
AIM Qualifying Review Exam: Probability and Discrete Mathematics

January 6, 2025

There are five (5) problems in this examination.

There should be sufficient room in this booklet for all your work. But if you use other sheets of paper, be
sure to mark them clearly and staple them to the booklet.

Problem 1

Find, as function of n, the sum
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Hint: try integrating a series for (1 + x)n.

Solution outline

Brualdi exercise 5.7.16, p. 156.
For n ≥ 0, we have (1 + x)n = 1 +
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xn+1. Our series Sn is the result of substituting x = 1. Thus, the sum of the series is∫ 1

x=0
(1 + x)n dx = x+ n

2x
2 · · ·

∣∣1
0
, since the antiderivative vanishes at the lower bound of integration, x = 0.

Putting u = x+ 1 so du = dx, we get
∫ 2

u=1
un du = 1

n+1u
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1
+ 1 = 2n+1−1

n+1 . This can be checked directly
for small n:

n Sn
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1 3/2

Mathematical concepts: binomial coefficients, generating functions

Problem 2

An r-combination of a multiset M is an unordered collection of r items in M .
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(a) Let T ∗ be the multiset {∞ · a,∞· b,∞· c} (infinitely-many a’s, b’s, and c’s). Determine the the number

of 10-combinations of T ∗. (So, for example,

9︷ ︸︸ ︷
aaaaaaaaa b and b

9︷ ︸︸ ︷
aaaaaaaaa are different names for the

same valid 10-combination, since they consist of a, b, c but have the same number of each letter and differ
only in the order.)

(b) Determine the number of 10-combinations in the (size 12) multiset T = {3 · a, 4 · b, 5 · c}, consisting of
three a’s, four b’s, and five c’s.

(c) Determine the number of 10-combinations in T = {3 · a, 4 · b, 8 · c}, consisting of three a’s, four b’s, and
eight c’s.

Solution outline

Brualdi example, page 169.

(a) The “balls and bars” formulation asks for the number of ways to arrange 10 balls and 2 bars in 12 slots.
For example, • • | • • • • • • • |• corresponds to 2 a’s, 7 b’s, and 1 c. That number is

(
10+3−1

3−1

)
= 66, since

the number, 2, of bars is one less than the number, 3, of types of letters, i.e. groups of balls.

(b) Let T ∗ be the multiset {∞·a,∞·b,∞·c}. Let A be the set of 10-combinations of T ∗ with more than 3 a’s,
let B be the set of 10-combinations of T ∗ with more than 4 b’s, and let C be the set of 10-combinations
of T ∗ with more than 5 c’s. Let S be the set of all 10-combinations of T ∗.

Using the Inclusion-Exclusion principle, we want

|A ∩B ∩ C| = |S|
−(|A|+ |B|+ |C|)
+(|A ∩B|+ |B ∩ C|+ |C ∩A|)
−|A ∩B ∩ C|.

Above we computed |S| = 66. Then A counts 10-combinations having 4 a’s plus any 6-combination (i.e.,
10− (3 + 1))-combination, reading 10 and 3 from the given information of T ∗, etc., so |A|+ |B|+ |C| =(
10−(3+1)+3−1

3−1

)
+
(
10−(4+1)+3−1

3−1

)
+
(
10−(5+1)+3−1

3−1

)
= 28+21+15 = 64. And A∩B counts 4 a’s and 5 b’s

and any 1-combination, etc., so |A∩B|+ |A∩C|+ |B∩C| =
(
10−(3+1+4+1)+3−1

3−1

)
+
(
10−(3+1+5+1)+3−1

3−1

)
+(

10−(4+1+5+1)+3−1
3−1

)
= 3 + 1 + 0, and |A ∩B ∩ C| ≤ |B ∩ C| = 0. We get 66− 64 + 4− 0 = 6.

Alternatively, from the 12 = 3 + 4 + 5 items, toss two, in
(
2+3−1
3−1

)
= 6 ways: aa, ab, ac, bb, bc, cc. That

is, the number of 10-combinations is the same as the number of 2-combinations from the 10 + 2 = 12
element multiset, and each type of item numbers at least 2. So the Inclusion-Exclusion principle is not
required (and, arguably, not simplest).

