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Problem 1: Let f be an analytic function in the unit disc D = {z ∈ C : |z| < 1}
such that f(0) = 0 and |f(z)| < 2023 for all z ∈ D. Assume also that f satisfies
the property f(iz) = f(z) for all z ∈ D. Prove that |f( 1

7 )| < 1.

Solution: Consider the Taylor expansion f(z) =
∑∞
n=0 anz

n of the function f ; note

that a0 = 0 as f(0) = 0. The property f(iz) = f(z) implies inf (n)(0) = f (n)(0)
and hence an = (n!)−1f (n)(0) = 0 unless n is a multiple of 4. Therefore, one can
write f(z) = g(z4), where g(z) =

∑∞
n=1 a4nz

n. The function g is analytic in the
unit disc D and satisfies |g(z)| < 2023 for all z ∈ D, as well as g(0) = 0. Thus,
Schwarz–Pick’s lemma gives the desired estimate∣∣∣∣f (1

7

)∣∣∣∣ =

∣∣∣∣g( 1

74

)∣∣∣∣ ≤ 2023

74
<

2023

452
< 1 .

Problem 2: Let H = {z ∈ C : =z > 0} be the upper half-plane. Find a conformal
mapping from the domain

Hr { z ∈ H : z = eiθ, θ ∈ (0, π2 ] }
(i.e., H slit along a circular arc) back onto H. You may write your solution as a
composition of simpler maps.

Solution: First, consider the linear-fractional transform f1(z) = (z − 1)/(z + 1),
which maps R to R, the point +1 to 0, the point −1 to∞, and the point i = ei

π
2 to i.

The image of the domain in question under f1 is Hr{z ∈ H : <z = 0, =z ≤ 1}; the
upper half plane with a straight vertical cut. Next, consider the mapping f2(z) = z2,
which conformally maps this half-plane with a vertical cut onto Cr [−1,+∞); the
full plane cut along a ray. Finally, set f3(z) =

√
z + 1 and consider f3 ◦ f2 ◦ f1.

Problem 3: Use contour integration to evaluate the integral∫ 1

−1

√
1 + x

1− x
· dx

1 + x2
.

[ Simplification: If you experience difficulties, you can first change the variable of
integration to t = (1 +x)/(1−x) and use contour integration for the new integral. ]

Solution: We use the calculus of residues for the function f(z) =

√
1 + z

1− z
· 1

(1 + z2)
defined for z ∈ C r [−1, 1], where the branch of the square root is chosen so
that limy→0+ f(x + iy) > 0 for x ∈ (−1, 1). (Note that f is single-valued in the
domain C r [−1, 1].) Given (small) ε > 0, consider the contour γε that consists
of the segment S+

ε := [−1 + iε, 1 + iε] (oriented from left to right), a half-circle of
radius ε around the point +1 (oriented clockwise), the segment S−ε := [1− iε,−1−
iε] (oriented from right to left) and a half-circle around the point −1 (oriented
clockwise). Also, let R > 2 be big enough and ΓR denote the circle of radius R
centered at the origin, oriented counterclockwise. Cauchy’s residue theorem gives∫

γε

f(z)dz +

∫
ΓR

f(z)dz = 2πi · (res(f, i) + res(f,−i)).
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It is clear that |f(z)| = O(R−2) for z ∈ ΓR. Hence,
∫

ΓR
f(z)dz = O(R−1) and one

has (e.g., by considering the limit R→ +∞) the equality∫
γε

f(z)dz = 2πi · (res(f, i) + res(f,−i)).

Also, |f(z)| = O(|z− 1|−1/2) near the point +1 and |f(z)| = O(|z+ 1|1/2) near the
point −1, which means that

∫
z:|z±1|=ε |f(z)||dz| = O(ε1/2) as ε→ 0. Further,

lim
ε↓0

∫
S+
ε

f(z)dz = lim
ε↓0

∫
S−
ε

f(z)dz =

∫ 1

−1

√
1 + x

1− x
· dx

1 + x2

due to the uniform integrability in neighborhoods of the points ±1. (The same sign
for S−ε is the result of the compensation of two minuses: the first comes from the
opposite value of the square root, the second from the right-to-left orientation of
the segment.) Therefore,∫ 1

−1

√
1 + x

1− x
· dx

1 + x2
= πi · (res(f, i) + res(f,−i))

and it remains to compute the residues of the function f at its (simple) poles ±i.
Since (1± i)/(1∓ i) = ±i, we have

res(f, i) = ±eiπ4 /(2i) and res(f,−i) = ±e−iπ4 /(−2i) .

