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Abstract

In [Bar19], Barvinok successfully applies complex-analytic methods to approximate perma-
nents of a class of diagonally dominant matrices quickly, using a method that relies on bounding
the roots of all polynomials per(A), where A ranges over that class of matrices, away from the
origin. Here we investigate whether the same method can be applied to computing a related
function, the partition function of Hamiltonian cycles, and conclude in the negative by pre-
senting counterexamples. We then apply methods from [BR19] and [Bar19] to approximate a
polynomial which allows us to learn about cycle covers without short cycles in a graph.
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1 Preliminaries

We first introduce the partition function of Hamiltonian cycles.

Definition 1.0.1. Let G be a directed graph on n vertices, for n a natural number. The partition
function of Hamiltonian cycles ham(G;W ) is the polynomial

∑
H

∏
e∈H we, where the sum runs

over all Hamiltonian cycles in G, and the multiplicands in the product are weights of the edges of
G, interpreting the complex-valued n× n matrix W = [wi,j ] as a weighted adjacency matrix for G.

Note that the domain of ham(G;W ) changes based on the choice of graph G, because in order
for the variable weight matrix W to be a weighted adjacency matrix for G, we must have we = 0
when e is not an edge of G.

In this paper we consider Hamiltonian directed graphs G. Whenever a generic graph G is
mentioned, assume it has these properties, as well as the following traits. For a given G we
say G has n vertices, where n is an integer. Without loss of generality, the sequence of edges
(1, 2), (2, 3), . . . , (n − 1, n), (n, 1) gives a Hamiltonian cycle H0 in G. When thinking of the graph
G, we also restrict ourselves to weight matrices W = [wi,j ] such that we = 1 for each edge e in H0.
Thus in our case ham(G;W ) measures how much the Hamiltonian cycles in G differ from H0. We
also say that ∆in is an integer greater than or equal to the indegree of any vertex in G, and we say
that ∆out is an integer greater than or equal to the outdegree of any vertex in G.

Recall that for a complex n× n matrix A = [ai,j ], per(A) is the polynomial
∑
σ∈Sn

∏n
i=1 ai,σ(i).

We can think of A as the weighted adjacency matrix of an appropriate graph; then per(A) is the
polynomial

∑
C

∏
e∈C ae, where the sum runs over the cycle covers C of the graph. (We say a

subgraph of a graph Γ is a cycle cover if it includes all the vertices in Γ and is a disjoint union of
cycles.) Thus we can think of ham(G;W ) as an analogue to the permanent where we only consider
connected cycle covers; these are precisely the Hamiltonian cycles in G. Our requirement that H0

exists and has edges of weight 1 is then analogous to the requirement in [Bar19] that the matrices
in question are diagonally dominant.

In particular [Bar19] establishes that, because per(I+A) 6= 0 when the rows of A are sufficiently
short vectors, log per(I + A) can be approximated within error ε in time nf(n,ε), where f(n, ε) ∈
O(log n− log ε), provided that A again has short enough rows. We can apply the same methods to
ham(G;W ) if the following conjecture holds:

Conjecture 1.0.1. There exists a function γ : Z2
>0 → R>0 such that for any directed graph G and

any complex weighted adjacency matrix W for G as we specify above, if |we| < γ(∆in,∆out) for each
edge e of G not contained in H0, then ham(G;W ) 6= 0.

In fact, the conjecture does not hold, including under nice conditions.

1



2 Hamiltonian Cycles

2.1 The “Star” Graphs

There is a class of graphs reminiscent of stars which provide a coutnerexample to Conjecture 1.0.1.

Definition 2.1.1. For a given positive integer k, let G4k be the graph with vertex set Z/4kZ, edges
(i, i+2k+1) as i ranges in Z/4kZ, and edges (1, 2), (2, 3), . . . , (4k−1, 4k), (4k, 1). For each complex
number z, let the matrix M4k(z) = [mi,j(z)] be the complex-valued 4k × 4k matrix with

mij(z) =


1 if j − i = 1 (mod 4k),

0 if i = j,

z otherwise.

For example, the below figures represent G8 and G12.
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Additionally, this page features figures representing all Hamiltonian cycles in G12.

Inspecting these cycles will convince the reader that ham(G12;M12(z)) = 1 + 15z4 + 15z8 + z12.
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We need to use specialized language to prove what we want to know about the graphs G4k.

Definition 2.1.2. For a fixed k, we call the subgraph of G4k which contains all vertices of G4k and
the edges of the form (i, i+ 2k + 1) the inner tour of G4n.

Lemma 2.1.1. The inner tour of G4k is a Hamiltonian cycle.

Proof. For any positive integer k, gcd(4k, 2k + 1) = gcd(2k + 1,−2) = 1. Since 4k and 2k + 1 are
relatively prime, following the inner tour of G4k, we visit every vertex once before returning to the
vertex we started from.

