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Abstract

Ramsey’s theorem states that if pairs of natural numbers are colored using finitely
many colors, then there is an infinite monochromatic subset. We consider for which
ideals I on the natural numbers and for which n the “infinite monochromatic” clause
can be modified to “I-positive n-chromatic”. The case n = 1 was studied by Hrusak
et al. (2017). We generalize this to consider arbitrary values of n. We introduce a
family of ideals EDm,n which exhibit nice polychromatic Ramsey properties. We prove
exactly which Ramsey properties for colorings of pairs imply which others. We also
consider generalizing from colorings of pairs to colorings of k-element sets.

1 Introduction

We begin with some basic definitions and explanations of notation to be used throughout
the paper.

As is standard in set theory, ω is the natural numbers, m = {0, 1, ...,m− 1}, and [S]k is
the collection of k-element subsets of S.

Definition 1.1. An ideal I on a set S is a collection of subsets I ( P(S) such that:

• I contains all finite subsets of S

• If B ⊆ A and A ∈ I, then B ∈ I.

• If A,B ∈ I, then A ∪B ∈ I.

• I 6= P(S).

We write I+ := P(S) \ I. Members of I+ are called I-positive sets.
We say I is tall if for every infinite A ⊆ S there is an infinite B ⊆ A such that B ∈ I.

We’re interested in ideals on countable sets, usually ω or ωm. If necessary, we can view
any ideal on a countably infinite S as an ideal on ω via some bijection between ω and S.

When we talk about the complexity of an ideal (Fσ, analytic, etc.) we’re using the
product topology on P(ω) ≈ 2ω.
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Definition 1.2. A coloring of k-tuples from S using m colors is a function ϕ : [S]k → m.
(We can think of ϕ as assigning one of m different colors to each size-k set.) When we use
the term “k-tuple” here, we mean an unordered set with exactly k elements.

Given a coloring ϕ, a set A is called n-chromatic if ϕ restricted to [A]k attains at most
n distinct values. (This means if we restrict attention to just the set A, at most n colors are
used). When n = 1, these are called monochromatic sets.

When k = 1, each point receives a color. This is a partition of S into m parts.
For the case k = 2, we color unordered pairs. You can think of this as coloring edges

from a complete graph.
The cases for larger k are more difficult to visualize.

Definition 1.3. ω → (I+)km,n means that given any coloring ϕ : [ω]k → m, there is an
I-positive n-chromatic set A.

We call Ramsey properties of this form “local” Ramsey properties because they only guar-
antee the existence of a single n-chromatic I-positive set.

J+ → (I+)km,n means that given any coloring ϕ : [ω]k → m, and given any J-positive set
B ⊆ ω, there is an I-positive n-chromatic set A ⊆ B.

When J = I, we call Ramsey properties of the above form “global” Ramsey properties
because they guarantee the existence of an n-chromatic I-positive set within every I-positive
set.

When J ) I, properties of the above form have a strength somewhere between local and
global – we’ll call them “regional” properties, for lack of a better term.

When n = 1, we’ll call these “monochromatic” properties because they guarantee the
existence of a monochromatic set. For n > 1, we’ll call them “polychromatic” properties.

Hrusak et al. [1] studied these notions of Ramsey properties for ideals, mostly in the
case k = 2,m = 2, n = 1. They demonstrated an Fσ ideal satisfying ω → (I+)22,1 but
not satisfying ω → (I+)23,1, proving that these properties are not equivalent. Pelayo-Gomez
[2] generalized this to find a family of ideals EDm satisfying ω → (ED+

m)2m−1,1 but not
ω → (ED+

m)2m,1. This proves that all of the local properties with k = 2, n = 1 are distinct.
We’re interested in generalizing to the case n > 1.

2 Introducing EDm,n

We will now introduce a family of ideals with nice Ramsey properties. To do so, we define
a special m-coloring of pairs from ωm.

Definition 2.1. The type of a pair {(x1, ..., xm), (y1, ..., ym)} ∈ [ωm]2 is the least i such that
xi 6= yi. (Since x 6= y, such an i exists.)

Note that there are m possible types, from type 1 through type m. Consider coloring
pairs from ωm according to their type. This gives an m-coloring of pairs from ωm, which we
will call the “type coloring”.
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Definition 2.2. EDm,n is the ideal generated by sets which are n-chromatic with respect to
the type coloring. (EDm,n is an ideal on ωm.) (We assume m > n.) (In other words, a set
is in EDm,n iff it can be written as a finite union of sets which are n-chromatic with respect
to the type coloring.)

Note that ED2,1 = ED and ED3,1 is the ẼD ideal introduced by Hrusak et al. The
ideals EDm,1 are the generalizations introduced by Pelayo-Gomez.

Proposition 2.3. EDm,n is an Fσ, tall, proper ideal. (For m > n.)

Proof. Fσ: We define a lower semicontinuous submeasure ψ where ψ(X) is the least number
of sets needed to write X as a union of n-chromatic sets with respect to the type coloring.
Then fin(ψ) = EDm,n by definition. So EDm,n is Fσ. (The fact that this submeasure is
lower semicontinuous can be seen via a compactness argument.)

Tall: This follows from Ramsey’s theorem. Given any infinite A ⊆ ωm, there is an
infinite monochromatic B ⊆ A with respect to the type coloring. B is monochromatic, so
it’s n-chromatic for any n. So B ∈ EDm,n. So EDm,n is tall.

Proper: This follows from a later lemma. Note that ωm is an infinite m-wedge, so
ωm 6∈ EDm,n.

Proposition 2.4. ω 6→ (ED+
m,n)2m,n

Proof. The type coloring is a counterexample. By definition, each n-chromatic set with
respect to the type coloring is in EDm,n. So, there is no EDm,n-positive n-chromatic set for
this coloring.

Next, we will provide a characterization of EDm,n-positive sets. To do so, we need to
define some new terms.
∃nx ψ(x) means there are at least n distinct x such that ψ(x) holds.

Definition 2.5. We’ll work in ωm for this definition.
Consider the following property:
∀n ∃nx1 ∃nx2 ∃nx3...∃nxm (x1, ..., xm) ∈ A
We will call a set A ⊆ ωm satisfying this formula an infinite m-wedge.
Consider weakening this property so that some of the ∃n quantifiers are replaced by ∃.

If the i-th quantifier is ∃n, we call coordinate i an active coordinate. Otherwise, the i-th
quantifier is ∃ and coordinate i is an inactive coordinate.

We will call a set A ⊆ ωm satisfying a version of the formula with at least k active
coordinates an infinite k-wedge.

For example, if A ⊆ ω5 satisfies ∀n ∃nx1 ∃x2 ∃nx3 ∃nx4 ∃x5 (x1, x2, x3, x4, x5) ∈ A then
we call A an infinite 3-wedge with active coordinates 1, 3, and 4.

We can further weaken the property by eliminating the ∀n. We will call a set A satisfying
this further weakening with at least k active coordinates a finite k-wedge of length n.

For example, if A ⊆ ω5 satisfies ∃8x1 ∃x2 ∃8x3 ∃8x4 ∃x5 (x1, x2, x3, x4, x5) ∈ A then we
call A a finite 3-wedge of length 8 with active coordinates 1, 3, and 4.
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Another way of looking at these definitions: an infinite k-wedge with active coordinates
c1 < ... < ck is a set containing k-wedges of all finite lengths with active coordinates c1 <
... < ck.

Note that if a wedge (infinite or finite with length > 1) has coordinate i active, then the
wedge has at least one pair of points of type i.

It will be useful for us to think of ωm as consisting of ω-many distinct copies of ωm−1.
For each a, we will call the set {a} × ωm−1 a “fixed-x1 slice” of ωm with x1-coordinate a.

As a special degenerate case, a 0-wedge is just any nonempty set.

Proposition 2.6. An equivalent definition in the case where coordinate 1 is active: A ⊆ ωm

is an infinite k-wedge with active coordinates C = {1 < c2... < ck} iff there exists an infinite
sequence a1 < a2 < ... such that ∀i the m− 1-dimensional slice of A with fixed x1 = ai is a
finite (k − 1)-wedge of length i with active coordinates c2 < ... < ck.

