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Problem 1. Let f1, f2, . . . , g be measurable functions on a measure space (X,A, µ).
Assume that fn → f in measure and that fn ≤ g a.e. Prove that f ≤ g a.e.

Solution. As fn → f in measure, we know that limn→∞ µ({x ∈ X : fn ≤ f−ε}) = 0
for each ε > 0. Therefore, µ({x ∈ X : g ≤ f − ε}) = 0 since the latter set is
contained in the set {x ∈ X : fn ≤ f − ε} for all n. One easily concludes that

µ({x ∈ X : g < f}) = supk∈N µ({x ∈ X : g ≤ f − 2−k}) = 0.

By definition, this means that f ≤ g a.e.

Problem 2. Let B = {(x, y) ∈ R2 |x2 + y2 < 1} and f : [0, 1) → [0,+∞] be a

measurable function. For (x, y) ∈ B set F (x, y) := f(
√
x2 + y2). Prove that

F ∈ L1(B, λ2) if and only if

+∞∑
n,m=1

2n−mλ1({r ∈ [2−m, 1) | f(r) ≥ 2n}) < +∞ ,

where λ2 (resp., λ1) stands for the two-(resp., one-)dimensional Lebesgue measure.

Solution. To start with, note that the polar change of the coordinates gives∫
B

Fdλ2 = 2π

∫ 1

0

f(r) rdr .

For m,n, p, q ∈ N, denote

Am,n := {r ∈ [2−m, 1) : f(r) ≥ 2n},
Bp,q := {r ∈ [2−p, 2−p+1) : f(r) ∈ [2q, 2q+1)}.

By definition, Am,n =
⋃m

p=1

⋃+∞
q=nBp,q . Moreover, it is easy to see that

2q−pλ1(Bp,q) ≤
∫
Bp,q

f(r) rdr ≤ 4 · 2q−pλ1(Bp,q).

Note that
⋃+∞

p,q=1Bp,q = B := {r ∈ [0, 1) : f(r) ≥ 2} and that this union is disjoint.
Therefore,∫

[0,1)

f(r) rdr < +∞ ⇔
∫
B

f(r) rdr < +∞ ⇔
+∞∑
p,q=1

2q−pλ1(Bp,q) < +∞ .

At the same time,

+∞∑
n,m=1

2n−mλ1(An,m) =

+∞∑
n,m=1

2n−m
m∑

p=1

+∞∑
q=n

λ1(Bp,q)

=
+∞∑
p,q=1

λ1(Bp,q)
+∞∑
m=p

q∑
n=1

2n−m =

+∞∑
p,q=1

λ1(Bp,q) · 21−p(2q+1 − 1).

It remains to note that 2q−p ≤ 21−p(2q+1 − 1) ≤ 4 · 2q−p for all p, q ∈ N.
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Problem 3. Let f : R→ R be a measurable function such that
∫
R |f(x)|dx < +∞.

Prove that the sequence

hn(x) =
1

n

n∑
k=1

f

(
x+

k

n

)
converges in L1(R) and find its limit.

Solution. Assume first that f = 1[a;b) is the characteristic function of a finite
segment [a; b) ⊂ R. In this case, it is easy to see that for each fixed x ∈ R one has

hn(x)→ h(x) as n→∞, where h(x) :=
∫ x+1

x
f(t)dt. Moreover,

|hn(x)− h(x)| = 0 if x < a− 1 or x ≥ b,
|hn(x)− h(x)| ≤ 1

n if x ∈ [a− 1; b).

Therefore, ‖hn − h‖1 ≤ 1
n (b− a+ 1) and the convergence hn → h holds in L1(R).

By additivity, the same result (hn → h in L1(R), where h(x) =
∫ x+1

x
f(t)dt) holds

for all step functions f .