Proposition 2.1.1. For k ∈ N and z ∈ C, ham(G4k;M4k(z)) =
∑k
i=0

(
2k
2i

)
z4i.

Proof. It is evident from our construction of the graph G4k that for any Hamiltonian cycle H in G4k,
if H contains the edge (a, a+ 2k+ 1), then necessarily H must also contain the edge (a+ 2k, a+ 1).
Specifically, since every vertex in G4k has indegree and outdegree both equal to 2, and since H is
Hamiltonian, if (a, a+ 2k+ 1) is an edge in H, then H cannot contain (a, a+ 1). However, H must
contain an incoming edge for a+ 1; the only such edge in G4k is (a+ 2k, a+ 1).

We call a set of edges in G4k of the form {(a, a + 2k + 1), (a + 2k, a + 1)} a star-edge-pair. By
construction, there are 2k star-edge-pairs in G4k. We also call a set of edge in G4k of the form
{(a, a+ 1), (a+ 2k, a+ 2k + 1)} an exterior-edge-pair. There is a bijective correspondence between
star-edge-pairs and exterior-edge-pairs, which maps

{(a, a+ 2k + 1), (a+ 2k, a+ 1)} 7→ {(a, a+ 1), (a+ 2k, a+ 2k + 1)}

for each a ∈ Z/4kZ. We say a ∈ Z/4kZ is a representative of the star-edge-pair {(a, a+2k+1), (a+
2k, a+ 1)}.

For each choice of any subset C of star-edge-pairs in G4k, we can construct a subgraph KC of
G4k as follows. We have a unique set of representatives SC = {a1, a2, . . . ai} for the i star-edge-pairs
in C such that the minimal positive integer representative of each aj is less than 2k for 1 ≤ j ≤ i.
We define KC to contain the same vertices as G4k; the edges of KC are the edges (a, b) such that
for each a ∈ Z/4kZ,

b =

{
a+ 2k + 1 if a ∈ SC or a+ 2k ∈ SC ,
a+ 1 otherwise.

Below is a figure representing K{{(1,8),(7,2)},{(3,10),(9,4)}} for G12.
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Note that each vertex of G4k has one outgoing edge and one incoming edge in KC , since for any a,
if a− 1 ∈ SC or a− 1 + 2k ∈ SC , then (a− 1 + 2k, a) is an edge of KC , and otherwise KC has the
edge (a− 1, a).

We now proceed to show that if i = |C| is even, KC is a Hamiltonian cycle in G4k. If i = 0
then this holds automatically, so assume i > 1. If i = 2k then by lemma 2.1.1, KC is a Hamiltonian
cycle. Fix a set C of star-edge-pairs as above such that |C| is even. We already know KC is a
cycle cover of G4k. To show that there’s only one cycle in KC , it suffices to show that KC can
be transformed into a Hamiltonian cycle via contraction of edges. Take the set of representatives
SC = {a1, a2, . . . , ai} which we used in constructing KC , and let S′C = SC ∪ {a + 2k : a ∈ SC}.
S′C is the set of sources for edges contained in the chosen star-edge-pairs. By contracting all the
edges of KC which are not contained in any star-edge-pair, we identify each vertex v ∈ S′C with all
u ∈ Z/4kZ such that there exists a path in KC of sequential vertices from u to v. No elements of
the equivalence class of v obtained via this transformation other than v itself are elements of S′C ,
since for w ∈ S′C , (w,w+ 1) is not an edge in KC . Thus this contraction results in a graph K ′ with
2i vertices given by the equivalence classes [a1], [a1 + 2k], [a2], [a2 + 2k], . . . , [ai], [ai + 2k], and edges
given by ([b], [b+2k+1]) for b ∈ Z/4kZ. Without loss of generality, when following the edges of G4k

which connect consecutive vertices, one first encounters the vertices a1, a2, . . . , ai, 2n in the listed
order. Since a minimal integer representative of ai is less than 2n, when following the edges of G4k

which connect consecutive vertices, one encounters the following vertices as listed:

a1, a1 +1, a2, a2 +1, . . . , ai, ai+1, a1 +2k, a1 +2k+1, a2 +2k, a2 +2k+1, . . . , ai+2k, ai+2k+1, a1.

Thus, [aj + 2k + 1] = [aj+1 + 2k] and [aj + 1] = [aj+1] for 1 ≤ j < i, while [ai + 1] = [a1 + 2k] and
[ai + 2k + 1] = [a1].

Then, letting bj = [aj ] for 1 ≤ j ≤ k, and letting bj = [aj−i + 2n] for i < j ≤ 2i, we have that
the edges of K ′ are precisely (bj , bj+i+1) for 1 ≤ j ≤ 2i, where the indices are taken modulo 2i. This
graph is connected by lemma 2.1.1, since it is isomorphic to the inner tour of G4(i/2). Since K ′ was
obtained by contracting edges in KC , KC must be connected.

