimal operator Ah is given by

AhV (s,y, t) =
∂V (s,y, t)

∂ s
S(α +σhz)

+
∂V (s,y, t)

∂y
{a(s,y)+bz(s,y)hz(t,s,y)+bw(s,y)hw(t,s,y)}

+
1
2

∂V 2(s,y, t)
∂ 2s

S2
σ

2(s,y)

+
1
2

∂V 2(s,y, t)
∂ 2y

b2
z (s,y)+b2

w(s,y)

+
1
2

∂V 2(s,y, t)
∂ s∂y

Sσ(s,y)bz(s,y)

Proof. Plugging equation (b) into equation (a) while taking the limit of δ→ 0, only integrands remain. Then,
under expectation E

Q
[·], all martingale terms dZQ

t and dW Q
t are zero. Lastly, after rearranging equations, we

have the desired theorem.

2.4 Optimal Girsanov Kernel Process
As the kernel process is decomposed as h = (hz,hw) and Z is only correlated with σ , we have hz =σ−1(r−a).

Given the HJB, the problem is reduced to a linear-quadratic optimization one with optimal kernel process as

max
h

∂V (s,y, t)
∂y

{bw(s,y)hw(s,y, t)}

h2
w ≤ A2− (α− r)2

hw =

√
A2−(α−r)2√

b2V 2
y
·bVy; hz = σ−1(r−a)

3 A Partially Observed Model

3.1 General Setup
In this section, we consider a specific application on a partially observed information model with an un-
known Markov chain X in short rate dynamics over a finite time horizon. Given the complete probability
space (Ω,F ,P), the Brownian motion Z is orthogonal to the Brownian motion W and the Markov chain
is an independent process with respect to Brownian motions, which it takes values in a finite state space
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I = {1, · · · ,D} for some integer D≥ 2.

As usual, we let Ft denote the natural (full) filtration generated by the Brownian motion Z, Brownian
motion W and the Markov chain X . Furthermore, as the information available to investors in the market at
time t does not include the Markov chain, we also need the observation filtration, which is represented by

F o
t := σ{Z(s),W (s),s ∈ [0,T ]}∨N (P), ∀t ∈ [0,T ]

where N (P) denotes the collection of all P-null events in the probability space (Ω,F ,P).

Economically, Donnelly (2011) interprets the Markov chain as sources of long-term macro-economic changes
and models the framework under regime-switching diffusion markets, but in their work, an investor knows
what regime the market is in at each time point. However, this is unlikely to happen especially if we do not
restrict on investors who specialize trades in certain fields. We then discard this assumption, yet following a
similar setup of Markov chain as Donnelly (2011). Moreover, our Markov chain would be put into the short
rate dynamics only to indicate the unknown policy changes by governments or institutions.

Let the Markov chain start at a fixed state i0 ∈ I with a generator G, a D×D matrix G = (gi j)
D
i, j=1 where

gi j ≥ 0,∀i 6= j and gii = −∑ j 6=i gi j. Then the martingale condition compensated by the intensity process
becomes (Donnelly 2011)

Mi j(t) = Ni j(t)−
∫ t

0
λi j(s)ds

where

Ni j(t) = ∑
0<s≤t

1{(Xs−)=i}1{X(s)= j} ∀t ∈ [0,T ] (counting process)

λi j(t) = gi j1{X(t−)=i} (intensity process)

Finally, we define all definitions of Brownian motions and the general setup of the price and factor dynamics
similar as Section 2 (Asset Pricing in Continuous Time) when the model is fully observable.

3.2 New Dynamics of T-period contingent claim
By Girsanov theorem, the likelihood process L corresponding to the measure Q becomes follows. Note that
for simplicity, we still denote the martingale measure used in this partially observable case as Q, though it
should not coincide with the fully observable case in general.

dLt

Lt−
= hz

t dZt +hw
t dWt +

D

∑
i=1

D

∑
j=1, j 6=i

ηi j(t)dMi j(t)

dZt = hz
t dt +dZQ

t

dWt = hw
t dt +dW Q

t

dMi j(t) = ηi j(t)λi j(t)dt +dMQ
i j(t)

where MQ
i j(t) = Ni j(t)−

∫ t

0
(1+ηi j(s))λi j(s)ds
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We claim that price, factor and short rate dynamics with respect to the underlying objective measure P when
the risk-free rate is affected by the Markov chain as follows

dSt

St
= α(St ,Yt , t)dt +σ(St ,Yt , t)dZt

dYt = a(St ,Yt , t)dt +bz(St ,Yt , t)dZt +bw(St ,Yt , t)dWt

rt = r(St ,Yt ,X(t))

