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Problem 1. Prove that there is no polynomial P (z) such that∣∣∣∣P (z)− 1

2z2 + 1

∣∣∣∣ < 1

9
for all z with 1 < |z| < 2.

Solution. It is easy to see from the triangle inequality that 3 ≤ |2z2 + 1| ≤ 5 if

|z| =
√

2. Therefore, one can apply the Rouché theorem for meromorphic functions,
which claims that the number of zeroes minus the number of poles of P (both

counted with multiplicity) inside the circle |z| =
√

2 equals the same quantity for
1/(2z2 + 1), which is −2. This is a contradiction as P does not have poles and
hence this quantity has to be nonnegative.

If you do not know this generalized form of the Rouché theorem, it can be avoided
by saying that

|(2z2 + 1)P (z)− 1| < 1 for |z| =
√

2,

which means – due to the usual Rouché theorem – that the number of zeroes of
the function (2z2 + 1)P (z) inside the circle |z| =

√
2, counted with multiplicities,

equals the number of zeroes of the polynomial 1. In other words, the polynomial
(2z2 + 1)P (z) has to have no zeroes inside this circle, which is again impossible

because of the presence of two zeroes at the points z = ±i/
√

2.

Problem 2. Let D = {z ∈ C : |z| < 1}, S = {z ∈ C : |Imz| < π
2 }, and f : S → D

be an analytic function such that f(0) = 0. Prove that |f ′(0)| ≤ 1
2 .

Solution. Note that the mapping z 7→ ez bijectively sends S onto the right half-
plane {z ∈ C : <z > 0}. Therefore, the Riemann uniformization map φ : S→ D of

S onto the unit disc D that sends 0 to 0 is given by φ(z) =
ez − 1

ez + 1
. We can now

apply the Schwarz lemma to the mapping f ◦ φ−1 : D→ D:∣∣(f ◦ φ−1)′(0)
∣∣ = |f ′(0)| · |φ′(0)|−1 ≤ 1,

which is equivalent to saying that |f ′(0)| ≤ 1
2 since |φ′(0)| = 1

2 .

Problem 3. Evaluate the integral∫
γ

(
1

z2 + 4
− 1

(z + 2)2

)
dz ,

where the curve γ is given by the parametrization z(t) = teit, t ∈ [0, 2π].

Solution. Note that the integrand has singularities at z = ±2i and z = −2 and
that only z = −2 and z = −2i lie inside the closed contour obtained from γ and
the segment [0; 2π] traveled in the opposite direction. Further,

res
z=−2i

1

z2 + 4
=

1

z − 2i

∣∣∣∣
z=−2i

=
i

4
and res

z=−2

1

(z + 2)2
= 0 .

Therefore, the Cauchy formula gives∫
γ

(
1

z2 + 4
− 1

(z + 2)2

)
dz −

∫ 2π

0

(
1

x2 + 4
− 1

(x+ 2)2

)
dx = 2πi · i

4
= −π

2
.



2

Since∫ 2π

0

(
1

x2 + 4
− 1

(x+ 2)2

)
dx =

(
1

2
arctan

x

2
+

1

x+ 2

)∣∣∣∣2π
0

=
1

2

(
arctanπ − π

π + 1

)
,

the answer is 1
2

(
arctanπ − π(π+2)

π+1

)
.

Problem 4. Let {zn}∞n=1 ⊂ C r {0} be such that zn → 0 as n → ∞, and
f : C r {zn}∞n=1 r {0} be an analytic function. Assume that the function f has a
pole at each of the points zn. Prove that for each a ∈ C there exists a sequence
{wn}∞n=1 such that wn → 0 and f(wn)→ a as n→∞.