Furthermore, suppose there exists a Hamiltonian cycle H in G4k such that H contains an odd
number of star-edge-pairs. Let C be the set of these star-edge-pairs. By removing the edges of
one star-edge-pair, and replacing those edges with the edges (a, a + 1), (a + 2k, a + 2k + 1) of the
corresponding exterior-edge-pair, we obtain the unique Hamiltonian cycle H ′ in G4k which contains
all star-edge-pairs from C \ {{(a, a+ 2k+ 1), (a+ 2k, a+ 1)}}, and no other star-edge-pairs. H must
necessarily contain a path P from a+ 1 to a. If P hits a+ 2k then H contains a non-Hamiltonian
cycle; this is impossible, so P does not hit a + 2k, so (a + 2k, a + 1) is not in P . Furthermore
(a, a + 2k + 1) is not in P , as a is the endpoint of P . Thus P is also a path in H ′, and is not a
Hamiltonian path in H ′. Following P and then (a, a+1) in H ′ yields a non-Hamiltonian cycle in H ′:
this cycle does not hit a+ 2k. Thus H ′ is not a Hamiltonian cycle in G4k. This is impossible. Thus
there exists no Hamiltonian cycle H in G4k such that H contains an odd number of star-edge-pairs.
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Is is clear that [zm] ham(G4k;M4k(z)) is the number of Hamiltonian cycles in G4k with m edges
that do not connect consecutive vertices. We have shown that each Hamiltonian cycle in G4k

is uniquely determined by its set of edges which do not connect consecutive vertices. We have
also shown that for any Hamiltonian cycle H in G4k, the set of edges in H which do not con-
nect consecutive vertices can be partitioned into an even number of disjoint star-edge-pairs. Thus
ham(G4k;M4k(z)) =

∑k
i=0 ciz

4i, where ci is the number of Hamiltonian cycles in G whose corre-
sponding sets of star-edge-pairs have cardinality 2i. We have established that any choice of 2ki
star-edge-pairs out of the set of 2k star-edge-pairs in G4k yields a corresponding Hamiltonian cycle;
thus ci =

(
2k
2i

)
for 1 ≤ i ≤ k. The proposition follows.

We are interested in the roots of ham(G4k,M4k), because information about these roots could
disprove Conjecture 1.0.1. In particular, if the magnitude of the smallest root of ham(G4k,M4k)
vanishes as k →∞, then Conjecture 1.0.1 is false.

Proposition 2.1.2. The roots of ham(G4k,M4k) are the 4k complex numbers z such that z2 = 1−w
1+w

for some 2kth complex root w of −1.

Proof. Let y = z2. Then

ham(G4k,M4k(z)) =

k∑
i=0

(
2k

2i

)
y2i =

(1 + y)2k + (1− y)2k

2
.

We then have ham(G4k,M4k(z)) = 0 if and only if
(

1−y
1+y

)2k
= −1. Then 1−y

1+y is a 2kth root of −1.

Let w = 1−y
1+y . Then y = 1−w

1+w , and the proposition follows.

Two corollaries illustrate why this result contradicts Conjecture 1.0.1.

Corollary 2.1.1. There exists a sequence (zk) of complex numbers such that ham(G4k,M4k(zk)) = 0
for all positive integers k and lim zk = 0.

Proof. Define a sequence (wk) of complex numbers by the rule wk = e
iπ
2k . Fix a positive real number

ε. Then there exists a positive integer N such that N > π
4ε . Then for any integer i with i ≥ N ,

we have argwi = π
2i ≤

π
2N < 2ε. Since wi is on the unit circle, the arc length along the unit circle

between wi and 1 is equal to argwi. Since |1− wi| is at most equal to this arc length, and since wi

lies on the unit circle, we have |1 − wi| < 2ε = (|1| + |wi|)ε ≤ |1 + wi|ε. Thus,
∣∣∣ 1−wi1+wi

∣∣∣ < ε. Thus

for each positive real number ε, there exists a positive integer N such that for each integer i with

i ≥ N ,
∣∣∣ 1−wi1+wi

∣∣∣ < ε. Thus lim 1−wk
1+wk

= 0. Furthermore, w2k
k = eiπ = −1.

For each positive integer k, let zk be a complex number such that z2k = 1−wk
1+wk

. Then lim zk = 0

and ham(G4k,M4k(zk)) = 0 for all positive integers k.

Corollary 2.1.2. Conjecture 1.0.1 is false.