Proof. If: Suppose there exists an infinite sequence a1 < a2 < ... such that ∀i the m − 1-
dimensional slice of A with fixed x1 = ai is a finite (k − 1)-wedge of length i with active
coordinates c2 < ... < ck.

To show that A is an infinite k-wedge with active coordinates 1 < c2... < ck, we need
to show that it satisfies ∀n∃nx1∃b2x2...∃bmxm (x1, ..., xm) ∈ A where bi = n when i ∈ C and
bi = 1 otherwise. Fix some n. The n-many values of x1 that we use will be an+1, an+2, ..., a2n.
We claim that each of these an+j satisfies ∃b2x2...∃bmxm (an+j, ..., xm) ∈ A where bi = n when
i ∈ C and bi = 1 otherwise. Why? Because this expression is exactly what it means for the
slice of A with x1 = an+j to be a finite (k − 1)-wedge of length n with active coordinates
c2 < ... < ck. Note that a wedge of length n + j is in particular a wedge of length n, so by
assumption this formula holds.

Only if: Suppose A ⊆ ωm is an infinite k-wedge with active coordinates 1 < c2... < ck.
Then A satisfies ∀n∃nx1∃b2x2...∃bmxm (x1, ..., xm) ∈ A where bi = n when i ∈ C and bi = 1
otherwise. We’ll define the sequence ai recursively.

Note that any nonempty set is a finite wedge of length 1, so for a1 just pick the x1-
coordinate of any nonempty slice of A.

To define ai+1 given ai: set n = ai + 1 in the above formula. A satisfies
∃ai+1x1∃b2x2...∃bmxm (x1, ..., xm) ∈ A where bi = ai + 1 when i ∈ C and bi = 1 otherwise.
Of the ai + 1-many values of x1 obtained from the above formula, at least one must be

greater than ai. So we may let ai+1 > ai such that ∃b2x2...∃bmxm (ai+1, ..., xm) ∈ A where
bi = ai + 1 when i ∈ C and bi = 1 otherwise. This formula means exactly that the slice
of A with fixed x1 = ai+1 is a finite (k − 1)-wedge of length ai + 1 with active coordinates
c2 < ... < ck. Since ai + 1 >= i+ 1, this slice is in particular a wedge of length i+ 1. So ai+1

is as desired.

Lemma 2.7. Let A ⊆ ωm be an infinite k-wedge with set of active coordinates C = {1 <
c2 < ... < ck}. Then there’s an infinite k-wedge B ⊆ A with the same active coordinates
such that ∀j 6∈ C, B contains no pairs of type j.

Note that in this lemma, it is important that type 1 is active. The conclusion is not
necessarily true without that assumption!
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Proof. Fix j 6∈ C. Note j > 1. We will show that we can find an infinite k-wedge B ⊆ A
with the same active coordinates containing no pairs of type j. Repeating this for each of
the finitely many j 6∈ C yields the result.

Throughout this proof, bi = n when i ∈ C and bi = 1 otherwise. From the previous
proposition, we obtain a sequence a1 < a2 < ... such that ∀n the m− 1-dimensional slice of
A with fixed x1 = an is a finite (k−1)-wedge of length n with active coordinates c2 < ... < ck.
This means for all n, ∃b2x2...∃bmxm (an, x2, ..., xm) ∈ A.

For each n, we will define a (partial) function fn : ωj−1 → ω which takes an initial segment
of length j − 1 and returns an xj-coordinate. We define fn as follows: fn(x1, ..., xj−1) is the
least xj satisfying ∃bj+1xj+1...∃bmxm (x1, x2, ..., xm) ∈ A. (Such an xj may not exist for some
inputs, so this is a partial function.)

We define B ⊆ A to consist of all points in A of the form
(an, ..., xj−1, fn(an, ..., xj−1), xj+1, ..., xm). Note that this B avoids pairs of type j, as

whenever two elements of B have the same initial segment (an, ..., xj−1) their next entry
must be fn(an, ..., xj−1).

It remains to show that B has the same active coordinates as A does. We need to show
that ∀n∃nx1∃b2x2...∃bmxm (x1, ..., xm) ∈ B. Fix n.

The values of x1 we use will be an+1, an+2, ..., a2n. For each such an+l, we need to show
∃b2x2...∃bmxm (an+l, ..., xm) ∈ B.

By definition of f , if fn+l of some initial segment (an+1, ..., xj−1) exists then
∃bj+1xj+1...∃bmxm (an+l, ..., xj−1, fn+l(an+l, ..., xj−1), xj+1, ..., xm) ∈ A. Note that since

these points are of the correct form, this is equivalent to
∃bj+1xj+1...∃bmxm (an+l, ..., xj−1, fn+l(an+l, ..., xj−1), xj+1, ..., xm) ∈ B.
Because j 6∈ C, bj = 1 and thus it suffices to show ∃b2x2...∃bj−1xj−1 such that fn+l(an+1, ..., xj−1)

exists.
We know the slice of A at each fixed x1 = an+l is a wedge of length n and thus satisfies

∃b2x2...∃bmxm (an+l, ..., xm) ∈ A. This is equivalent to
∃b2x2...∃bj−1xj−1 such that fn+l(an+1, ..., xj−1) exists. So, the proof is complete.

Lemma 2.8. If A ⊆ ωm is an infinite (n+ 1)-wedge, then A is EDm,n-positive.

Proof. Let A be an infinite (n+1)-wedge with set of active coordinates C = {c1 < ... < cn+1}.
Consider a collection of finitely many, say l-many n-chromatic sets with respect to the

type coloring: {S1, ..., Sl} where each Si is n-chromatic with respect to the type coloring.
We claim that A \ (S1 ∪ ... ∪ Sl) 6= ∅.

Since A is an infinite wedge, it contains a finite wedge of length l+1 with the same active
coordinates c1 < ... < cn+1. That is, A satisfies ∃a1x1 ∃a2x2 ... ∃amxm (x1, ..., xm) ∈ A, where
ai = l + 1 if i ∈ C and ai = 1 otherwise.

Consider what happens to this formula when we cut away S1 from A. S1 attains at most
n types, so there must be some c∗ ∈ C such that S1 contains no pairs of type c∗. This means
for any (x1, ..., xc∗−1), there is at most one value of xc∗ such that ∃(y1, ..., ym) ∈ S1 where
y1 = x1, ..., yc∗ = xc∗ .

So, A \ S1 will satisfy a modified version of the above formula with ac∗ reduced by 1:
A \ S1 satisfies ∃a1x1 ∃a2x2 ... ∃ac∗−1xc∗ ... ∃amxm (x1, ..., xm) ∈ A \ S1.

Note c∗ ∈ C, so ac∗ = l + 1.
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By the same argument, (A \ S1) \ S2 = A \ (S1 ∪ S2) satisfies a modified version of the
formula with a total of 2 subtracted from the superscripts that began as l + 1’s. (We might
subtract 2 from a single superscript, or 1 from 2 different superscripts, depending whether
the c∗ from S1 is the same as that from S2.)

Repeating this l-many times, we conclude that A \ (S1 ∪ ...∪Sl) satisfies a version of the
above formula with a total of l subtracted from the superscripts that began as (l+ 1)’s. So,
none of the superscripts ever reach 0 during this process. This means that A\(S1∪...∪Sl) 6= ∅,
as it contains at least 1 point.

So, A cannot be covered by a finite union of n-chromatic sets with respect to the type
coloring. So infinite (n+ 1)-wedges are EDm,n-positive.

We are most interested in m-wedges in ωm. For these maximal wedges, there is no need
to specify which coordinates are active because all m coordinates must be active.

Lemma 2.9. If A ⊆ ωm is EDm,m−1-positive, then A is an infinite m-wedge.

Proof. We’ll prove the contrapositive: if A is not an infinite m-wedge, than it is in the ideal
EDm,m−1.

If A isn’t an infinte m-wedge, then A does NOT satisfy
∀k ∃kx1∃kx2∃kx3...∃kxm (x1, ..., xm) ∈ A.
So, there is some k for which ∃kx1∃kx2∃kx3...∃kxm (x1, ..., xm) ∈ A fails.
There are fewer than k values of x1 so that ∃kx2∃kx3...∃kxm (x1, ..., xm) ∈ A.
We want to cover A by finitely many sets Si so that each Si attains at most m− 1 types.