Solution. Suppose that such a sequence wn does not exist. Then, one can find ε > 0
such that |f(z)− a| > ε for all z ∈ Ω := Cr {zn}∞n=1 r {0} such that |z| < ε. This
means that the function g(z) := 1/(f(z) − a) is analytic and bounded in a small
neighborhood of 0 in Ω. Consider now the behavior of g near zn. The function f
has a pole at zn, which means that |f(z)| → ∞ and hence g(z) → 0 as z → zn.
Hence, each zn is a removable singularity of g. Therefore, g is a bounded analytic
function the punctured disc {z ∈ C : 0 < |z| < ε}, which means that g is actually
an analytic function in a vicinity of the origin. However, this contradicts to the
uniqueness principle for analytic functions since g(zn) = 0 and zn → 0 as n→∞.

Remark. Note that one cannot apply the Casorati–Weierstrass theorem to f since
0 is not an isolated singularity of f .

Problem 5. Let H = {z ∈ C : Imz > 0} and f : H → C be an analytic function.
Assume that

sup
y>0

∫ +∞

−∞
|f(x+ iy)|dx < +∞ .

(a) Prove that the integral ∫ +∞

−∞
f(x+ iy)dx

does not depend on y > 0.

(b) Prove that ∫ +∞

−∞

f(x+ iy)

x+ iy
dx = 0 for all y > 0.

Solution. (a) Let 0 < y1 < y2 < +∞ and R > 0. As the function f : H → C is
analytic, we know that∫ R

−R
f(x+ iy1)dx−

∫ R

−R
f(x+ iy2)dx =

∫ R+iy1

−R+iy1

f(z)dz +

∫ −R+iy2

R+iy2

f(z)dz

= −
∫ R+iy2

R+iy1

f(z)dz −
∫ −R+iy1

−R+iy2

f(z)dz = i

∫ y2

y1

f(−R+ iy)dy − i
∫ y2

y1

f(R+ iy)dy ,

where the second equality follows from the Cauchy theorem applied to the boundary
of the rectangle {z ∈ C : |Re(z)| ≤ R, Im(z) ∈ [y1; y2]} .

We now want to pass to the limit as R→ +∞. Since
∫ +∞
−∞ |f(x+ iy)|dx < +∞

for both y = y1, y2, the l.h.s. converges to
∫ +∞
−∞ f(x+ iy1)dx−

∫ +∞
−∞ f(x+ iy2)dx.
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However, it is a priori not clear why the r.h.s. converges to 0. The easiest way to
overcome this difficulty is to note that∫ +∞

−∞

∣∣∣∣∫ y2

y1

f(x+ iy)dy

∣∣∣∣dx ≤ ∫ +∞

−∞

∫ y2

y1

|f(x+ iy)|dydx

=

∫ y2

y1

∫ +∞

−∞
|f(x+ iy)|dxdy ≤ (y2 − y1) · sup

y>0

∫ +∞

−∞
|f(x+ iy)|dx < +∞ .

This guarantees the existence of a sequence Rn → +∞ such that both integrals∫ y2
y1
f(±R + iy)dy tend to zero as n → ∞. One can then pass to the limit in the

identity coming from the Cauchy theorem along this sequence R = Rn → +∞.

(b) Fix y0 > 0. Let

g(z) =
f(z + i

2y0)

z + i
2y0

.

This is again an analytic function in the upper half-plane H and it is easy to see
that

sup
y>0

∫ +∞

−∞
|g(x+ iy)|dx ≤ 2

y0
· sup
y>0

∫ +∞

−∞
|f(x+ iy)|dx < +∞.

Therefore, the integral
∫ +∞
−∞ g(x+ iy)dx does not depend on y. It remains to note

that for any y > 0,∣∣∣∣∫ +∞

−∞

f(x+ iy0)

x+ iy0
dx

∣∣∣∣ =

∣∣∣∣∫ +∞

−∞
g(x+ i

2y0)dx

∣∣∣∣ =

∣∣∣∣∫ +∞

−∞
g(x+ iy)dx

∣∣∣∣
≤ 1

y + 1
2y0

∫ +∞

−∞
|f(x+ i(y + 1

2y0))|dx → 0 as y → +∞

since the latter integrals are uniformly bounded by our assumption.