Proof. Suppose Conjecture 1.0.1 were true. Throughout this proof we will use terms introduced in
Conjecture 1.0.1. By construction, for each positive integer k, G4k and M4k(z) satisfy the conditions
of Conjecture 1.0.1, with a constant ∆in and ∆out. By construction, due to Corollary 2.1.1, we then
have that there exists a positive real number η such that ham(G4k,M4k(z)) 6= 0 for each positive
integer k and z ∈ C with |z| < η. However, by Corollary 2.1.1 there exists a complex number v
such that |v| < γ and ham(G4k,M4k(v)) = 0 for some natural number k. This is impossible, so
Conjecture 1.0.1 must be false.
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2.2 The “Tortoise Shell” Graphs

Since Conjecture 1.0.1 is false, we now ask ourselves for what types of graphs the conjecture holds.
The properties we posit for the graphs G should be properties that are preserved under deletion of
edges, since this would allow us to apply methods of reducing and simplifying the problem at hand
from [Bar19]. One natural way to construct graph properties which are preserved under deletion of
edges is to pick a set of forbidden graph minors. The most famous property that arises by forbidding
graph minors in undirected graphs is planarity. We will use an equivalent of planarity for directed
graphs as follows.

Definition 2.2.1. Let G be a directed graph, where G = (V,E). For a given vertex set V let
πV : V 2 →

(
V
2

)
be the function mapping (u, v) 7→ {u, v} and (v, u) 7→ {u, v} for all choices of

u, v ∈ V . We say G is planar if the graph (V, πV (E)) is planar.

This definition is useful because we can check if a directed graph G is planar by applying the
forgetful function πV and then checking planarity for the resultant undirected graph. Inspired by
this train of thought, we investigate the following conjecture:

Conjecture 2.2.1. There exists a function γ : Z2
>0 → R>0 such that for any planar directed

graph G and any complex weighted adjacency matrix W for G as we specify in conjecture 1.0.1, if
|we| < γ(∆in,∆out) for each edge e of G not contained in H0, then ham(G;W ) 6= 0.

Sadly, Conjecture 2.2.1 is also false. We prove this claim using a class of graphs reminiscent of
tortoise shells.

Definition 2.2.2. For a given positive integer k, Let P2k+4 be the graph with 2k + 4 vertices
given by the elements of the set [2k + 4], and edges of the form (i, i + 1) for 0 ≤ i < 2k + 3 and
(2k + 3, 0) making up a Hamiltonian cycle H2k+4, as well as edges (k + 2, 1), (0, k + 3), as well as
(k + 4 + j, k + 1− j) and (j + 2, 2k + 3− j) for 0 ≤ j < k − 1, which edges we call the elements of
chord set Bk.

We call {(k + 2, 1), (0, k + 3)} the chord set Ak, and we call {(k + 4 + j, k + 1 − j) : 0 ≤ j <
k − 1} ∪ {(j + 2, 2k + 3− j) : 0 ≤ j < k − 1} the chord set Bk.

For example, the below figures represent P12 and P20:
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By drawing the edges in Ak on the exterior of H2k+4 in the drawing of P2k+4 where all edges not
in H2k+4 are chords across the center of P2k+4, we attain a planar drawing of P2k+4. Thus P2k+4 is
planar. It is evident that no vertex of P2k+4 has indegree or outdegree exceeding 2.

Here are the four distinct Hamiltonian cycles in P12:

Again we require a specialized weight matrix.

Definition 2.2.3. For a given positive integer k and complex number z, let W2k+4(z) be the
weighted adjacency matrix for P2k+4 which assigns weight 1 to the edges in H2k+4 and weight z to
the remaining edges of P2k+4.

We can see that ham(P12,W12(z)) = 1 + 3z4. This pattern persists as k varies.

Proposition 2.2.1. For each integer k with k > 1, ham(P2k+4,W2k+4(z)) = 1 + (k − 1)z4.

Proof. Throughout this proof, weight the edges of P2k+4 according to the entries of W2k+4(z).
Clearly H2k+4 is a Hamiltonian cycle in P2k+4 of weight 1, since all of the edges of H2k+4 have
weight 1. Since only the edges of H2k+4 in P2k+4 have weight other than z, any other Hamiltonian
cycle in P2k+4 will have weight equal to a positive power of z.

For 0 ≤ j < k − 1, let the pair of edges {(2 + j, 2k + 3 − j), (2k + 2 − j, 3 + j)} be the jth

Bk-edge-pair. Clearly there are k − 1 such pairs, and the pairs partition Bk. We claim that each
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Bk-edge-pair is contained within a unique Hamiltonian cycle in P2k+4, and that furthermore, these
are the only Hamiltonian cycles in P2k+4 other than H2k+4.