In other words, each Si should avoid using at least 1 of the m possible types.
A set S avoids edges of type 1 iff all points in S share the same x1-coordinate.
A set S avoids edges of type 2 iff whenever two points (a1, ..., am), (b1, ..., bm) ∈ S share

the same initial segment up to the x2-coordinate (exclusive), their next coordinates also
agree: a1 = b1 implies a2 = b2. In other words, there is a function f so that members of S
have the form (a1, f(a1), ..., am).

In general, a set S avoids edges of type i iff whenever two points (a1, ..., am), (b1, ..., bm) ∈
S share the same initial segment up to the xi-coordinate (exclusive), their next coordinates
also agree: (a1, ..., ai−1) = (b1, ..., bi−1) implies ai = bi. In other words, there is a function f
so that members of S have the form (a1, a2, ..., ai−1, f(a1, a2, ..., ai−1), ..., am).

It follows that a set S can be written as the union of l-many sets S1, ..., Sl, each of which
avoids edges of type i, iff for each ordered (i− 1)-tuple (a1, ..., ai−1) there is a set C of size
at most l so that whenever (b1, ..., bm) ∈ S satisfies (a1, ..., ai−1) = (b1, ..., bi−1), we have
bi ∈ C. In other words, there is a relation R from ordered (i − 1)-tuples to singletons so
that each input has at most l-many distinct outputs and for each (b1, ..., bm) ∈ S, we have
(b1, ..., bi−1) R bi.

Recall that since A is not an infinite m-wedge, there are fewer than k values of x1
so that ∃kx2∃kx3...∃kxm (x1, ..., xm) ∈ A. Say the set of x1-values satisfying the above is
C = {c1, ..., ck−1}.

For each ci, the set {(x1, ..., xm)|x1 = ci} avoids edges of type 1. The union S1 :=⋃k−1
i=1 {(x1, ..., xm)|x1 = ci} contains all points whose x1-coordinates satisfy
∃kx2∃kx3...∃kxm (x1, ..., xm) ∈ A. This S1 is a union of finitely many sets, each of which

avoids edges of type 1.
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Now consider A \ S1. The x1-coordinates of points in
A \ S1 must NOT satisfy ∃kx2∃kx3...∃kxm (x1, ..., xm) ∈ A. This means for each value

of x1 attained by points in A \ S1, there are fewer than k-many values of x2 so that
∃kx3...∃kxm (x1, ..., xm) ∈ A.

Consider the relation a1 R2 a2 iff a1 is the x1-coordinate of some point in A \ S1 such
that ∃kx3...∃kxm (a1, a2, x3, ..., xm) ∈ A. By the above, this relation attains at most (k − 1)
outputs for each input. Define the set S2 to contain all points of the form (b1, ..., bm) such
that b1R2b2. By the above discussion, S2 can be written as a union of (k − 1)-many sets,
each of which avoids edges of type 2.

Now note that the (x1, x2) initial segments of points in A \ (S1 ∪ S2) do NOT satisfy
∃kx3...∃kxm (x1, ..., xm) ∈ A.

We repeat this same argument inductively. At the i-th step, we consider A \ (S1 ∪
... ∪ Si−1). The (x1, x2, ...xi−1) initial segments of points in A \ (S1 ∪ ... ∪ Si−1) do NOT
satisfy ∃kxi...∃kxm (x1, ..., xm) ∈ A. This means for each initial segment (x1, x2, ...xi−1)
attained by points in A \ (S1 ∪ ... ∪ Si−1), there are fewer than k-many values of xi so that
∃kxi+1...∃kxm (x1, ..., xm) ∈ A.

Consider the relation (a1, ..., ai−1) Ri ai iff (a1, ..., ai−1) is the initial segment of some point
in A \ (S1 ∪ ... ∪ Si−1) such that ∃kxi+1...∃kxm (a1, ..., ai, xi+1, ..., xm) ∈ A. By the above,
this relation attains at most (k − 1) outputs for each input. Define the set Si to contain all
points of the form (b1, ..., bm) such that (b1, ..., bi−1) Ri bi. By the above discussion, Si can
be written as a union of (k − 1)-many sets, each of which avoids edges of type i.

Now note that the (x1, ..., xi) initial segments of points in A \ (S1 ∪ ... ∪ Si) do NOT
satisfy ∃kxi+1...∃kxm (x1, ..., xm) ∈ A.

After the m-th and final step of this process, we find that if a point (x1, ..., xm) is in
A \ (S1 ∪ ... ∪ Sm), the point does NOT satisfy (x1, ..., xm) ∈ A. In other words, A \ (S1 ∪
... ∪ Sm) = ∅. Thus, we have covered A by the union of finitely many sets, each of which
attains at most m− 1 distinct types. So A ∈ EDm,m−1.

By contraposition, if A ⊆ ωm is EDm,m−1-positive, then A is an infinite m-wedge.

This gives a nice description of the positive sets for the ideal EDm,m−1. Since the only
way to have m active coordinates is to have every coordinate be active, a set A is EDm,m−1
positive iff A satisfies ∀n ∃nx1 ∃nx2 ... ∃nxm (x1, ..., xm) ∈ A.

We conjecture that this characterization extends to all EDm,n ideals, not just EDm,m−1:

Conjecture 2.10. If A ⊆ ωm is EDm,n-positive, then A is an infinite (n+ 1)-wedge.

3 The Wedge Lemma and Global Ramsey Properties

In this section, we prove an important lemma which will be central to many proofs in the
remainder of the paper. We use it to prove some global Ramsey properties of EDm,m−1
ideals.

Lemma 3.1. Finite wedge lemma for colorings of singletons
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Let m,n, p ∈ ω. There exists l such that for all p-colorings of singletons from any finite
m-wedge A ⊆ ωm of length l, there is a monochromatic B ⊆ A such that B is a finite
m-wedge of length n.

Proof. By induction on m. The base case m = 1 is just the pigeonhole principle, as finite
1-wedges in ω1 are just sets of specified size.

Suppose the m case holds, consider m+ 1. We can view a finite m+ 1-wedge in ωm+1 of
length l as a sequence of l-many different finite m-wedges of length l in different copies of ωm.
(Each has a different x1 coordinate.) Applying the m-dimensional case of this lemma, by
taking l sufficiently large we can guarantee that each of these m-dimensional slices contains
a monochromatic finite m-wedge of length n. The color of these monochromatic wedges may
depend on which slice we’re looking at, though. This gives a coloring of x1 coordinates. By
taking l sufficiently large, by pigeonhole we can find at least n distinct x1 coordinates sharing
a color. Taking these slices, we get a monochromatic finite m+ 1-wedge of length n.

Lemma 3.2. Infinite wedge lemma for colorings of singletons
For all m, p, for all p-colorings of singletons from any infinite m-wedge A ⊆ ωm, there

exists an infinite monochromatic m-wedge A′ ⊆ A.

Proof. When m = 1, this is just the pigeonhole principle. Suppose m > 1.
Since A is an infinite m-wedge in ωm, for any b we can find an infinite sequence a1 <

a2 < ... such that the fixed-x1 slices of A at x1 = a1, a2, ... are each finite m − 1-wedges of
length b. This means that for any fixed t, there will always be some value of x1 with x1 > t
whose slice of A is a finite m− 1-wedge of length b.

Fix any q, t. By lemma 3.1 (finite wedge lemma for colorings of singletons), there’s some
b such that any finite m− 1-wedge of length b contains a monochromatic finite m− 1-wedge
of length q. By the above, there must be some value of x1 with x1 > t whose slice of A is a
finite m− 1-wedge of length b. Thus, there’s some value of x1 with x1 > t whose slice of A
contains a monochromatic finite m− 1-wedge of length q.

Apply the above with q = 1, t = 0 to find a monochromatic finite m− 1-wedge of length
1 in some fixed x1 slice, say x1 = t1. Then use q = 2, t = t1 to find a monochromatic
finite m − 1-wedge of length 2 in some further fixed x1 slice, say x1 = t2 > t1. Then use
q = 3, t = t2 to find a monochromatic finite m − 1-wedge of length 3 in some further fixed
x1 slice, say x1 = t3 > t2 > t1.... Repeat this construction recursively.

