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Abstract

In this project, we explored a model equation which characterizes airflow in and out

of the beehive. First, we solved the model equation analytically, then we implemented

two numerical methods: finite-difference method and Greens’s function method. Com-

parisons of plots are also presented. We can see from our numerical result that both of

them have O(h2) convergence. The application of this research is to devise new strate-

gies for more sustainable human architecture and to create new ventilation systems in

buildings.
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NOMENCLATURE

x hive entrance coordinate

t time

v(x, t) local flow velocity

ρ(x, t) density of fanning bees

vb outward air flow generated by each bee

Dv scaled momentum diffusivity

Lx hive entrance length

lb characteristic length scale derived from fanning pressure gradient and fluid friction
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Figure 1: Honeybee activity at a hive’s entrance [1].

1 Beehive Problem Description

How does a beehive stay cool on a hot day? The bees move to one side of the entrance

and create a fanning flow that pulls hot air out of the hive and draws cool air into the hive

as seen in Fig. 1 [1]. Mahadevan’s model [2] couples this fanning behavior to a minimal

equation (1) for fluid mass conservation across the hive entrance. Equation (1) constitutes

2-point boundary value problem for the air velocity v(x, t) as a function of the hive entrance

coordinate x and time t.

v(x, t) = lbvb

[
ρ(x, t)− 1

Lx

∫ Lx

0

ρ(x, t) dx

]
+Dv

∂2v(x, t)

∂x2
, 0 ≤ x ≤ 1, v(0) = v(1) = 0 (1)

We suppose ρ is a simple step function independent of time (t):

ρ(x, t) =


1, x < 1

4
,

0.5, x = 1
4
,

0, x > 1
4
,

(2)

as depicted in Fig. 2. In this model, the density function ρ is derived from a separate

equation.

Figure 2: density of fanning bees
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2 Exact Solution for 2-point BVP

Let’s solve Eq. (1) analytically. We assume all parameters have the value 1 in the model

equation, and v is independent of time. Then we have

v(x) = ρ− 1

4
+ v′′(x), 0 ≤ x ≤ 1. (3)

Since ρ is a step function, we can separate Eq. (3) into two sub-equations:

−v1(x)′′ + v1(x) =
3

4
, x ∈

[
0,

1

4

]
, (4)

−v2(x)′′ + v2(x) = −1

4
, x ∈

[
1

4
, 1

]
. (5)

Then we solve for v1, v2 separately, and meld them together at the end. In order to

make the final v(x, t) continuous, v1 and v2 have to be equal at the point x = 1
4
, moreover,

the first derivative of v1 and v2 also have to be equal at the point x = 1
4
, in other words,

v1(
1
4
) = v2(

1
4
), v′1(

1
4
) = v′2(

1
4
).

By using method of undetermined coefficients,

v1 = a sinh(x) + b cosh(x) +
3

4
(6)

v2 = c sinh(1− x) + d cosh(1− x)− 1

4
(7)

By boundary condition, v1(0) = 0:

v1(0) = a sinh(0) + b cosh(0) +
3

4
(8a)

= b+
3

4
= 0 (8b)

⇒ b = −3

4
(8c)

By boundary condition at the other side, v2(1) = 0:

v2(1) = c sinh(0) + d cosh(0)− 1

4
(9a)

= d− 1

4
= 0 (9b)

⇒ d =
1

4
(9c)
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Therefore we get,

v1(x) = a sinh(x)− 3

4
cosh(x) +

3

4
(10a)

v2(x) = c sinh(x) +
1

4
cosh(x)− 1

4
(10b)

And also by taking derivative of v1, v2:

v′1(x) = a cosh(x)− 3

4
sinh(x) (11a)

v′2(x) = −c cosh(1− x)− 1

4
sinh(1− x) (11b)

By v1(
1
4
) = v2(

1
4
) and Eq. (10a) & Eq. (11a):

a sinh(
1

4
)− c sinh(

3

4
) =

1

4
cosh(

3

4
) +

3

4
cosh(

1

4
)− 1 (12)

By v′1(
1
4
) = v′2(

1
4
) and Eq. (10b) & Eq. (11b):

a cosh(
1

4
) + c cosh(

3

4
) = −1

4
sinh(

3

4
) +

3

4
sinh(

1

4
) (13)

solve Eq. (12) and Eq. (13), we get

a =
1

sinh(1)
(
1

4
+

3

4
cosh(1)− cosh(

3

4
)) (14a)

c =
1

sinh(1)
(−3

4
− 1

4
cosh(1) + cosh(

1

4
)) (14b)

Our final exact solution is

v(x) =

{
v1 = 1

sinh(1)
(1
4

+ 3
4

cosh(1)− cosh(3
4
)) sinh(x)− 3

4
cosh(x) + 3

4
x ∈

[
0, 1

4

]
v2 = 1

sinh(1)
(−3

4
− 1

4
cosh(1) + cosh(1

4
)) sinh(x) + 1

4
cosh(x)− 1

4
x ∈

[
1
4
, 1
]
(15)

And the plot is shown in Fig. (3).