For some j with 0 ≤ j < k−1, letGj be the cycle cover of P2k+4 with edges (0, k+3), (k+2, 1), (2+
j, 2k+3− j), (2k+2− j, 3+ j), (2k+3, 0), and (n, n+1) for n /∈ {0, k+2, 2+ j, 2k+2− j, 2k+3}. It
is easy to verify that Gj is in fact a cycle cover, since every vertex in Gj has indegree and outdegree
1. If Gj is not a Hamiltonian cycle, then Gj is disconnected. If Gj is disconnected, then Gj remains
disconnected under contraction of edges. We contract all edges of Gj of the form (n, n+ 1) for n an
integer. Since 1 < 2+j < 3+j < k+2 < k+3 < 2k+2−j < 2k+3−j ≤ 2k+3, the resultant graph G′j
is a graph whose vertices are the equivalence classes under contraction [1], [2k+3−j], [0], [k+3], [3+j],
and whose edges are ([1], [2k+3−j]), ([2k+3−j], [0]), ([0], [k+3]), ([k+3], [3+j]), ([3+j], [1]). Clearly
G′j is a 5-cycle, so G′j is connected, so Gj must also be connected. Thus Gj is a Hamiltonian cycle.

To show that Gj is the unique Hamiltonian cycle in P2k+4 which contains the jth Bk-edge-pair, it
suffices to show both that no Hamiltonian cycle in P2k+4 contains more than two Bk-edge-pairs, and
that every Hamiltonian cycle in P2k+4 other than H2k+4 contains the edges from Ak.

Suppose H is a Hamiltonian cycle in P2k+4 which does not contain both edges from Ak. If H
contains only (k + 2, 1) from Ak, then H contains the edge (0, 1), so 1 has indegree at least 2 in H,
which is impossible, as H is a cycle. If H contains only (0, k+ 3) from Ak, then H contains the edge
(k + 2, k + 3), so k + 3 has indegree at least 2 in H, which is impossible, as H is a cycle. Thus H
contains no edges of Ak, so H contains (0, 1) and (k + 2, k + 3). Furthermore, we know H contains
the edges (2k+3, 0), (1, 2), (k+1, k+2), and (k+3, k+4). If H 6= H2k+4 then there exists an integer
j with 0 ≤ j < k − 1 such that either (2 + j, 2k + 3− j) or (2k + 2− j, 3 + j) is in H. Suppose the
former holds. Then, (2k + 2− j, 2k + 3− j) is not in H, since then 2k + 3− j would have indegree
at least 2 in H, which is impossible as H is a cycle. Thus (2k + 2 − j, 3 + j) must be in H. If the
latter holds, then (2 + j, 3 + j) is not in H, since in that case 3 + j would have indegree at least 2
in H, which is impossible as H is a cycle. Thus, in full generality, any Hamiltonian cycle in P2k+4

which contains any edge e ∈ Bk must contain both edges in the unique Bk-edge-pair containing e.
In particular, we have a least j such that the jth Bk-edge-pair is contained in H. Then there is a
non-Hamiltonian cycle in H given by the edge (2 + j, k + 3 − j) and the path in H from k + 3 − j
to 2 + j. Thus H is not a Hamiltonian cycle, which contradicts our hypothesis. Thus H = H2k+4

necessarily. Therefore, any Hamiltonian cycle in P2k+4 other than H2k+4 contains the edges from
Ak.

Let H be a Hamiltonian cycle in P2k+4 which contains at least 2 distinct Bk-edge-pairs. Let a
be the least integer such that H contains the ath Bk-edge-pair, and let b be the greatest integer such
that H contains the bth Bk-edge-pair. Then, there exist paths of consecutive vertices from 3 + b to
k + 2, from 1 to 2 + a, from k + 3 to 2k + 2− b, and from 2k + 3− a to 0. Thus there is a cycle in
H which we attain by following these paths and the edges (k + 2, 1), (2 + a, 2k + 3− a), (0, k + 3),
and (2k + 2 − b, 3 + b). This cycle cannot hit the vertices v, of which there is at least one, such
that 2 + a < v < 3 + b. Thus H contains a non-Hamiltonian cycle, so H is not a Hamiltonian cycle
in P2k+4. This is a contradiction; thus any Hamiltonian cycle in P2k+4 hay contain at most one
Bk-edge-pair.

By now we have shown that each Hamiltonian cycle in P2k+4 is one of the following:

1. H2k+4, of weight 1,

2. The Hamiltonian cycle Gj for an integer j with 0 ≤ j < k − 1, of weight z4,

3. A Hamiltonian cycle G which contains both the edges from Ak, but no edges from Bk, of
weight z2.
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We will prove that the third case is not possible. Pick such a Hamiltonian cycle G. Then, for
k + 3 ≤ j < 2k + 3, G has an edge (j, j + 1). Thus there is a path from k + 3 to 2k + 3 in G which
does not hit 1. By following this path and the edges (2k + 3, 0) and (0, k + 3), we attain a cycle in
G which does not hit 1. Thus G cannot be a Hamiltonian cycle, so the third case is not possible.

The proposition follows from the fact that each Gj is a distinct Hamiltonian cycle in P2k+4.

Thus, Conjecture 2.2.1 does not hold, as the following corollary establishes.