This gives an infinite sequence of x1 coordinates t1 < t2 < ... such that the fixed-x1 slice
of A for each value of ti contains a monochromatic finite m− 1-wedge of length i, call it Wi.

This is close to being an infinite monochromatic m-wedge, but the color of the each
monochromatic Wi may depend on i. There are only finitely many colors, though, so some
color must appear for infinitely many Wi. Taking this infinite subsequence gives an infinite
monochromatic m-wedge A′ ⊆ A as desired.

Lemma 3.3. Wedge-thinning lemma
Let m,n, p ∈ ω. There exists l with the following property: fix any p-coloring of [ωm]2,

fix any infinite m-wedge D ⊆ ωm, and fix any finite (m − 1)-wedge C ⊆ ωm−1 of length l
contained in some fixed-x1 slice whose fixed x1 coordinate is strictly less than the x1-coordinate
of any point in D. Then there is an infinite m-wedge D′ ⊆ D and there is a finite m−1-wedge
C ′ ⊆ C of length n such that each edge from C ′ to D′ shares a color.
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Proof. We will specify requirements on l later. For now, say |C| = z and C = {c1, c2..., cz}.
We will construct a decreasing sequence of wedges D ⊇ D1 ⊇ D2... ⊇ Dz = D′ such that
each edge from ci to Di shares a color (which may depend on i).

To construct D1: We want all the edges from c1 to D1 to share a color. Consider coloring
singletons from D based on the color of their edge to c1. We want D1 to be monochromatic
with respect to this coloring of singletons. The existence of such a monochromatic D1 ⊆ D
is guaranteed by lemma 3.2 (infinite wedge lemma for colorings of singletons).

To build Di+1, apply the same argument with ci+1 and Di instead of c1 and D. Do this
z-many times to build the decreasing sequence D ⊇ D1 ⊇ D2... ⊇ Dz = D′. By construction,
the color of any edge from ci to D′ depends only on i.

This gives a coloring of singletons from C: the color of ci is the shared color of all edges
from ci to D′. By lemma 3.1 (finite wedge lemma for colorings of singletons), if we take l
to be large enough then we can guarantee the existence of a monochromatic m − 1-wedge
C ′ ⊆ C of length n. By construction, all edges from C ′ to D′ share a color, which is exactly
what we wanted.

Lemma 3.4. Infinite wedge lemma
For all m, p, for all p-colorings of pairs from any infinite m-wedge A ⊆ ωm, there exists

an infinite m-wedge A′ ⊆ A on which any two pairs of the same type have the same color.

Lemma 3.5. Finite wedge lemma
Let m,n, p ∈ ω. There exists l such that for all p-colorings of pairs from any finite m-

wedge A ⊆ ωm of length l, there is A′ ⊆ A which is a finite m-wedge of length n on which
any two pairs of the same type have the same color.

We will prove both of these lemmas concurrently, using the following two propositions:

Proposition 3.6. Infinite wedge lemma in dimension m =⇒ finite wedge lemma in di-
mension m

Proof. Suppose the infinite wedge lemma holds in dimension m, but the finite wedge lemma
fails in dimension m. This means there are some n, p such that for all l, there is a finite
m-wedge Al ⊆ ωm of length l and a p-coloring ϕl of pairs from ωm such that there is no
A′l ⊆ Al which is a finite m-wedge of length n on which any two pairs of the same type have
the same color (with respect to the coloring ϕl).

By definition, each Al satisfies ∃lx1...∃lxm (x1, ..., xm ∈ Al). WLOG suppose each Al
satisfies ∃!lx1...∃!lxm (x1, ..., xm ∈ Al). Here ∃!l means “there exist exactly l-many”. We can
do this WLOG since each Al has a subset satisfying this, and each such subset still satisfies
the defining property of Al: there is no A′l ⊆ Al which is a finite m-wedge of length n on
which any two pairs of the same type have the same color (with respect to the coloring ϕl).

Note that any set satisfying ∃!lx1...∃!lxm (x1, ..., xm ∈ Al) is naturally isomorphic to
{1, 2, ..., l}m. And, this isomorphism preserves exactly which subsets are m-wedges of length
n.

So, WLOG we may assume Al = {1, 2, ..., l}m since under this isomorphism, {1, 2, ..., l}m
satisfies the defining property of Al. (The coloring ϕl is transformed under the isomorphism
as well.) If there were an A′l ⊆ {1, 2, ..., l}m with the forbidden property, then under the
isomorphism it would become a forbidden subset of the actual Al.
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So, we may WLOG take the Al to be nested with Al = {1, 2, ..., l}m.
Fix some enumeration of ωm. For convenience, in the following paragraph we’ll write

ωm = {1, 2, 3, ...}.
There are only finitely many p-colorings of pairs from {1, 2}, so infinitely many ϕl must

agree on {1, 2}. Call this infinitely-agreed-upon coloring ψ2. Consider only the infinitely
many ϕl which agree with ψ2 and discard the rest. There are only finitely many p-colorings
of pairs from {1, 2, 3}, so infinitely many of the remaining ϕl which agree with ψ2 must
further agree on {1, 2, 3}. Call this infinitely-agreed-upon coloring ψ3. Consider only the
infinitely many ϕl which agree with ψ3 and discard the rest. There are only finitely many
p-colorings of pairs from {1, 2, 3, 4}... continue this process recursively. This gives a sequence
of p-colorings ψl of pairs from {1, 2, ..., l} such that for i < j, ψj agrees with ψi on {1, 2, ..., i}.
We define a coloring ψ of pairs on all of ωm ≈ ω by ψ(i, j) = ψj(i, j) for i < j.

Since ωm itself is an infinite m-wedge, we may apply the infinite wedge lemma in dimen-
sion m to obtain an infinite m-wedge A on which any two pairs of the same type have the
same color with respect to ψ. In particular, we obtain a finite m-wedge A′ ⊆ A of length
n on which any two pairs of the same type have the same color with respect to ψ. WLOG
suppose A′ is actually a finite set (our nomenclature technically allows infinite sets to be “fi-
nite wedges”). Since A′ is finite, it is contained within some large enough Aq = {1, 2, ..., q}m.
Under our isomorphism ωm ≈ ω, say max(Aq) = t. Then the coloring ψ restricted to Aq ⊇ A′

is simply ψt, and infinitely many ϕl agree with ψt on its domain. This means some ϕl∗ for
l∗ > q agrees with ψt on its domain. Since l∗ > q, Aq ⊆ Al∗ so A′ ⊆ Al∗ .

We now have a finite m-wedge A′ ⊆ Al∗ of length n on which any two pairs of the same
type have the same color with respect to ϕl∗ . This contradicts the defining property of ϕl∗ ,
and the proof is complete.

Proposition 3.7. Finite wedge lemma in dimension m =⇒ Infinite wedge lemma in
dimension m+ 1

Proof. This proof proceeds in two steps. In the first step, we deal with edges of type 1. In
the second step, we deal with all other types.

Step 1: Consider an arbitrary infinite m + 1-wedge A ⊆ ωm+1. We will begin by
constructing an infinite m+ 1-wedge B ⊆ A on which all edges of type 1 (i.e. edges between
different x1 coordinates) share a color.

We will build B recursively, one fixed-x1 slice at a time. We will also build a decreasing
sequence of infinite m + 1-wedges A = A1 ⊇ A2 ⊇ A3.... The i-th slice of B will be taken
from Ai, and all edges from this slice to Ai+1 will share a color (which may depend on i).

For the first step of the construction, we will apply lemma 3.3 (the wedge-thinning lemma)
with n = 1.

For C, use any large enough fixed-x1 slice of A. (The slices of A become arbitrarily large
finite m-wedges for large enough x1.)

For D, use any infinite m + 1-wedge D ⊆ A such that the x1-coordinate of any point in
D is greater than the fixed x1-coordinate of C.