(c) Similar to the above, we want(
10 + 3− 1

3− 1

)
−

[(
10− (3 + 1) + 3− 1

3− 1

)
+

(
10− (4 + 1) + 3− 1

3− 1

)
+

(
10− (8 + 1) + 3− 1

3− 1

)]
+

(
10− (3 + 1 + 4 + 1) + 3− 1

3− 1

)
+

(
10− (3 + 1 + 8 + 1) + 3− 1

3− 1

)
+

(
10− (4 + 1 + 8 + 1) + 3− 1

3− 1

)
−

(
10− (3 + 1 + 4 + 1 + 8 + 1) + 3− 1

3− 1

)
,

which is 66− [28 + 21 + 3] + [3 + 0 + 0]− 0 = 17.
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In this case, from a multiset of size 3 + 4 + 8 = 15, we need to toss 15 − 10 = 5 items, which is more
than the number, 3, of a’s and more than the number, 4, of b’s. So the Inclusion-Exclusion principle is
non-trivially useful either to count the surviving combinations or to count the ways to toss elements. Still,
the numbers are smaller and the non-zeros are fewer if we count ways to toss. The number of ways to toss
5 elements is(
5 + 3− 1

3− 1

)
−

[(
5− (3 + 1) + 3− 1

3− 1

)
+

(
5− (4 + 1) + 3− 1

3− 1

)
+

(
5− (8 + 1) + 3− 1

3− 1

)]
+

(
5− (3 + 1 + 4 + 1) + 3− 1

3− 1

)
+

(
5− (3 + 1 + 8 + 1) + 3− 1

3− 1

)
+

(
5− (4 + 1 + 8 + 1) + 3− 1

3− 1

)
−

(
5− (3 + 1 + 4 + 1 + 8 + 1) + 3− 1

3− 1

)
.

This is 21− [3 + 1 + 0] + [0 + 0 + 0]− 0 = 17.

Mathematical concepts: Combinations, Inclusion-Exclusion principle

Problem 3 Let f(x, y) = 24xy on the triangular region 0 ≤ x, y ≤ x+ y ≤ 1.

(a) Show that f is a joint probability density function.

(b) Find E[X], where X is the random variable associated with x under f .

(c) Find E[Y ], where Y is the random variable associated with y under f . Solve using the above without
any new computation.

(d) Are X and Y independent?

Solution outline

Ross 6.21, page 288.

(a) We can readily check that f ≥ 0. The integral on the given region R is∫∫
R

24xy = 24

∫ 1

x=0

x

∫ 1−x

y=0

ydydx

= 24

∫ 1

x=0

x
(1− x)2

2
dx

= 12

∫ 1

0

x− 2x2 + x3 dx

= 6x2 − 8x3 + 3x4
∣∣1
0

= 6− 8 + 3 = 1.
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(b) The expectation is
∫∫

R
xf(x, y). That is∫∫

R

24x2y = 24

∫ 1

x=0

x2

∫ 1−x

y=0

ydydx

= 24

∫ 1

x=0

x2 (1− x)2

2
dx

= 12

∫ 1

0

x2 − 2x3 + x4 dx

= 4x2 − 6x3 +
12

5
x4

∣∣1
0

= 4− 6 +
12

5
=

2

5
.

(c) The density (inside and outside of R) is symmetric in the sense that it is unchanged under exchange of x
and y, so 24xy = 24yx and x+ y = 1 iff y+ x = 1, etc., in the definition of R. So X and Y are identical
and have the same expectation, 2

5 .

(d) The variables are dependent. If X = 1, then Y ≡ 0, whereas, if X = 1
2 , then Y has density that is a

normalized version of 24( 12 )y, or 4y, for 0 ≤ y ≤ 1
2 . (The function f is continuous, so the above also

holds approximately conditioned on the non-zero probability events X ≈ 1 and X ≈ 1
2 .)

Mathematical concepts: Continuous random variables, joint distributions, expectation, independence

Problem 4 A surveyer is knocking on doors in Ann Arbor, collecting answer to the sensitive question, “are

you rooting for Ohio State?”. Respondents are to follow this protocol:

• Flip a coin C1 with heads probability p.

• If C1 is heads, answer YES or NO truthfully.

• If C1 is tails, flip another coin, C2, with heads probability 1
2 , and answer YES or NO according to C2.

Suppose n people are surveyed and Suppose cn ≤ n people have true answer YES. Let X denote the total
number of YES answers given to the survey (which is often not exactly cn).