Corollary 2.2.1. Conjecture 2.2.1 is false.

Proof. Suppose Conjecture 2.2.1 were true. Throughout this proof we will use terms introduced in
Conjecture 2.2.1. By construction, for each integer k with k > 1, P2k+4 satisfies the conditions of
Conjecture 2.2.1, with a fixed ∆in and ∆out. We then have a positive real number η such that for
z ∈ C with |z| < η, ham(P2k+4,W2k+4(z)) 6= 0 for each integer k with k > 1. By Proposition 2.2.1,

ham

(
P2k+4,W2k+4

(
1 + i

4
√

4k − 4

))
= 1 + (k − 1)

(
1 + i

4
√

4k − 4

)4

= 0

for each integer k with k > 1. Clearly 1+i
4√4k−4 → 0 as k → ∞, so there exists an integer K with

K > 1 such that
∣∣∣ 1+i

4√4K−4

∣∣∣ < η, and yet

ham

(
P2K+4,W2K+4

(
1 + i

4
√

4K − 4

))
= 0.

This contradicts Conjecture 2.2.1, so Conjecture 2.2.1 must be false.

3 Cycle Covers Without Short Cycles

Since we now know both of our two conjectures about the roots of ham(G;W ) do not hold, we decide
to think about subgraphs of a graph G that come close to being Hamiltonian cycles. These graphs
should be cycle covers, but should not contain short cycles. The following definition gives a precise
treatment of this condition.

Definition 3.0.1. For a cycle cover C of a graph G, C is a κ-cycle cover of G if the length of any
cycle in C is at least κ.

Due to a reduction of Papadimitriou published in [CP80], we know that the problem of finding
a κ-cycle cover in a given graph G is NP-Complete whenever κ ≥ 5. We now introduce yet another
partition function.

Definition 3.0.2. Let G be a directed graph on n vertices, for n a natural number. Let κ be a
positive integer. The partition function of κ-cycle covers pG,κ(W ) is the polynomial

∑
C

∏
e∈C we,

where the sum runs over all κ-cycle covers of G, and the multiplicands in the product are weights
of the edges of G, interpreting the complex-valued n×n matrix W = [wi,j ] as a weighted adjacency
matrix for G.
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Similarly to ham(G;W ), the domain of pG,κ(W ) changes based on the choice of graph G, because
in order for the variable weight matrix W to be a weighted adjacency matrix for G, we must have
we = 0 when e is not an edge of G.

Our desired result is that we can use methods from [Bar19] to approximate pG,κ(W ) for a
fixed κ, ∆in and ∆out, where the respective indegrees of the vertices in any graph G under our
consideration do not exceed ∆in and the respective outdegrees of the vertices in any graph G under
our consideration do not exceed ∆out. While this goal remains out of reach, we can use the same
methods, under the same conditions, to approximate a polynomial qG,κ(W ) with which we can learn
information about pG,κ(W ). Accordingly, in this section the generic graph G has a natural number
n vertices, none of which vertices have indegree exceeding ∆in or outdegree exceeding ∆out. We also
posit that each graph G with a given number of vertices must have the same cycle cover C0, and
that the edges of C0 must all have weight 1.

Our aim in this section is to apply the methods of [BR19] to the problem of weighted counting of
κ-cycle covers for a fixed κ and ∆. Our approach will result in a family of polynomials with which
we can learn about pG,κ(W ).

3.1 A System of Linear Equations

We begin with some lemmata which are relevant to the coming work.

Lemma 3.1.1. Pick x, y ∈ {0, 1}. The equation x + y = 2z + s has a solution for z, s ∈ {0, 1} if
and only if z = xy. Furthermore, if such a solution exists, it is given by s = xor(x, y).

Proof. We have that xor(x, y) = (x−y)(x−y) = x2−2xy+y2 = x−2xy+y for x, y ∈ {0, 1}. Then
x+ y = 2xy + xor(x, y). If z = xy, then x+ y = 2z + s has a solution, which is unique. Otherwise
either z = 1, in which case 1 ≥ x + y = 2z + s ≥ 2, which is impossible, or z = 0, in which case
2 ≤ x+ y = s ≤ 1, which is also impossible.

Lemma 3.1.2. Pick x1, . . . , xm ∈ {0, 1}. The equation xm =
∑m−1
i=1 2m−1−i(xi − si) has a solution

with si ∈ {0, 1} for 1 ≤ i ≤ m−1 if and only if
∏m
k=1 xk = 0. Furthermore, if such a solution exists,

we have si = xor(xi,
∏m
j=i+1 xj).

Proof. This lemma results from applying lemma 3.1.1 to
∏m
k=1 xk = 0.

Now, fix a directed graph G. Assign variable weights we to the edges e of G not contained in
C0, and fix a positive integer κ.