Let A2 be the D′ obtained from lemma 3.3, and let the first fixed-x1 slice of B be the
C ′ obtained from lemma 3.3. Lemma 3.3 guarantees that all edges from this C ′ to A2 = D′

share a color, as desired.
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For further steps, apply lemma 3.3 (wedge-thinning lemma) again but increase n and
work in the latest Ai instead of the original A.

At the i− th step of the construction, we add a finite m-wedge of length i to B to obtain
its i-th fixed-x1 slice. By this construction, B becomes an infinite m+ 1-wedge.

This gives B and A = A1 ⊇ A2 ⊇ A3... such that the i-th slice of B lies in Ai and all
edges from this slice to Ai+1 share a color. This means that for i < j, the color of an edge
from the i-th slice of B to the j-th depends only on i.

The color may depend on i, but some color must appear for infinitely many i by pigeon-
hole. Ignore other slices; we’re left with an infinite m + 1-wedge such that all of the type-1
edges share one color.

Step 2: Consider the infinite m+ 1-wedge from step 1 on which all of the type-1 edges
share one color. Call it B. Because the fixed-x1 slices of B contain arbitrarily large finite
m-wedges for large enough values of x1, by the finite wedge lemma in dimension m, for each
n ∈ ω we can find some fixed-x1 slice of B which contains a finite m-wedge of length n on
which any two pairs of the same type have the same color. We do this recursively over all n,
requiring that the x1 coordinate increases as n does. (This procedure is exactly analogous
to the proof of lemma 3.2, infinite wedge lemma for colorings of singletons.) Call the set
obtained from this construction B′. Note that B′ is an infinite m+ 1-wedge.

By construction, within a given fixed-x1 slice of B′ each type of pair uses only one color.
The assignment of colors to types may vary with x1, but since there are finitely many colors
and finitely many types there are finitely many possible assignments of colors to types and
thus one appears infinitely often. Considering only slices using this assignment, we can trim
B′ to obtain an infinite m + 1-wedge where color depends only on type, except perhaps for
edges of type 1 (edges between different slices). But those edges were dealt with in step 1,
so in fact the proof is complete.

With these propositions, the proof of the two lemmas is simple:

Proof. We induct on m. Our base case is the infinite wedge lemma in dimension 1, which is
exactly Ramsey’s theorem. Combining the prior two propositions, we have:

Infinite wedge lemma in dimension m =⇒ finite wedge lemma in dimension m =⇒
Infinite wedge lemma in dimension m+ 1.

By induction, both lemmas hold in every dimension.

Armed with the infinite wedge lemma, we can now state our first theorem about Ramsey
properties of the EDm,n ideals:

Theorem 3.8. ∀m, p, ED+
m,m−1 → (ED+

m,m−1)
2
p,m

Proof. This follows from the infinite wedge lemma and the lemma characterising EDm,m−1-
positive sets. Fix a p-coloring of pairs from an EDm,m−1-positive set A. A must be an infinite
m-wedge, so by the infinite wedge lemma we can find an infinite m-wedge B ⊆ A on which
color depends only on type. There are only m possible types, and all infinite m-wedges are
EDm,m−1-positive, so B ⊆ A is an m-chromatic EDm,m−1-positive set.

11



4 Regional Ramsey properties

In this section, we use the wedge lemma to prove regional Ramsey properties of EDm,n

ideals. This first theorem generalizes the previous theorem:

Theorem 4.1. For any m,n, k, ED+
m,m−1 → (ED+

m,n)2k,n+1

Proof. Fix any EDm,m−1-positive set A. Fix any k-coloring of pairs from A. From a prior
lemma, we know that A is an infinite m-wedge. Applying the infinite wedge lemma, we get
another infinite m-wedge B ⊆ A on which color depends only on type. In particular, B is
an infinite n + 1-wedge with active coordinates 1, 2, ..., n + 1. By another prior lemma, we
can find a subset B′ ⊆ B which is still an infinite n + 1-wedge that contains only pairs of
types 1, 2, ..., and n + 1. Since color depends only on type on B′ and pairs from B′ attain
only n + 1-many types, pairs from B′ attain at most n + 1-many colors. So B′ is (n + 1)-
chromatic. Since B′ is an infinite n + 1-wedge, B′ is EDm,n-positive. So we’ve found an
(n+ 1)-chromatic, EDm,n-positive set.

Perhaps these could be upgraded to proofs of global properties?

Conjecture 4.2. For any m,n, k, ED+
m,n → (ED+

m,n)2k,n+1

Theorem 4.3. ED+
m,m−1 → (ED+

m,n)2a,b whenever m,n, a, b satisfy the following combinato-
rial property:

Consider dividing m-many objects, one of which is distinguished from the rest, into a-
many piles. We require that for any such assignment of objects to piles, there is a collection
of b-many piles which contains the distinguished object and contains at least n+ 1 objects in
total.

Proof. Think of the m-many types of pairs as the objects, and think of the a-many colors
used as the piles. By the wedge lemma and the fact that EDm,m−1-positive sets are infinite
m-wedges, given any EDm,m−1-positive set A we can find a subset A′ that’s an infinite m-
wedge on which color depends only on type. This gives us an assignment of the m-many
types to the a-many colors. Each type uses only one color, though the same color may
be used for multiple types. The distinguished object is type 1. By assumption, there is a
collection of b-many colors which contains the type 1 and contains at least n+ 1-many types
in total. Call these colors c1, ..., cb and types 1, t2, ..., tn+1. Given a pair of any of these (n+1)
types, the pair must have one of these b-many colors. Since A′ is an infinite m-wedge, in
particular it is an infinite (n+ 1)-wedge with active coordinates 1, t2, ..., tn+1. By a previous
lemma, we can find a subset B ⊆ A′ which is an infinite (n+1)-wedge with active coordinates
1, t2, ..., tn+1 such that pairs from B only attain types from among 1, t2, ..., tn+1. Since B is
an infinite (n + 1)-wedge, B is EDm,n-positive. Since pairs from B only attain types from
among 1, t2, ..., tn+1 and pairs of these types only attain colors among c1, ..., cb, pairs from B
only attain colors from among c1, ..., cb. So B is a b-chromatic positive set.

Under what circumstances does this combinatorial requirement hold? In the worst case,
the distinguished object is assigned to a pile with no other members. We then need to divide
the remaining m − 1-many objects into a − 1-many piles. We require that for any such
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assignment of objects to piles, there is a collection of b− 1-many piles containing at least n
objects in total.

In the worst case, the m− 1-many indistinguishable objects are distributed as evenly as
possible among the remaining a−1-many piles. Each of the b−1-many piles we choose has at
least

⌊
m−1
a−1

⌋
-many objects in it. m−1 may not divide a−1 evenly, in which case some piles will

have 1 more object than the rest do. We will always choose these larger piles when possible.
We can choose at most b−1 piles. The number of larger piles available is (m−1) mod (a−1).
So, the number of larger piles we get to choose is min(b− 1, (m− 1) mod (a− 1)). We want
to have at least n-many objects total in the piles we choose.

Putting this all together, the requirement holds iff⌊
m−1
a−1

⌋
(b− 1) +min(b− 1, (m− 1) mod (a− 1)) ≥ n.

Theorem 4.4. ED+
m,m−1 → (ED+

m,n)2a,b whenever m,n, a, b satisfy:⌊
m−1
a−1

⌋
(b− 1) +min(b− 1, (m− 1) mod (a− 1)) ≥ n

5 Local Ramsey properties

In this section, we prove exactly which local Ramsey properties each EDm,n has. As a
consequence, we derive exactly which properties imply which others.

Theorem 5.1. ω → (ED+
m,n)2a,b iff m,n, a, b satisfy:⌊

m
a

⌋
(b) +min(b, m mod a) ≥ n+ 1

Note that this expression is equivalent to the following combinatorial property:
Consider dividing m-many objects into a-many piles. We require that for any such as-

signment of objects to piles, there is a collection of b-many piles containing at least n + 1
objects in total.

Proof. See the previous section for the proof that the combinatorial property matches the
algebraic formula. In this proof, we’ll reason based on the combinatorial property.

As in the proof of the prior theorem, the m-many types will be our objects and the
a-many colors will be our piles.

