
AIM Qualifying Review Exam in Differential Equations & Linear Algebra

January 2025

There are five (5) problems in this examination.

There should be sufficient room in this booklet for all your work. But if you use other sheets of paper, be
sure to mark them clearly and staple them to the booklet. No credit will be given for answers without

supporting work and/or reasoning.

Problem 1

(a) The vectors q1, q2, and q3 are mutually orthogonal. What linear combination of q1 and q2 is closest to
q3? Prove your answer.

(b) Let q1, . . . , qn ∈ Rn be an orthonormal set (mutually perpendicular, each with norm 1). Prove that
A = q1q

T
1 + . . .+ qnq

T
n is the n-by-n identity matrix.

(c) Find an orthonormal basis for the subspace spanned by v1 = (1,−1, 0), v2 = (0, 1,−1), and v3 =
(1, 0,−1).

Solution outline

(a) The zero vector. ∥a1q1 + a2q2 − q3∥2 = ∥a1q1 + a2q2∥2 + ∥q3∥2 is minimum with a1 = a2 = 0.

(b) (q1q
T
1 + . . . + qnq

T
n )qj = qj for each j = 1 to n, since all products except the jth are zero. Thus

Aqj = qj = Iqj for all j = 1 to n, and also for all linear combinations (all of Rn).

(c) Apply the Gram-Schmidt process and obtain b1 = (1/
√
2,−1/

√
2, 0), b2 = (1/

√
6, 1/

√
6,−2/

√
6) as the

first two basis vectors. The third vector from the process is zero, so {b1, b2} is the basis.

Problem 2

(a) True or false the following: If the eigenvalues of A are 2, 2, 5, then the matrix is certainly

(i) invertible.

(ii) diagonalizable.
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(iii) not diagonalizable.

Prove your answer to each of (i), (ii) and (iii).

(b) If the vectors x1 and x2 are the first and second columns of S, what are the eigenvalues and eigenvectors

of A = S

[
2 0
0 1

]
S−1 and B = S

[
2 3
0 1

]
S−1 ?

(c) Suppose the first row of A is [7, 6] and its eigenvalues are i and −i. Find A.

Solution outline

(a) (i) True. A is invertible iff the determinant (the product of the eigenvalues) is nonzero.

(ii) False. Eigenvalue 2 could have geometric multiplicity 1, strictly less than the algebraic multiplicity,
giving a Jordan form with a 1 above the main diagonal.

(iii) False. Eigenvalue 2 could have geometric multiplicity 2, so A would be similar to the diagonal
matrix with 2, 2, and 5 on the main diagonal.

(b) If v is an eigenvector of C with eigenvalue λ, then Sv is an eigenvector of SCS−1 with the same
eigenvalue. Hence the eigenvectors of A are Se1 = x1 and Se2 = x2 with eigenvalues 2 and 1 respectively.

The eigenvectors of

[
2 3
0 1

]
are [1, 0]T and [3,−1]T with eigenvalues 2 and 1 respectively. Hence the

eigenvectors of B are Se1 = x1 and S[3,−1]T = 3x1 − x2 with eigenvalues 2 and 1 respectively.

(c) For a 2-by-2 matrix, the trace is the sum of the eigenvalues and the determinant is their product. The
trace is 0, so the lower right entry of A is -7. Since the determinant is 1, the lower left entry is -25/3.

Problem 3

(a) Solve the initial value problem

y′ + 3y = e−2t ; y(0) = 0 (1)

without using Laplace Transforms.

(b) Solve the problem in part (a) using the Laplace Transform method. Recall: the Laplace Transform is
defined as

L{f(t)} = F (s) =

∫ ∞

0

e−stf(t)dt. (2)

(c) Solve the differential equation

x

(x2 + y2)3/2
+

y

(x2 + y2)3/2
dy

dx
= 0 (3)

Solution outline

(a) Multiply both sides by the integrating factor e3t and get (ye3t)′ = et. Integrate and apply the initial
condition to get y = e−2t − e−3t.

(b) Get (s+3)Y (s) = 1/(s+2). Then get Y (s) = 1/(s+2)− 1/(s+3). An inverse Laplace transform gives
the answer in part (a).
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(c) This is a first order equation that is neither linear nor separable, so we check if it’s exact. We seek ψ
such that ∂xψ = x

(x2+y2)3/2
and ∂yψ = y

(x2+y2)3/2
. We can integrate either of these equations to obtain

ψ = −(x2 + y2)−1/2, and the differential equation tells us ψ = −(x2 + y2)−1/2 = const. is a solution.

Problem 4

Consider the system of equations

x′ = 1− xy ; y′ = x− y3. (4)

(a) Find all the critical points of the system.

(b) For each critical point, classify its type and stability.

(c) Sketch the phase portrait in the neighborhood of each critical point.

Solution outline

(a) (-1, -1) and (1, 1).

(b) For (-1, -1) the linearized system is u′ = u + v, v′ = u − 3v; the eigenvalues are −1 ±
√
5, so it’s an

unstable saddle point. For (1, 1) the linearized system is u′ = −u − v, v′ = u − 3v; the eigenvalues are
-2 with multiplicity 2, so it’s a stable sink, possibly degenerate.

(c) For (-1, -1), the trajectories move outward along [−1, 2 −
√
5], the eigenvector for the eigenvalue −1 +√

5, and inward along [2 −
√
5, 1], the eigenvector for the eigenvalue −1 −

√
5. For (1, 1), there is a

single eigenvector [1, 1], so it’s a degenerate sink. All trajectories approach the critical point along the
eigenvector direction. If they start off of this line, they adopt an S-shape centered on the critical point,
e.g. fig. 7.8.2a in Boyce and DiPrima.

Problem 5

(a) Consider the PDE

∂2u

∂t2
− c2

∂2u

∂x2
= 0 (5)

for u(x, t) with boundary conditions

u(0, t) = 0 , u(1, t) = 0

and general initial conditions. Use separation of variables to show that the general solution can be
written

u(x, t) = F (x+ ct) +G(x− ct). (6)

Useful identities:

sinA sinB =
1

2
(cos(A−B)− cos(A+B)) ; sinA cosB =

1

2
(sin(A−B) + sin(A+B))

(b) It turns out that the solution (6) can also hold for u(x, t) in the domain {−∞ < x <∞ ; t > 0}. Solve
equation (5) with the initial conditions:

u(x, 0) = 0 ,
∂u

∂t
(x, 0) = 2xe−x2

, −∞ < x <∞.
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Solution outline

(a) First, we write u = X(x)T (t) and obtain

X ′′

X
=

1

c2
T ′′

T
= −λ2.

The separation constant λ2 has been chosen to be positive so that there are nontrivial solutions that
satisfy the boundary conditions X(0) = X(1) = 0. Such is the case for λ = nπ for integers n, in which
case X = A sin(nπx) and T = B sin(nπct) + C cos(nπct). The general solution is

u =

∞∑
n=1

an sin(nπx) sin(nπct) + bn sin(nπx) cos(nπct).

The identities sinA sinB = 1
2 (cos(A−B)− cos(A+B)) and sinA cosB = 1

2 (sin(A−B) + sin(A+B))
show that all the terms in the sum are functions of x− ct and x+ ct.

(b) The first initial condition implies F (x) +G(x) = 0. The second is cF ′(x)− cG′(x) = 2cF ′(x) = 2xe−x2

.
Thus

2cF (x) = −e−x2

+D.

and the solution is

u(x, t) = − 1

2c

(
e−(x+ct)2 − e−(x−ct)2

)
.

4