For each edge e of G, let xe be a 0-1 variable. For each cycle K in G of length m such that m < κ,
pick an ordering eK,1, . . . , eK,m for the edges in K, and let sK,i be a 0-1 variable for 1 ≤ i ≤ m− 1.
Let ω be a function mapping each cycle K to the ordering of its own edges which we chose. Then,
we have three families of linear equations in 0-1 variables with integer coefficients:∑

e has target v

xe = 1, (1)

∑
e has source v

xe = 1, (2)

xeK,m −
m−1∑
i=1

2m−1−i(xeK,i − sK,i) = 0, (3)

11



where the families of equations (1) and (2) respectively range over all vertices v in G, and the family
of equations (3) ranges over all cycles K in G of any length m such that m < κ. By taking together
all of the families of linear equations above, we have a system of linear equations.

By lemma 3.1.2, we have a bijection between the set of solutions to the above system of linear
equations and the set of κ-cycle covers of G, given by mapping a cycle cover C to the unique solution
such that xe = 1 for e ∈ C and xe = 0 for e /∈ C. For each edge e, let wxe = we; for each variable
sK,i, let wsK,i be a complex weight. Using the convention that 00 = 1, we define the weight wt(S)
of a solution S to our system of linear equations to be

∏
wxx, where the product runs over each 0-1

variable x. We let qG,κ,ω(W,L) =
∑
S wt(S), where W is an admissible weight matrix for G, L is

a list of weights for the variables sK,i, and the sum runs over all solutions of the above system of
equations.

3.2 Sparsity

In the above system of equations, any equation in family (1) can feature at most ∆in variables, any
equation in family 2 can feature at most ∆out variables, and any equation in family (3) can feature at
most 2κ−3 variables. Thus any equation in the above system features at most max{∆in,∆out, 2κ−3}
variables. Knowing this sparsity condition, the following proposition establishes that our system of
equations is sufficiently sparse to approximate qG,κ,ω(W,L) using methods from [BR19].

Proposition 3.2.1. Let x be a variable in the above system of equations and let ∆ = min{∆in,∆out}.
At most 2 +

∑κ−1
m=1 ∆m−1 equations in the system feature x.

Proof. Take x and ∆ as in the proposition. Then x is in at most one equation in family (1) and at
most one equation in family (2). If x = sK,i for any integer i and cycle K in G of length less than
κ, then x is in at most one equation in family (3) and the proposition follows. Otherwise x = xe for
some edge e of G. Otherwise x = xe for some edge in G. Thus to prove the proposition it suffices
to show that for any edge e of G, and any integer m with m > 0, e features in at most ∆m cycles
of length m. We proceed to prove the stronger condition that for any vertex v of G and any integer
m with m > 0, v features in at most ∆m−1 cycles of length m.

Let X be the n × n variable matrix whose i, jth entry is xi,j if (i, j) is an edge in G and whose
i, jth entry is zero if (i, j) is not an edge in G. Fix a vertex v of G. Without loss of generality
v is the ith vertex of G. Then the cycles in G of length m containing v appear as monomials in
the polynomial Xm(i, i). Let µ(m, i, j) be the number of monomials in Xm(i, j) for i, j ∈ [n] and
m > 0. We now show that µ(m, i, j) < ∆m−1. Clearly X1(i, j) contains at most one monomial, so
µ(1, i, j) ≤ ∆0. Fix m > 1 and suppose µ(m − 1, i, j) ≤ ∆m−2. Then Xm−1(i, j) contains at most
∆m−2 monomials for any i, j ∈ [n]. By construction,

µ(m, i, j) ≤
(

max
k∈[n]

µ(m− 1, k, j)

)(
max
`∈[n]

µ(1, i, `)

)
∆out = ∆out max

k∈[n]
µ(m− 1, k, j) ≤ ∆out∆

m−2

and

µ(m, i, j) ≤
(

max
k∈[n]

µ(1, k, j)

)(
max
`∈[n]

µ(m− 1, i, `)

)
∆in = ∆in max

k∈[n]
µ(m− 1, i, k) ≤ ∆in∆m−2,

so µ(m, i, j) ≤ min{∆out∆
m−2,∆in∆m−2} = ∆m−1. Thus by induction, µ(m, i, j) < ∆m−1 for

m > 1 and i, j ∈ [n]. Thus Xm(i, i) has at most ∆m−1 monomials for m > 1, so any vertex in G is
contained in at most ∆m−1 cycles of length m. The proposition follows.
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The result from [BR19] that we will use is as follows:

Proposition. ([BR19]) Let A be an j×k integer matrix, such that A has at most r nonzero entries
in each row and at most c nonzero entries in each column. Pick b ∈ Zj. Let

X =
{
x ∈ {0, 1}k : Ax = b

}
and suppose y ∈ X. For each x ∈ X, let x = (x1, . . . , xk). Let y = (y1, . . . , yk). There exists
some positive number β, where it suffices to let β = 0.45, such that we can efficiently (in j and k)
approximate the polynomial

∑
x∈X,x=(x1,...,xk)

∏
i:xi 6=yi wi whenever |wi| ≤ β

r
√
c

for 1 ≤ i ≤ k.