Only if: Suppose this combinatorial property fails. There is some mapping f taking the
m types to the a colors so that the inverse image of any collection of b-many colors contains
at most n types in total.

Consider the following a-coloring of pairs from ωm: if a pair is type i, it is assigned color
f(i). What do the b-chromatic sets with respect to this coloring look like? Since the inverse
image of any collection of b-many colors contains at most n types in total, any b-chromatic
set will attain at most n types. Thus, any b-chromatic set lies in the ideal EDm,n. So when
the combinatorial property fails, ω 6→ (ED+

m,n)2a,b.
If: Suppose the combinatorial property holds.
Fix an a-coloring of pairs from ωm. For each fixed initial segment (x1, ..., xm−n−1), con-

sider the set (x1, ..., xm−n−1) × ωn+1. Each of these sets is an isomorphic copy of ωn+1.
Consider one of these copies. We have an a-coloring of pairs from ωn+1, so there is an in-
finite n + 1-wedge W1 within which color depends only on type. We can think of this as
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dividing the n + 1 types into a-many piles representing colors (piles may be empty). Re-
member that because we’ve fixed the initial segment (x1, ..., xm−n−1), the n+ 1-many types
under consideration here are type m− n, type m− n+ 1, ..., type m.

If any collection of b color piles contains all n + 1 types, this gives a b-chromatic n + 1-
wedge W1. Remembering that we’re working with some fixed initial segment (x1, ..., xm−n−1),
the set (x1, ..., xm−n−1)×W1 gives a b-chromatic n+ 1-wedge in ωm (the active coordinates
are m− n,m− n+ 1, ...,m). This gives a b-chromatic EDm,n-positive set, and we’re done.

Otherwise, no collection of b-many color piles contains all n+ 1 types, and this holds for
all initial segments (x1, ..., xm−n−1).

Now for each fixed (x1, ..., xm−n−2), consider letting xm−n−1 vary. This gives infinitely
many isomorphic copies of ωn+1, each of which has some assignment of colors to types. There
are only finitely many possible assignments, so one must appear for infinitely many values
of xm−n−1. We restrict our attention to these values of xm−n−1.

We now have infinitely many copies of ωn+1, each of which contains an infinite n + 1-
wedge in which color depends only on type, and the assignment of colors to types is the
same across different copies. These infinitely many wedges linked together across different
xm−n−1-coordinates give an infinite n+ 2-wedge. Applying the wedge lemma, we can find a
subset W2 which is an infinite n + 2-wedge within which color depends only on type. The
only new information here is which color type m − n − 1 gets – the assignment of colors
for types m − n,m − n + 1...,m must be the same as it was in each of the infinitely many
n+ 1-wedges we just linked together. We had an assignment of n+ 1 types to a-many piles,
then we added one new type (type m− n− 1) to some pile.

Now suppose some collection of b color piles contains n+1-many types. Since we assumed
this wasn’t true of our distribution of n+1 types before we added the new one (type n−m−1),
there must be a collection of b color piles containing n + 1-many types and containing our
new type (type n − m − 1). Say these types are n − m − 1, t2, ..., tn+1. Note that since
we’re working with some fixed initial segment (x1, ..., xm−n−2), our new type m − n − 1 is
isomorphic to type 1 under the isomorphism (x1, ..., xm−n−2) × ωn+2 ≈ ωn+2. So by an old
lemma, we can find a subset W ′

2 ⊆ W2 which is an n + 1-wedge with active coordinates
n−m−1, t2, ..., tn+1 that only attains pairs of types from among n−m−1, t2, ..., tn+1. Since
these types are contained in a union of b-many color piles, this means W ′

2 is b-chromatic.
This gives a b-chromatic EDm,n-positive set, and we’re done.

We repeat that exact same argument for every initial segment (x1, ..., xm−n−2). If none
of them give a b-chromatic EDm,n-positive set, then each of their assignments of n+ 2 types
to a-many color piles fails to have the property that some collection of b color piles contains
n+ 1-many types.

As long as we have not found the desired b-chromatic positive set, we continue this same
procedure inductively. The next step is to look at any fixed initial segment (x1, ..., xm−n−3)
and allow xm−n−2 to vary...

In the i-th step of the procedure, we look at any fixed initial segment (x1, ..., xm−n−i) and
allow xm−n−i+1 to vary. This gives infinitely many isomorphic copies of ωn+i−1, each of which
has some assignment of colors to types. There are only finitely many possible assignments,
so one must appear for infinitely many values of xm−n−i+1. We restrict our attention to these
values of xm−n−i+1.

We now have infinitely many copies of ωn+i−1, each of which contains an infinite n+ i−1-
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wedge in which color depends only on type, and the assignment of colors to types is the
same across different copies. These infinitely many wedges linked together across different
xm−n−i+1-coordinates give an infinite n + i-wedge. Applying the wedge lemma, we can find
a subset Wi which is an infinite n + i-wedge within which color depends only on type. The
only new information here is which color type m− n− i+ 1 gets – the assignment of colors
for types m − n − i + 2, ...,m must be the same as it was in each of the infinitely many
n+ i− 1-wedges we just linked together. We had an assignment of n+ i− 1 types to a-many
piles, then we added one new type (type m− n− i+ 1) to some pile.

Now suppose some collection of b color piles contains n+1-many types. Since we assumed
this wasn’t true of our distribution of n + i − 1 types before we added the new one (type
n−m− i + 1), there must be a collection of b color piles containing n + 1-many types and
containing our new type (type n−m− i+ 1). Say these types are n−m− i+ 1, t2, ..., tn+1.
Note that since we’re working with some fixed initial segment (x1, ..., xm−n−i), our new type
m − n − i + 1 is isomorphic to type 1 under the isomorphism (x1, ..., xm−n−i) × ωn+i ≈
ωn+i. So by an old lemma, we can find a subset W ′

i ⊆ Wi which is an n + 1-wedge with
active coordinates n − m − i + 1, t2, ..., tn+1 that only attains pairs of types from among
n −m − i + 1, t2, ..., tn+1. Since these types are contained in a union of b-many color piles,
this means W ′

i is b-chromatic. This gives a b-chromatic EDm,n-positive set, and we’re done.
We repeat that exact same argument for every initial segment (x1, ..., xm−n−i). If none

of them give a b-chromatic EDm,n-positive set, then each of their assignments of n+ i types
to a-many color piles fails to have the property that some collection of b color piles contains
n+ 1-many types.

The inductive process continues as long as we have not found the desired b-chromatic
positive set.

(If we get all the way to step i = m− n before finding the desired set, at this final step
there is no initial segment to fix and no need to pass through an isomorphism – we’re finally
analyzing the coloring on all of ωm.)

Our combinatorial assumption tells us exactly that this search must terminate by the
time we finish the final step i = m − n: this step involves assigning all m-many types to
a-many color piles, and by assumption there must be some union of b-many piles which
contains n + 1-many types. Since the search didn’t terminate at the prior step, there must
be some union of b-many piles which contains n + 1-many types and also contains type 1.
We can then use these types to build a b-chromatic EDm,n-positive set.

So this procedure for finding a b-chromatic EDm,n-positive set will always terminate, and
the proof is complete.

As a corollary, we learn exactly which local Ramsey properties imply which others:

Corollary 5.2. The property ω → (I+)2a,b implies the property ω → (I+)2m,n for all ideals I
iff m,n, a, b satisfy:⌊

m
a

⌋
(b) +min(b, m mod a) ≤ n

Note this is the opposite of the property from the previous theorem. Its combinatorial
interpretation is:
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Consider dividing m-many objects into a-many piles. We require that there is some such
assignment of objects to piles such that every collection of b-many piles contains at most n
objects in total.

Proof. See the previous section for the proof that the combinatorial property matches the
algebraic formula. In this proof, we’ll reason based on the combinatorial property.

If: Suppose the combinatorial property holds and suppose we have ω → (I+)2a,b. Consider
some m-coloring of pairs from ω. We’ll call these m colors the “old colors”, and use them to
develop an a-coloring which we’ll call the “new coloring”. The old colors will be our objects,
and the new colors will be our piles.

