
AIM Qualifying Review Exam in Differential Equations & Linear Algebra

August 2025

There are five (5) problems in this examination.

There should be sufficient room in this booklet for all your work. But if you use other sheets of paper, be
sure to mark them clearly and staple them to the booklet. No credit will be given for answers without

supporting work and/or reasoning.

Problem 1

(a) Show that a strictly-positive-definite real matrix cannot have a zero or a negative number on its main
diagonal. (If you get stuck, think about some simple examples).

(b) Find a 2-by-3 matrix A and a vector b such that the general solution to Ax = b is x =

 2
1
4

 + c

 3
3
3


where c is any real number.

(c) Assume that B ∈ Rn×n has an orthogonal set of n eigenvectors. Prove that BBT = BTB.

Solution outline

(a) If 0 ≥ Ajj = eTj Aej then A is not positive definite.

(b) The null space of A is spanned by

 3
3
3

, so the two rows of A are orthogonal to this space and

independent. Let us choose A =

[
1 −1 0
1 0 −1

]
. Now Ax = b =

[
1
−2

]
. Other solutions are possible.

(c) B has an eigendecomposition B = V ΛV −1 = V ΛV T where the columns of V are orthogonal and Λ is
diagonal. Thus BBT = V ΛV TV ΛV T = V Λ2V T = BTB.

Problem 2
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(a) A permutation matrix has a single 1 in each row and in each column, and zeros elsewhere. Show that
for a 3-by-3 permutation matrix, 1 is always an eigenvalue and may have multiplicity one, two, or three.

(b) Show that for an n-by-n permutation matrix, 1 is always an eigenvalue and may have multiplicity equal
to any integer from 1 to n.

(c) Suppose P is the projection matrix onto the subspace S and Q is the projection onto the orthogonal
complement S⊥. Show that ∥P −Q∥2 = 1.

Solution outline

(a) For any 3-by-3 permutation matrix,

 1
1
1

 is an eigenvector with eigenvalue 1. For

 0 1 0
0 0 1
1 0 0

, 1 0 0
0 0 1
0 1 0

, and
 1 0 0

0 1 0
0 0 1

, 1 has multiplicity 1, 2, and 3, respectively.

(b) For any n-by-n permutation matrix, the n-vector with all ones is an eigenvector with eigenvalue 1. Let
an n-by-n permutation matrix be block diagonal with two blocks. The upper left block is the j-by-j
identity. The lower right block is the (n − j)-by-(n − j) permutation matrix that shifts each entry of
a vector forward by one row, and the last entry to the first row, under left multiplication. Then 1 has
multiplicity j for the upper block plus 1 for the lower block, and j may range from 0 to n − 1. The
reason 1 has multiplicity 1 for the lower block is that the eigenvalues of the last block are the (n− j)th
roots of unity, as may be seen by writing the characteristic equation for this block.

(c) We can decompose any vector v as v = Pv+Qv. So ∥v∥2 = ∥Pv+Qv∥2 = ∥Pv∥2+∥Qv∥2 = ∥Pv−Qv∥2.
So ∥(P −Q)v∥2/∥v∥2 = 1 for all v ̸= 0.

Problem 3

(a) Given that the general solution to
du

dt
= Au is u(t) = c1e

3t

[
2
1

]
+ c2e

−t

[
1
1

]
, find A.

(b) Show that the origin is an asymptotically stable critical point for the system of ODEs

x′ = −x3 + xy2 ; y′ = −2x2y − y3. (1)

Solution outline

(a) A =

[
2 1
1 1

] [
3 0
0 −1

] [
2 1
1 1

]−1

=

[
2 1
1 1

] [
3 0
0 −1

] [
1 −1
−1 2

]
=

[
7 −8
4 −5

]
(b) Consider the Liapunov function V = 2x2 + y2. dV/dt = 4xdx/dt + 2ydy/dt = −4x4 − 2y4 < 0 in any

neighborhood of the origin and V > 0 except for the origin, where they are both zero. Thus the origin
is an asymptotically stable critical point.

Problem 4

(a) Give an example of A ∈ R2×2 such that the origin is a center for the linear system x′ = Ax. For your
example, show that arbitrarily small perturbations to the entries of A can change the origin to a stable
or unstable critical point.
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(b) Give the form of a particular solution of the ODE y′′′′ + 2y′′ + y = sin t+ cos t as a linear combination
of functions of t but do not evaluate the constants.

Solution outline

(a) One example is A =

[
0 1
−1 0

]
. For this case we may take Aϵ =

[
ϵ 1
−1 ϵ

]
, but similar examples work

in other cases. The eigenvalues of Aϵ are ϵ± i, so we have a spiral source or sink for arbitrarily small ϵ.

(b) The homogeneous equation has solution yc = A sin t+B cos t+Ct sin t+Dt cos t. Thus we multiply our
initial guess a sin t+ b cos t by t2, so yp(t) = at2 sin t+ bt2 cos t.

Problem 5

(a) Find the general form of the solution to the PDE

∂2u

∂t2
+

∂u

∂t
− ∂2u

∂x2
= 0 (2)

for u(x, t) with boundary conditions

u(0, t) = 0 , u(1, t) = 0

and general initial conditions.

(b) For any of the solutions in part (a), let E(t) = 1
2

∫ 1

0
(∂tu)

2 + (∂xu)
2dx. Show that for any such solution

with a nonzero initial condition, dE/dt < 0 and give a physical interpretation for the two terms in the
integrand of E in terms of an elastic string.

Solution outline

(a) First, we write u = X(x)T (t) and obtain

X ′′

X
=

T ′′

T
+

T ′

T
= −k2.

The separation constant k2 has been chosen to be positive so that there are nontrivial solutions that
satisfy the boundary conditions X(0) = X(1) = 0. Such is the case for k = nπ for integers n, in which

case X = A sin(nπx) and T = Be−t/2eit
√

4(nπ)2−1 + Ce−t/2e−it
√

4(nπ)2−1. The general solution can be
written

u =

∞∑
n=1

an sin(nπx)e
−t/2 sin

(
t
√
4(nπ)2 − 1

)
+ bn sin(nπx)e

−t/2 cos
(
t
√

4(nπ)2 − 1
)
.

(b)

dE/dt =

∫ 1

0

∂tu∂ttu+ ∂xtu∂xudx (3)

= ∂tu∂xu|10dx+

∫ 1

0

∂tu∂ttu− ∂tu∂xxudx (4)

= −
∫ 1

0

(∂tu)
2
dx. (5)

For any nonzero initial condition, at least one of the coefficients in the solution to part (a) is nonzero,
and by orthogonality, the expression in (5) must be strictly negative. One can also derive the result by
working directly with the solution for u in part (a). The first term in the integrand of E is the kinetic
energy density of the string, and the second is the elastic potential energy density.
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