3 Finite-Difference Method

Let’s take a look at how finite-difference method works. Here is our differential equation and

boundary conditions.

−v(x)′′ + v(x) = f(x), 0 ≤ x ≤ 1, v(0) = α, v(1) = β (16)
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Figure 3: Exact Solution

We first divide the interval [0,1] into n+ 1 subintervals. Then each subinterval has

length h = 1
n+1

. There are n+ 1 mesh points: xi = ih, i = 0, 1, ..., n+ 1, as shown in Fig. 4.

Figure 4: mesh points

Let vi = v(xi), fi = f(xi). By boundary conditions, we know v0 = v(x0) = α, vn+1 =

v(xn+1) = β. The second derivative of vi can be approximated discretely:

D+D−vi =
vi+1 − 2vi + vi−1

h2
= v′′i +

h2

12
v
(4)
i +O(h4) (17)

Denote ui as the numerical solution, s.t. ui ≈ vi, u0 = α, un+1 = β. We have

−(ui+1−2ui+ui−1

h2 ) + ui = fi, i = 1, ..., n. After we transform it to a linear system, we get:

Figure 5: matrix form of finite-difference scheme: Ahuh = fh

Ahuh = fh, Ah : tridiagonal, symmetric. We solve this linear system by tridiagonal LU
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factorization: Ah = LhUh, where L is a lower triangular matrix, U is a upper triangular

matrix.(see figure 6)

Figure 6: LU factorization

Procedure to solve Ahuh = fh:

1) find Lh, Uh

2) solve Lhz = fh

3) solve Uhu = z.

u is our final numerical solution. After applying finite difference method to equation (1),

our result is shown in figure 7.

Figure 7: Numerical results of v(x,t)

4 Green’s Function Method

Then we tried another numerical method, Green’s function method, to solve the model

equation. Let’s look at a general equation:

−φ′′(x, y) + σ2φ(x, y) = f, φ(0) = 0, φ(1) = 0 (18)

Let g be the Green’s function of Eq. (18). Then g has to satisfy 4 properties:

1. −gxx(x, y) + σ2g(x, y) = 0 for x 6= y
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2. g(y+, y) = g(y−, y); gx(y+, y)− gx(y−, y) = −1

3. g(0, y) = 0, g(1, y) = 0

4. φ(x) =
∫ 1

0
g(x, y)f(y) dy

By the first three properties, we can solve the Green’s functiong(x, y) for Eq. (18):

g(x, y) =


sinh(σ(1− y))
σ sinh(σ)

sinh(σx) x < y

sinh(σy)
σ sinh(σ)

sinh(σ(1− x)) x > y

(19)

Then we can apply property 4 to get φ(x).

4.1 Derivation

For our beehive problem, we have two sub-equations Eq. (4) & Eq (5). Therefore, we have

to separate our integral into two parts as well.

φ(x) =

∫ 1
4

0

g(x, y) ∗ 3

4
dy +

∫ 1

1
4

g(x, y) ∗ −1

4
dy (20)

For the first part, when 0 ≤ x ≤ 1
4
:

φ(x) =
3

4

[∫ x

0

sinh(σy)

σ sinh(σ)
sinh(σ(1− x)) dy +

∫ 1
4

x

sinh(σ(1− y))

σ sinh(σ)
sinh(σx) dy

]
(21a)

− 1

4

∫ 1

1
4

sinh(σ(1− y))

σ sinh(σ)
sinh(σx) dy (21b)

=
3

4

[
sinh(σ(1− x))

σ sinh(σ)

1

σ
(cosh(σx)− cosh(0)) +

sinh(σx)

σ sinh(σ)
(− 1

σ
)(cosh(

3

4
σ)− cosh(σ(1− x)))

]
(21c)

− 1

4

sinh(σx)

σ sinh(σ)
(− 1

σ
)(cosh(0)− cosh(

3

4
σ))) (21d)

For the second part, when 1
4
≤ x ≤ 1:

8



φ(x) =
3

4

∫ 1
4

0

sinh(σy)

σ sinh(σ)
sinh(σ(1− x)) dy (22a)

− 1

4

[∫ x

1
4

sinh(σy)

σ sinh(σ)
sinh(σ(1− x)) dy +

∫ 1

x

sinh(σ(1− y))