By the combinatorial property, there is some way to divide the m old colors into a new-
color piles such that every collection of b new colors contains at most n old colors. Use this
division to define the new a-coloring: given a pair, look at its old color and then check which
new-color pile that old color is assigned to. This gives the pair’s new color.

Since ω → (I+)2a,b, there is some positive b-chromatic set S with respect to our new
a-coloring. Since S is b-chromatic with respect to the new coloring and every collection of b
new colors contains at most n old colors, S is n-chromatic with respect to the old coloring.
So S is a positive n-chromatic set with respect to the old coloring. So ω → (I+)2m,n.

Only if: Remember that this corollary’s assumption is the opposite of the previous
theorem’s. So if this corollary’s assumption fails, we can apply the previous theorem to
conclude ω → (ED+

m,n)2a,b. Recall that ω 6→ (ED+
m,n)2m,n. So the ideal EDm,n serves as a

counterexample: ω → (ED+
m,n)2a,b, but ω 6→ (ED+

m,n)2m,n.

6 Colorings of k-tuples

In this section, we consider Ramsey properties for colorings of k-tuples on EDm,m−1.
Note that by “k-tuple”, we mean an unordered set with exactly k elements. We only

consider colorings of unordered sets. We use the term “k-tuple” because it’s more succinct
than “k-element set”.

In the case k = 2, the Ramsey properties of EDm,m−1 can be understood by assigning
each pair to one of m types, then proving that for every coloring of pairs, every infinite
m-wedge A has B ⊆ A such that B is still an infinite m-wedge and within B color depends
only on type. (This is the wedge lemma.) Also, we note that any infinite m-wedge contains
pairs of all m types.

When generalizing to arbitrary k-tuples, we begin by generalizing this notion of type.

Definition 6.1. Consider members of [ωm]k, that is, k-element subsets of ωm. We will
assign each such {(a11, a12, ..., a1m), ..., (am1 , a

m
2 , ..., a

m
m)} a type. This type will be an element of

{1, ...,m}k−1.
Since we’re given an unordered set of k points, we can WLOG suppose the points
{(a11, a12, ..., a1m), ..., (am1 , a

m
2 , ..., a

m
m)} satisfy (a11, a

1
2, ..., a

1
m) < ... < (am1 , a

m
2 , ..., a

m
m) when

ordered lexicographically. (First ordered by x1-coordinate, with ties broken by x2 coordinate,
etc.)

We define the type of this set of k-points to be (t1, ..., tk−1) where ti is the first coordinate
in which (ai1, a

i
2, ..., a

i
m) and (ai+1

1 , ai+1
2 , ..., ai+1

m ) differ.
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Additionally, for k = 1 we declare all singletons to have the same type, the “empty type”
or “null type”.

In other words, we find the type of a k-element set by ordering the k points lexicograph-
ically then recording the type of each of the k − 1-many pairs of points adjacent in this
ordering. This gives an ordered (k − 1)-tuple of integers from {1, ...,m}, which is the type
of our k-element set.

Note that this definition agrees with our original definition of type for k = 2.
Note that there are mk−1-many possible types.
Now, we claim that this definition of type generalizes the following properties from the

k = 2 case: for every coloring of k-tuples, every infinite m-wedge A has B ⊆ A such that B is
still an infinite m-wedge and within B color depends only on type. (This is a generalization
of the wedge lemma.) Also, we claim that any infinite m-wedge contains k-tuples of all mk−1

types. These are the main results of this section.

Proposition 6.2. Any finite m-wedge A ⊆ ωm of length k contains k-element sets of each
of the mk−1-many possible types.

Proof. We induct on m.
The base case is m = 1. There’s only 1 possible type for any value of k (because 1k−1 = 1).

So the only requirement is that our 1-wedge have at least k elements, which is exactly what
it means for a 1-wedge in ω1 to have length k.

Now, suppose the m case holds and consider the m+ 1 case. We can view a finite m+ 1-
wedge A ⊆ ωm+1 of length k as a sequence {a1} ×W1 ∪ ... ∪ {ak} ×Wk of k-many finite
m-wedges each of length k in different copies of ωm with different x1 coordinates. Say the
order of ascending x1 coordinates is W1 < W2 < ... < Wk.

Suppose we want to find a k-element set of type (t1, ..., tk−1) in A. If 1 never appears
in the desired type (no ti = 1), then we can simply work in some fixed-x1 m-dimensional
slice W1. Applying the m-dimensional case of the proposition, we get a set of the desired
type within the slice. If 1 appears exactly once in the desired type, re-write the desired type
(t1, ..., tk−1) as (~ta, 1, ~tb). Here ~ta, ~tb are themselves ordered tuples, neither of which contains
a 1. We now work in 2 different fixed-x1 m-dimensional slices, W1 and W2. Find a set Sa of
type ~ta in W1, then a set Sb of type ~tb in W2. This is possible by inductive hypothesis. (If
either of ~ta, ~tb is empty, just choose any singleton – we can view a singleton a set of “null
type”.) Everything in W1 precedes everything in W2 in the lexicographic order, and any pair
with one member from each of W1,W2 has type 1, so Sa ∪ Sb has the desired type (~ta, 1, ~tb).

This procedure easily generalizes to any number of 1’s in the desired type. If there are
i-many 1’s in the desired type, we work across i+1-many m-dimensional slices. There are at
most k−1-many 1’s, so we need at most k-many slices, which are provided by the assumption
that our m+ 1-dimensional wedge A has length k.

We obtain the following corollary immediately:

Corollary 6.3. Any infinite m-wedge A ⊆ ωm contains k-element sets of each of the mk−1-
many possible types.
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Now, we generalize the wedge lemma to colorings of k-tuples. The statements of the
lemmas are almost identical, but with k-tuples instead of pairs. The structure of the proof
is somewhat similar, but now we induct on both m and k.

Note that we proved both the k = 1 and the k = 2 cases in section 3. The k = 1 case is
somewhat special, but the proof of the k = 2 case strongly resembles the general proof.

Lemma 6.4. Generalized infinite wedge lemma
For all m, k, p, for all p-colorings of k-tuples from any infinite m-wedge A ⊆ ωm, there

exists an infinite m-wedge A′ ⊆ A on which any two k-tuples of the same type have the same
color.

Lemma 6.5. Generalized finite wedge lemma
Let m, k, n, p ∈ ω. There exists l such that for all p-colorings of k-tuples from any finite

m-wedge A ⊆ ωm of length l, there is A′ ⊆ A which is a finite m-wedge of length n on which
any two k-tuples of the same type have the same color.

Proposition 6.6. Generalized infinite wedge lemma for fixed m, k =⇒ Generalized finite
wedge lemma for the same m, k

Proof. This is identical to the proof of proposition 3.6, which covered the case k = 2. Nothing
in that proof relied upon the specific value of k.

With that proposition out of the way, we now prove the generalized finite and infinite
wedge lemmas at the same time.

Proof. The proof is by induction on both m and k. The base cases k = 1 and k = 2 were
already dealt with in section 3. The base case m = 1 is Ramsey’s theorem for colorings of
k-tuples.

Our outer induction will be on m. The base case m = 1 is already known, so in light
of the prior proposition we just need to prove the infinite m + 1-dimensional case for all k
assuming the infinite and finite m-dimensional cases for all k.

Assume the infinite and finite m-dimensional cases hold for all k. We will use strong
induction on k to show that the infinite m + 1-dimensional case holds for all k. The base
cases k = 1 and k = 2 have already been shown. Suppose k > 2 and that the theorem holds
for every previous value of k.

Let A ⊆ ωm+1 be an infinite m+ 1-wedge, and fix some coloring of k-tuples from ωm+1.
We will show that for each fixed type, we can find a subset A∗ ⊆ A that’s still an infinite

m + 1-wedge within which all k-tuples of the specified type share a color. Applying this
result sequentially for each of the finitely many possible types gives the desired A′ ⊆ A.