Assume now that f ∈ L1(R) is an arbitrary function. Let h(x) :=
∫ x+1

x
f(x)dx

and note that∫
R
|h(x)|dx ≤

∫
R

∫ x+1

x

|f(t)|dt dx =

∫
R
|f(t)|dt = ‖f‖1

due to the Tonelli theorem; in particular h ∈ L1(R). For each ε > 0 one can find
a step function f (ε) ∈ L1(R) such that ‖f − f (ε)‖1 < 1

3ε and then N(ε) ∈ N such

that ‖h(ε)n − h(ε)‖1 < 1
3ε for all n ≥ N(ε), where h(ε)(x) :=

∫ x+1

x
f (ε)(t)dt and

h
(ε)
n (x) := 1

n

∑n
k=1 f

(ε)(x+ k
n ). We have∥∥h(ε)n − hn

∥∥
1
≤ 1

n

n∑
k=1

∥∥f (ε)(·+ k
n )− f(·+ k

n )
∥∥
1

=
∥∥f (ε) − f∥∥

1
< 1

3ε

and∥∥h(ε) − h∥∥
1

=

∫
R

∣∣∣∣∫ x+1

x

f (ε)(t)dt −
∫ x+1

x

f(t)dt

∣∣∣∣dx ≤ ∫
R

∫ x+1

x

∣∣f (ε)(t)− f(t)
∣∣dt dx

=

∫
R

∣∣f (ε)(t)− f(t)
∣∣dt =

∥∥f (ε) − f∥∥
1
< 1

3ε.

Therefore,

‖hn − h‖1 ≤
∥∥hn − h(ε)n

∥∥
1

+
∥∥h(ε)n − h(ε)

∥∥
1

+
∥∥h(ε) − h∥∥

1
< ε for all n ≥ N(ε),

which means that hn → h in L1(R), where h(x) :=
∫ x+1

x
f(x)dx.

Problem 4. Let K = {f : (0,+∞)→ R |
∫ +∞
0

(f(x))4dx < 1}. Find

sup
f∈K

∫ +∞

0

(f(x))3

1 + x
dx .

Solution. It follows from the Hölder inequality that∫ +∞

0

(f(x))3

1 + x
dx ≤

(∫ +∞

0

|(f(x))3| 43 dx
) 3

4
(∫ +∞

0

dx

(1+x)4

) 1
4

< 3−
1
4
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for all f ∈ K. Hence, the supremum over all f ∈ K cannot be greater than 3−
1
4 . In

order to prove that it actually equals this number one can, e.g., consider functions
fε(x) := (1−ε) ·3 1

4 (1+x)−1 with ε ↓ 0 for which the Hölder inequality becomes the

equality,
∫ +∞
0

(fε(x))4dx = (1− ε)4, and
∫ +∞
0

(fε(x))3(1 +x)−1dx = (1− ε)3 ·3− 1
4 .

Problem 5. Let fn : R→ [0, 1] be measurable functions such that supx∈R fn ≤ 1
n

and
∫
R fn(x)dx = 1. Set F (x) = supn∈N fn(x). Prove that

∫
R F (x)dx = +∞.

Solution. Clearly, fn → 0 a.e. as n→∞ and fn(x) ≤ F (x) for all n ∈ N and x ∈ R.
If we had

∫
R F (x)dx < +∞, then the dominated convergence theorem would imply

that limn→∞
∫
R fn(x)dx =

∫
R limn→∞ fn(x)dx = 0, which is a contradiction.

There is also a more ‘constructive’ solution. Suppose that
∫
R F (x)dx < +∞.

Then one can find a (big) segment [−a; a] ⊂ R such that
∫
Rr[−a;a] F (x)dx < 1

2 .

Let us now take n > 4a. As fn ≤ 1
n < 1

4a everywhere and, in particular, on the

segment [−a; a], we have
∫
[−a;a] fn(x)dx < 1

2 . Therefore,∫
Rr[−a;a] F (x)dx >

∫
Rr[−a;a] fn(x)dx = 1−

∫
[−a;a] fn(x)dx > 1

2 ,

a contradiction.