(a) Suppose Alice is surveyed. Let fNO be the probability mass function for X conditioned on Alice’s true
answer equal to NO and let fYES be the probability mass function for X conditioned on Alice’s true
answer equal to YES. Find b =

∑
x |fYES−fNO| that holds over all possibilities of others’ answers. (This

protects Alice’s privacy.)

(b) Find µ = E[X]. (This and the below insure that the data gathered is useful.)

(c) Find σ2 = Var[X] = E[(X − µ)2].

(d) The Chebyshev inequality says that, for any random variable Y with mean µ and standard deviation σ,
and any non-negative k, we have Pr(|Y −µ| > kσ) ≤ 1

k2 . Given b as above and if we want Pr(|X−E[X]| >
1
10n) ≤

1
100 , find p and n to satisfy requirements, as guaranteed by Chebyshev.

Solution outline
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(a) We can, without loss of generality, generate X by surveying Alice last, and consider the joint distribution
y⃗ on all n−1 others. Conditioned on whatever the others respond, the joint distribution on all (including
Alice) leads to |fYES − fNO| = 1 with probability p and, considering the two outcomes of C2, leads to
|fYES − fNO| = 1 with additional probability 1−p

2 . Summing for each x the outcome relevant to x, we

get b = 1+p
2 .

(b) By linearity of expectation, sum the expectation of the respondents. The cn true-YES respondents
contribute expectation p ·1+ 1−p

2 each, for total cn 1+p
2 , and the (1−c)n true-NO respondents contribute

p · 0 + 1−p
2 each, for total (1 − c)n 1−p

2 . The grand total is cnp + n 1−p
2 . (In practice, c is unknown but

n and p are known and so c can be isolated, to the extent that the empirical result equals or is close to
the expected value.)

(c) The responses of distinct individuals are independent, so the variances add. Each of the cn true-YES
respondents answers YES with probability 1+p

2 , so contributes variance 1+p
2 · 1−p

2 , and, likewise, for the

true-NO respondents, for total n 1−p2

4 .

(d) We are given b = 1+p
2 to protect privacy, so p = 2b− 1. The failure probability 1

k2 ≤ 1
100 makes k ≥ 10.

The standard deviation is σ = 1
2

√
n(1− p2). So we want kσ = k

2

√
n(1− p2) = n

10 , or 5k
√
1− p2 =

√
n,

or n ≥ 2500(1− p2) = 2500(1− (2b− 1)2).

Mathematical concepts: Bernoulli random variables, mean, variance, tail bounds, probability sample
spaces

Problem 5

The fruit orange used to be called norange in English like naranja in Spanish; after saying “a norange”
many times, English shifted to “an orange.”

Suppose we are given a string of letters without spaces, like anorange, and the goal is to insert spaces
to maximize the sum of quality scores of the substrings. For example, in modern English, presumably qual-
ity(an) + quality(orange) is greater than either quality(a) + quality(norange) or quality(an) + quality(ora)
+ quality(nge). Note that the number of spaces is not fixed, but optimized, along with the placement of
spaces. Qualities may be positive or negative. Ignore any consideration about whether the string of words
makes sense; e.g., a/no/range consists of high quality individual words, even if the string of words is less
plausible than an/orange.

Give an algorithm that takes a string of n symbols, has access to quality() as a unit-cost black box for
single substrings (potential words), and, in time polynomial in n, finds a splitting that maximizes the sum
of the qualities. Briefly show correctness and efficiency, including finding a in the runtime O(na).

Solution outline

Kleinberg and Tardos, exercise 6.5, pages 316–17.
Use dynamic programming. Let A[1..n] denote the input string of letters and maintain the table Q(i)

of the best quality segmentation of the first i symbols A[1..i].

Q(0) = 0 // handles empty string at start

For i = 1 to n

Q(i) = maximum over 0 <= j < i of Q(j) + quality(A[j+1..i]).

That is, the best quality segmentation of A[1..i] consists of a segmentation of some possibly-empty
prefix A[1..j] and some non-empty last word, A[j+1..i]. These are considered.

The maximization implies a loop of i iterations, nested inside an explicit For loop. The total number of

iterations is about n2

2 , so the algorithm is quadratic, O(n2). (The number of iterations is at most n2. For
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the n/2 iterations where i > n/2, the maximum is over at least n/2 values of j, so there are at least n2

4
iterations.)

Mathematical concepts: Dynamic Programming
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