Department of Mathematics, University of Michigan
Complex Analysis Qualifying Exam
August 15, 2023; Morning Session

Problem 1: Let f be an analytic function in the unit disc D = {z € C: |z|] < 1}
such that f(0) = 0 and |f(2)| < 2023 for all z € D. Assume also that f satisfies
the property f(iz) = f(z) for all z € D. Prove that |f(1)] < 1.

Solution: Consider the Taylor expansion f(z) = Y - a,2" of the function f; note
that ag = 0 as f(0) = 0. The property f(iz) = f(z) implies i" £ (0) = £(™(0)
and hence a,, = (n!)~' (™ (0) = 0 unless n is a multiple of 4. Therefore, one can
write f(z) = g(z%), where g(z) = 377 | a4,2". The function g is analytic in the

unit disc D and satisfies |g(z)| < 2023 for all z € D, as well as g(0) = 0. Thus,
Schwarz—Pick’s lemma gives the desired estimate
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Problem 2: Let HH = {z € C: Sz > 0} be the upper half-plane. Find a conformal
mapping from the domain

H{zeH: z=¢" 0€(0,%]}

(i.e., H slit along a circular arc) back onto H. You may write your solution as a
composition of simpler maps.

Solution: First, consider the linear-fractional transform fi(z) = (z — 1)/(z + 1),
which maps R to R, the point +1 to 0, the point —1 to oo, and the point i = €% to i.
The image of the domain in question under f; is H\{z € H: Rz = 0, Sz < 1}; the
upper half plane with a straight vertical cut. Next, consider the mapping fa(2) = 22,
which conformally maps this half-plane with a vertical cut onto C \ [—1, 4+00); the
full plane cut along a ray. Finally, set f5(z) = vz 4+ 1 and consider f5o fy 0 fi.

Problem 3: Use contour integration to evaluate the integral

/1 1+ dx
A V1—2 1+22°

[ Simplification: If you experience difficulties, you can first change the variable of
integration to t = (14 z)/(1 —x) and use contour integration for the new integral. |
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Solution: We use the calculus of residues for the function f(z) = 1—4—72 . m
—z z

defined for z € C ~\ [—1,1], where the branch of the square root is chosen so
that lim,_,o4+ f(x +dy) > 0 for x € (—1,1). (Note that f is single-valued in the
domain C \ [-1,1].) Given (small) ¢ > 0, consider the contour 7. that consists
of the segment ST := [—1 + ie, 1 + i¢] (oriented from left to right), a half-circle of
radius ¢ around the point +1 (oriented clockwise), the segment S := [1 —ie, —1 —
ie] (oriented from right to left) and a half-circle around the point —1 (oriented
clockwise). Also, let R > 2 be big enough and I'p denote the circle of radius R
centered at the origin, oriented counterclockwise. Cauchy’s residue theorem gives

(z)dz + g f(z)dz = 2mi- (ves(f,4) +res(f,—1)).

Ve



2

It is clear that |f(z)] = O(R™?) for z € T'g. Hence, [;. f(2)dz = O(R™") and one
has (e.g., by considering the limit R — +00) the equality

/ f(z)dz = 2mi - (ves(f, i) + res(f, —1)).
Also, |f(2)] = O(|z — 1]~/?) near the point +1 and |f(2)| = O(]z + 1|*/?) near the
point —1, which means that fz:\ziu:s |f(2)||dz| = O(e'/?) as e — 0. Further,
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due to the uniform integrability in neighborhoods of the points 1. (The same sign
for S7 is the result of the compensation of two minuses: the first comes from the
opposite value of the square root, the second from the right-to-left orientation of
the segment.) Therefore,

' z dx
L E T2 = i (res(fyd) +res(f, —i))

and it remains to compute the residues of the function f at its (simple) poles +i.
Since (1 +14)/(1 F i) = +4, we have

res(f,i) = iei%/(%) and res(f, —i) = ie_’%/(_%) )

In order to avoid a careful consideration of the signs of the square roots one can
use the fact that the answer must be purely real and positive, namely

1
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Problem 4: Let o € C satisfy |a| = 1. Consider the equation sin z = — for z € C.
z

(a) Prove that for each k € Z ~ {0} this equation has exactly one solution inside
the vertical strip [Rz — mk| < J.

(b) How many solutions (counted with multiplicities) does this equation have inside
the vertical strip [Rz| < 37

Solution: (a) It is easy to see that |sinz| = 1(e¥* +e73%) > 1 if Rz = § + k.
Moreover, |sin z| > $(el32l—e~I92l) > 1if |3z| is large enough. Therefore, Rouche’s
theorem applied in each rectangle [— 5 +mk; §+mk] x[—-C, C] with k& # 0 implies that
the function sin z —az~?2 has the same number of roots (counted with multiplicities)
inside this rectangle as the function sin z. As all roots of the function sin z are simple
and located at points 7k, k € Z, this proves the claim by sending C — +o0.

(b) A similar reasoning can be applied in rectangles [-7, Z] x [-C, C] to the func-
tions 22 sin z—a and 22 sin 2. Since |22 sin z| > |2?| > 1 = |a| on the boundary of this

rectangle (provided that C is chosen large enough), the entire function 22 sin z — «

has exactly three roots (counted with multiplicity) inside such a rectangle (for all
C large enough) and hence in the full vertical strip [Rz| < §. As z = 0 cannot be
a root, the same is true for the equation sin z = az 2.



Problem 5: Let ap € D= {z € C: |z| < 1} for all kK € N. Consider functions

zZ — ag
By (z) :== H T a2 z € D.
k=1

(a) Prove that the sequence {B,}°2; contains a subsequence that converges uni-
formly on compact subsets of the unit disc D.

(b) Assume that limsup,,_, (1 — |a,|) > 0. Prove that each subsequential limit of
the functions B,, is identically zero in D.

(c) Prove that the same holds if Y07 | (1 — |a,|) = +oc.

Solution: (a) Each factor is a linear-fractional transform of the unit disc D onto
itself. In particular, |B,(z)] = 1 if |2| = 1 and the functions B,, are uniformly
bounded inside . Montel’s theorem says that families of uniformly bounded holo-
morphic functions are normal and thus the sequence (B,,)22_; has a locally uniformly
convergent subsequence.

(b) Assume that limsup,, ,..(1—|a,|) =€ > 0. Then, the number of zeros (counted
with multiplicity) of B,, inside the disc (1— %s)]D) grows to infinity as n — oo. On the
other hand, if there existed a non-trivial subsequential limit B of B,,, then B would
have only finitely many isolated zeros of finite order in (1 — %E)D, a contradiction.
(Note that each point a that appears at least m times in the sequence (a,, )32 ; must
be a zero of B of order at least m since a is a zero of order m of each B,, with n
large enough and the convergence of B,, to B holds for all derivatives.)

(c) First, note that |B,,(0)] = [[,_; |ax] — 0 as n — oo since Y po; (1—|ax|) = +oc.
Our goal is to prove a similar claim for other z’s in D. It is not hard to see that
2l - (1 —lanf?) _ 1—lan]
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Therefore,
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(since Yoo (1 — (1 4 |ag)) = 3351 (1 — |ag|) = +o00). It follows from this

estimate that each subsequential limit B of B,, must identically vanish at least in

the disc é]D). Since B is an analytic function in D, it then necessarily vanishes
everywhere in the unit disc.
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