Again, all the processes α,a,b,σ ,γ are suitably integral and measurable with the condition. Then using
Girsanov theorem, we have dynamics as follows

dSt

St
= [α(St ,Yt , t)+σhz

t ]dt +σ(St ,Yt , t)dZQ
t

dYt = [a(St ,Yt , t)+bzhz
t +bwhw

t ]dt +bz(St ,Yt , t)dZQ
t +bw(St ,Yt , t)dW Q

t

where ZQ and W Q are Brownian Motions under the measure Q

3.3 New Upper Good-Deal Bounds Price Processes
Fix the payoff of contingent claim to be Φ(ST ,YT ), a Ft-measurable random variable. Since the underlying
Markov chain X is unobservable, by the Tower Property, we get

π
∗(St ,Yt , t) = EQ

[
e−

∫ T
t ru du ·Φ(ST ,YT )|F o

t

]
= EQ

[
EQ[e−

∫ T
t ru du ·Φ(ST ,YT )|Ft ]|F o

t

]
= EQ [F(St ,Yt ,Xt , t)|F o

t ]

where we define F(St ,Yt ,Xt , t) = EQ
[
e−

∫ T
t ru du ·Φ(ST ,YT )|Ft

]
Then we have the following stochastic control problem where the second constraint guarantees the mar-
tingale measure Q to be non-negative. Note that due to the newly added Markov chain, our control processes
include both (h,η), yet there is no traded asset in the market based on the Markov chain. Therefore only
the market price of the diffusion risk −h(t) appears in the first constraint without the market price of regime
change risk −ηi j.

V (St ,Yt , t) := sup
h,η

EQ [F(St ,Yt ,Xt , t)|F o
t ]

such that α +σh− r = 0
ηi j(t)≥−1, ∀i, j = 1, · · · ,D, j 6= i

|| h(t) ||2Rd +
D

∑
i=1

D

∑
j=1, j 6=i

|ηi j(t)|2λi j(t) ≤ A2
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3.4 The Partially Observed Model PDE
Under the partially observed model, we are supposed to apply Itô’s formula to the observed state process
F(St ,Yt ,Xt , t) first and then acquire the filtered estimate.

Clearly, Theorem 1 (Hamilton-Bellman-Jacobi Equation) with respect to F should still hold true.

Corollary 1.1 (Modified Hamilton-Bellman-Jacobi Equation).

∂F(s,y,x, t)
∂ t

+Ah,ηF(s,y,x, t)− rF(s,y,x, t) = 0

F(s,y,x,T ) = Φ(s,y)

The infinitesimal operator Ah,η is given by

Ah,ηF(s,y,x, t) = AH
t +Aη

t

where

AH
t =

∂F(s,y,x, t)
∂ s

S(α +σhz)

+
∂F(s,y,x, t)

∂y
{a(s,y)+bz(s,y)hz(t,s,y)+bw(s,y)hw(t,s,y)}

+
1
2

∂F2(s,y,x, t)
∂ 2s

S2
σ

2(s,y)

+
1
2

∂F2(s,y,x, t)
∂ 2y

b2
z (s,y)+b2

w(s,y)

+
1
2

∂F2(s,y,x, t)
∂ s∂y

Sσ(s,y)bz(s,y);

Aη

t =−
D

∑
i=1,i6= j

gi j(1+ηi j(t,x) [F(s,y,x, t, i)−F(s,y,x, t, j)]

Proof. A similar application of Itô’s formula to the partially observed model.

As V (St ,Yt , t) is defined over the observation filtration F o
t , we define the filtered estimate to proceed further

Definition 4. If EP(|F(St ,Yt ,Xt)|)≤ ∞, then the filtered estimate πt(F) is given by

πt(F) = EP(F(St ,Yt ,Xt)|F o
t ) =

EQ
t (F(St ,Yt ,Xt)Λt |F o

t )

EQ
t (Λt |F o

t )

where Λt is the Radon-Nikydom derivative
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Corollary 1.2.

Vt(F) = EQ
t [F(St ,Yt ,Xt)|F o

t ]

= EQ
t [F(S0,Y0,X0)|F o

t ]+
∫ t

0
EQ

t
[
AH

u F(Su,Yu,Xu)|F o
u
]

du

+
∫ t

0
EQ

t [F(Su,Yu,Xu)|F o
u ] (dZu−hz

udu)

+
∫ t

0
EQ

t [F(Su,Yu,Xu)|F o
u ] (dWu−hw

u du)

where now we have V (St ,Yt , t)≡ sup
h

Vt(F)

Proof. Given the payoff φ(St ,Yt) of the fixed T-period contingent claim, the integrability condition for
F(St ,Yt ,Xt) is automatically satisfied. Moreover, we don’t need to define Λt because the optimal value func-
tion V is already defined over the measure Q. Ultimately, since X is unobservable in F o

t , after re-expressing
the infinitesimal operator in the expectation under probability measure Q, it leads to the corollary.

3.5 Conclusion
The key difference of this optimal control problem is that due to the nature of partially observed model,
a general stochastic filtration theory is needed to be taken into account, which now has been manually
simplified. After the enrichment of the model, one may conduct some numerical tests to compare with
results derived by other techniques in asset pricing. Unfortunately, due to the time limit, we are unable to
finish this part at the moment.
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