In order to avoid a careful consideration of the signs of the square roots one can
use the fact that the answer must be purely real and positive, namely∫ 1

−1

√
1 + x

1− x
· dx

1 + x2
=

π

2
· (eiπ4 + e−i

π
4 ) =

π√
2
.

Problem 4: Let α ∈ C satisfy |α| = 1. Consider the equation sin z =
α

z2
for z ∈ C.

(a) Prove that for each k ∈ Z r {0} this equation has exactly one solution inside
the vertical strip |<z − πk| < π

2 .

(b) How many solutions (counted with multiplicities) does this equation have inside
the vertical strip |<z| < π

2 ?

Solution: (a) It is easy to see that | sin z| = 1
2 (e=z + e−=z) ≥ 1 if <z = π

2 + πk.

Moreover, | sin z| ≥ 1
2 (e|=z|−e−|=z|) ≥ 1 if |=z| is large enough. Therefore, Rouche’s

theorem applied in each rectangle [−π2 +πk; π2 +πk]×[−C,C] with k 6= 0 implies that

the function sin z−αz−2 has the same number of roots (counted with multiplicities)
inside this rectangle as the function sin z. As all roots of the function sin z are simple
and located at points πk, k ∈ Z, this proves the claim by sending C → +∞.

(b) A similar reasoning can be applied in rectangles [−π2 ,
π
2 ]× [−C,C] to the func-

tions z2 sin z−α and z2 sin z. Since |z2 sin z| ≥ |z2| > 1 = |α| on the boundary of this
rectangle (provided that C is chosen large enough), the entire function z2 sin z − α
has exactly three roots (counted with multiplicity) inside such a rectangle (for all
C large enough) and hence in the full vertical strip |<z| < π

2 . As z = 0 cannot be

a root, the same is true for the equation sin z = αz−2.
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Problem 5: Let ak ∈ D = {z ∈ C : |z| < 1} for all k ∈ N. Consider functions

Bn(z) :=

n∏
k=1

z − ak
1− akz

, z ∈ D.

(a) Prove that the sequence {Bn}∞n=1 contains a subsequence that converges uni-
formly on compact subsets of the unit disc D.

(b) Assume that lim supn→∞(1− |an|) > 0. Prove that each subsequential limit of
the functions Bn is identically zero in D.

(c) Prove that the same holds if
∑∞
n=1(1− |an|) = +∞.

Solution: (a) Each factor is a linear-fractional transform of the unit disc D onto
itself. In particular, |Bn(z)| = 1 if |z| = 1 and the functions Bn are uniformly
bounded inside D. Montel’s theorem says that families of uniformly bounded holo-
morphic functions are normal and thus the sequence (Bn)∞n=1 has a locally uniformly
convergent subsequence.

(b) Assume that lim supn→∞(1−|an|) = ε > 0. Then, the number of zeros (counted
with multiplicity) of Bn inside the disc (1− 1

2ε)D grows to infinity as n→∞. On the
other hand, if there existed a non-trivial subsequential limit B of Bn, then B would
have only finitely many isolated zeros of finite order in (1− 1

2ε)D, a contradiction.
(Note that each point a that appears at least m times in the sequence (an)∞n=1 must
be a zero of B of order at least m since a is a zero of order m of each Bn with n
large enough and the convergence of Bn to B holds for all derivatives.)

(c) First, note that |Bn(0)| =
∏n
k=1 |ak| → 0 as n→∞ since

∑∞
k=1(1−|ak|) = +∞.

Our goal is to prove a similar claim for other z’s in D. It is not hard to see that∣∣∣∣ z − an1− anz
+ an

∣∣∣∣ =
|z| · (1− |an|2)

|1− anz|
≤ 1− |an|

2
if |z| ≤ 1

5
.

Therefore,

|Bn(z)| =

n∏
k=1

∣∣∣∣ z − an1− anz

∣∣∣∣ ≤ n∏
k=1

1 + |an|
2

→
n→∞

0 if |z| ≤ 1

5

(since
∑∞
k=1(1 − 1

2 (1 + |ak|)) = 1
2

∑∞
k=1(1 − |ak|) = +∞). It follows from this

estimate that each subsequential limit B of Bn must identically vanish at least in
the disc 1

5D. Since B is an analytic function in D, it then necessarily vanishes
everywhere in the unit disc.