There are two cases.
For the rest of this proof, “slice” means “fixed-x1 m-dimensional slice”.
Case 1: The case where our specified type (t1, ..., tk−1) includes at least one 1. Split this

ordered tuple at the first 1 to write the type as (~ta, 1, ~tb) where ~ta, ~tb are themselves ordered
tuples of lengths a− 1, b− 1 respectively, a, b < k, a+ b = k, ~ta does NOT contain any 1’s.
~ta, ~tb represent specific types of a and b tuples. Note these are tuples of size strictly less than
k. In case a = 1 or b = 1, they represent the “empty type” of a singleton.
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We will want to use a generalized version of the wedge-thinning lemma from section 3:

Claim:
Let n ∈ ω. There exists l with the following property: for any infinite m + 1-wedge

D ⊆ ωm+1 and any finite m-wedge C ⊆ ωm of length l contained in some fixed-x1 slice
whose fixed x1 coordinate is strictly less than the x1-coordinate of any point in D, there is
an infinite m+ 1-wedge D′ ⊆ D and there is a finite m-wedge C ′ ⊆ C of length n such that
if we choose any a-many points from C ′ of type ~ta and any b-many points from D′ of type
~tb, then their union (which is a k-tuple of the type we care about) will have some fixed color
regardless of which points we choose.

Proof of claim:
This is similar to the proof of the wedge-thinning lemma from section 3.
Note that any pair with one member in C and another in D will have type 1, since

C is contained in some fixed-x1 slice whose fixed x1 coordinate is strictly less than the
x1-coordinate of any point in D.

We’ll use A to represent any a-tuple of type ~ta from C and B to represent any b-tuple of
type ~tb from D.

WLOG assume C is actually finite. Enumerate all a-tuples of type ~ta from C (there are
finitely many of them). Consider the first such a-tuple, let’s call it A1.

We get a coloring of b-tuples from D based on the color of the k-tuple obtained when
each b-tuple B is unioned with A1. Since b < k, we can use our strong induction hypothesis
to find an infinite sub-wedge D1 ⊆ D on which every b-tuple of type ~tb shares a color. This
means that on D1, if we choose any b-many points of type ~tb then when we union them with
A1 the color of the resulting k-tuple is independent of our selection of b points.

We repeat this same procedure, considering each subsequent a-tuple from C, to further
thin our wedge D1 into a sequence D ⊇ D1 ⊇ D2 ⊇ ... ⊇ Dz = D′ in a manner similar to
the proof from section 3. Now if we choose any A from C and any B from D′ of type ~tb, the
color of the resulting k-tuple depends only on our choice of A.

This gives a coloring of a-tuples from C – the color of an a-tuple A is the color of the
k-tuple obtained when unioning on any B from D′ of type ~tb. Since a < k, we apply the
finite version of our strong induction hypothesis to conclude that if we make l large enough,
there must be some C ′ ⊆ C of length n within which all a-tuples of type ~ta share a color.
Now this C ′, D′ are as desired.

With this generalized wedge-thinning lemma, the proof proceeds similarly to Step 1 in
the proof from section 3.

We will find a subset A∗ ⊆ A that’s still an infinite m+1-wedge within which all k-tuples
of the specified type share a color. We’ll build A∗ recursively, one fixed-x1 slice at a time.
We will also build a decreasing sequence of infinite m+ 1-wedges A = A1 ⊇ A2 ⊇ A3.... The
i-th slice of A∗ will be taken from Ai. When unioning any a-tuple of type ~ta from the i-th
slice with any b-tuple of type ~tb from Ai+1, the result will be a k-tuple of the type we care
about. We will construct the i-th slice and Ai+1 so that all such k-tuples share one color
(which may depend on i).
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For the first step of the construction, we will apply the generalized wedge-thinning claim
with n = 1.

For C, use any large enough fixed-x1 slice of A. (The slices of A become arbitrarily large
finite m-wedges for large enough x1.)

For D, use any infinite m + 1-wedge D ⊆ A such that the x1-coordinate of any point in
D is greater than the fixed x1-coordinate of C.

Let A2 be the D′ obtained from the thinning process, and let the first fixed-x1 slice of
A∗ be the C ′ obtained from the thinning process. The claim guarantees that all k-tuples
consisting of an a-tuple of type ~ta from this first slice and a b-tuple of type ~tb from A2 share
a color, as desired.

For further steps, apply the thinning claim again but increase n and work in the latest
Ai instead of the original A.

At the i− th step of the construction, we add a finite m-wedge of length i to A∗ to obtain
its i-th fixed-x1 slice. By this construction, A∗ becomes an infinite m+ 1-wedge.

This gives A∗ and A = A1 ⊇ A2 ⊇ A3... such that the i-th slice of A∗ lies in Ai and all
k-tuples consisting of an a-tuple of type ~ta from this i-th slice and a b-tuple of type ~tb from
Ai+1 share a color.

Now if we fix any k-tuple of the type we care about from A∗, it must consist of an a-tuple
of type ~ta from some i-th slice and a b-tuple of type ~tb from Ai+1. (The b-tuple must lie in
Ai+1 because each of its members must have greater x1-coordinate than that of the a-tuple,
so each must lie in some i + l-th slice. Each such slice is contained in Ai+l ⊆ Ai+1.) So the
color of such a k-tuple depends only on which i-th slice the a-tuple of type ~ta lies in.

The color may depend on i, but some color must appear for infinitely many i by pigeon-
hole. Ignore other slices; we’re left with an infinite m+ 1-wedge on which all k-tuples of the
specified type share one color.

Case 2: The case where our specified type (t1, ..., tk−1) includes no 1’s. This is almost
identical to Step 2 in the proof of the k = 2 case from section 3.

In this case, each k-tuple of the type we care about is contained entirely within a single
slice. We assumed the finite m-dimensional case in our inductive hypothesis, so we apply it
recursively to build an infinite m + 1-wedge such that within each slice, color depends only
on type. The assignment of colors to types may vary from slice to slice, but there are finitely
many possibilities so one must appear infinitely often. Taking these infinitely many slices
gives the desired infinite m+ 1-wedge A∗ ⊆ A within which any two k-tuples of the specified
type share a color.

From this generalized infinite wedge lemma, we obtain the following theorem:

Theorem 6.7. For any m, k, p, ED+
m,m−1 → (ED+

m,m−1)
k
p,mk−1.

Proof. Recall that positive sets for EDm,m−1 are exactly infinite m-wedges. Fix some p-
coloring of any positive set A. A is an infinite m-wedge. Apply the generalized wedge lemma
to find A′ ⊆ A, another infinite m-wedge within which color depends only on type. A′ is
positive since it’s an infinite m-wedge. There are mk−1-many types, so A′ is mk−1-chromatic.
So A′ ⊆ A is a positive mk−1-chromatic set.
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7 Future Work

We conclude by discussing potential directions for future work.
Having answered the question of exactly when ω → (I+)2a,b implies ω → (I+)2m,n, it would

be natural to ask what happens if we change the superscript: when does ω → (I+)ca,b implies

ω → (I+)km,n?
One potential method for answering this question could be to generalize the EDm,n con-

struction to define some EDk
m,n. We would want EDk

m,n to not satisfy ω → ((EDk
m,n)+)km,n,

but we would want these ideals to have all of the “next-best” Ramsey properties. Perhaps
the generalized definition of “type” in section 6 could be used for this definition.

We might be interested in studying the “Ramsey number” of an ideal I: the least n such
that ∀p, we have ω → (I+)2p,n. We saw in section 3 that EDm,m−1 has Ramsey number
m. We could generalize this to depend on k – what is the least n such that ∀p, we have
ω → (I+)kp,n? In this case, from section 6 we know that EDm,m−1 exhibits exponential
growth in Ramsey number as a function of k. This raises the question: are there ideals for
which this sequence grows differently? Faster than exponential? Slower?

Based on the above notion of “Ramsey number”, do all Fσ ideals have finite Ramsey
numbers?

Hrusak’s question of whether any tall analytic ideal satisfies I+ → (I+)22,1 remains unan-
swered. Hrusak et al. proved that no tall Fσ ideal satisfies the above. However, we have
demonstrated the “next-best thing” – ED is tall, Fσ, and satisfies ED+ → (ED+)23,2. This
suggests that polychromatic Ramsey properties behave somewhat differently to monochro-
matic ones. Future work might aim to apply the methods of this paper to attempt to answer
Hrusak’s question.
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