σ sinh(σ)
sinh(σx) dy

]
(22b)

=
3

4

sinh(σ(1− x))

σ sinh(σ)

1

σ
(cosh(

1

4
σ)− cosh(0))) (22c)

− 1

4

[
sinh(σ(1− x))

σ sinh(σ)

1

σ
(cosh(σx)− cosh(

1

4
σ)) +

sinh(σx)

σ sinh(σ)
(− 1

σ
)(cosh(0)− cosh(σ(1− x)))

]
(22d)

4.2 Numerical solution

For our beehive problem, σ = 1 in Eq. (18). We can use midpoint method to solve

Eq. (21a)(21b), (22a)(22b). First we discretize this equation, ∆y = 1
n

= h, yi = ih, i =

0, ..., n, we can then transform the integral to Riemann sum,

φ(x) =

∫ 1

0

g(x, y)f(y) dy =
n∑

i=1

g(x,
yi−1 + yi

2
)f(

yi−1 + yi
2

) ∗ h (23)

Although we can solve these equations directly using midpoint method, it is generally

impossible to find the Green’s function for a 2-point boundary problem. Instead, we first

find Green’s function (call it g0) of

−φ̂′′(x, y) = f, φ̂(0) = 0, φ̂(1) = 0 (24)

and then do some smart tricks to solve −φ′′(x, y) + σ2φ(x, y) = f, φ(0) = 0, φ(1) = 0. By

doing the same procedures as solving Eq. (19),

1. −gxx(x, y) = 0 for x 6= y

2. g(y+, y) = g(y−, y); gx(y+, y)− gx(y−, y) = −1

3. g(0, y) = 0, g(1, y) = 0

4. φ̂(x) =
∫ 1

0
g(x, y)f(y) dy

we get g0(x, y).

g0(x, y) =

{
(1− y)x x < y

x(1− y) x > y
(25)
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Here is the trick. We can rewrite Eq. (18) as

−φ′′(x, y) = f − σ2φ(x, y), φ(0), φ(1) = 0 (26)

Then we see it has the same form as Eq. (24). By using g0,

φ(x) =

∫ 1

0

g0(x, y)(f(y)− σ2φ(x)) dy (27a)

→ φ(x) + σ2

∫ 1

0

g0(x, y)φ(y) dy =

∫ 1

0

g0(x, y)f(y) dy = φ̂(x) (27b)

Let xi = i ∗ h, yi = i ∗ h, x∗i = xi−1+xi

2
= yi−1+yi

2
, φi = φ(xi), φ

∗
i = φ(x∗i ), φ̂

∗
i = φ̂(x∗i ). xi is

end point and x∗i is midpoint, see Fig. 8 below.

x0 x
∗
1 x1 x

∗
2 x2 ... ... xi−1 x

∗
i xi ... xn+1

Figure 8: mesh points2

By boundary conditions, we have φ0 = φ(x0) = 0 φn = φ(xn) = 0.

For a mesh point x∗i , it satisfies Eq. (27):

φ(x∗i ) + σ2

∫ 1

0

g0(x
∗
i , y)φ(y) dy = φ̂∗i (28)

Using midpoint method, we transform it to Riemann sum:

φ(x∗i ) + σ2

n∑
i=1

g0(x
∗
i ,
yi−1 + yi

2
)φ(

yi−1 + yi
2

) ∗ h = φ̂∗i (29)

Transform it to a linear system:

1 + σ2hg0(x
∗
1, x
∗
1) σ2hg0(x

∗
1, x
∗
2) ..... σ2hg0(x

∗
1, x
∗
n)

σ2hg0(x
∗
2, x
∗
1) 1 + σ2hg0(x

∗
2, x
∗
2) ..... σ2hg0(x

∗
2, x
∗
n)

. . . .

. . . .

. . . .

σ2hg0(x
∗
n, x

∗
1) σ2hg0(x

∗
n, x

∗
2) ..... 1 + σ2hg0(x

∗
n, x

∗
n)





φ∗1

φ∗2

.

.

.

φ∗n


=



φ̂∗1

φ̂∗2

.

.

.

φ̂∗n


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We use LU factorization to solve these φ∗i . After applying this method to equation(1),

our result is shown in figure(9).

Figure 9: Green’s function results of v(x, t)

5 Summary and Future Work

We described the beehive problem and solved both exact and numerical solution. From

these plots, we found both of these two numerical method converges and have second order

accuracy. Our future work is to explore how to solve

−φ′′(x) + 2aφ′(x) + σ2φ(x) = f φ(0) = 0, φ(1) = 0 (30)

by using Green’s function method. And eventually we want to consider two dimensional

boundary value problems using finite-difference method and Green’s function method.
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