With this proposition, we can now establish the conclusion we wanted.

Corollary 3.2.1. Define functions f and g by the rules

f(∆1,∆2, k) = 2 +

k−1∑
m=1

(min{∆1,∆2})m−1,

g(∆1,∆2, k) = max{∆1,∆2, 2k − 3}.

For a fixed ∆in, ∆out and κ, as the graph G and ω varies, qG,κ,ω(W,L) can be efficiently approximated
as long as every free variable x in W or L satisfies

|x| ≤ 0.45

g(∆in,∆out, κ)
√
f(∆in,∆out, κ)

.

Proof. Take f and g as in the proposition. We know due to Proposition 3.2.1 that in the system
of equations we use to define qG,κ,ω(W,L), each variable appears in at most f(∆in,∆out, κ) equa-
tions and each equation features at most g(∆in,∆out, κ) variables. The result then follows from an
application of the above result from [BR19].

Specifically, qG,κ,ω(W,L) is a polynomial that one obtains by multiplying the monomials in
pG,κ(W ) by disjoint respective products of variables in L. Since our construction of qG,κ,ω(W,L)
does not address which variables in L will be multiplied with which monomials of pG,κ(W ), we do
not know the difference between pG,κ(W ) and qG,κ,ω(W,L). However, if we can limit the difference
(for instance, by evaluating qG,κ,ω(W,L) at a fixed L), we can learn some qualitative information
about pG,κ(W ) from qG,κ,ω(W,L). For instance, we might learn that there is an exponential in n
number of cycle covers in the vicinity of the fixed cover C0. However, this fails if the difference in
weights of cycle covers in qG,κ,ω(W,L) depends on ω or the number n of vertices in G, since then it
would not be possible to ascertain the exponential trend as ω and n vary. Luckily, this is not the
case.
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Proposition 3.2.2. Let C be a cycle cover of G which differs from the fixed cycle cover C0 by j edges.
Let ∆ = min{∆in,∆out}. Let σ be the solution of the linear equation which defines qG,κ,ω(W,L)
corresponding to C, and let σ0 be the solution of the same system corresponding to C0. The Hamming
distance between σ and σ0 is at least 2j and at most

2j ·

(
1 +

κ−1∑
m=1

(m− 1)∆m−1

)
.

Proof. Take C, σ, σ0, and j as in the proposition. Suppose σ and σ0 differ at a variable x. Suppose
x = xe for e an edge in G. Then either e is one of the j edges in C which are not in C0, or e is
one of the j edges in C0 which are not in C. Thus σ and σ0 differ at a maximum of 2j variables
of the form xe, where e is an edge in G. Otherwise x = sK,i for some cycle K in G of length less
than κ and some integer i. Each linear equation in family (3) has a respective cycle M , such that
each choice of edges in M which does not cover all of M yields a unique solution to the equation
corresponding to M . Thus K must have an edge e which is in C and not in C0, or which is in C0

and not in C. There are at most 2j such edges; we know from the proof of Proposition 3.2.1 that
for each edge e of G, xe features in at most (min{∆in,∆out})m−1 cycles K of length m. For a fixed
cycle K of length m, the possible variables sK,i are sK,1, . . . , sK,m−1. Thus x could be one of at

most 2j ·
∑κ−1
m=1(m− 1)∆m−1 variables. The proposition follows.

Thus if two cycle covers in G differ at a fixed number of edges, the difference between the weights
of the cycle covers does not depend on the number of vertices in G. Therefore we can indeed use
qG,κ,ω(W,L) to qualitatively learn about pG,κ(W ) as we planned earlier.

4 Conclusion

Our work attempting to develop applications for the techniques from [Bar19] and [BR19] yields
two results. First, it is not possible to use these methods to approximate the partition function of
Hamiltonian cycles. Second, we can use these methods to approximate a polynomial with which
we can learn qualitatively about the partition function of κ-cycle covers. Knowing that our chosen
methods can approximate permanents quickly, this indicates that there may be a trend where they
are more useful for more local problems; one verifies a cycle cover by checking that each of its vertices
has indegree and outdegree 2, whereas one must check the length of cycles to verify a κ-cycle cover
and one must check connectedness to verify a Hamiltonian cycle. This would be an interesting trend
to investigate with other graph problems.

We still have hope that we may be able to approximate ham(G;W ) using other methods. We
have this hope by analogy with Kirchoff’s Matrix-tree theorem, which for a fixed graph G gives an
efficient way to compute the polynomial

∑
T

∏
e∈T we, where the sum runs over all spanning trees

of G and the multiplicands in the product are weights of the edges of G.
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