Department of Mathematics, University of Michigan Complex Analysis Qualifying Exam

August 15, 2023; Morning Session

Problem 1: Let f be an analytic function in the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ such that f(0) = 0 and |f(z)| < 2023 for all $z \in \mathbb{D}$. Assume also that f satisfies the property f(iz) = f(z) for all $z \in \mathbb{D}$. Prove that $|f(\frac{1}{7})| < 1$.

Solution: Consider the Taylor expansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$ of the function f; note that $a_0 = 0$ as f(0) = 0. The property f(iz) = f(z) implies $i^n f^{(n)}(0) = f^{(n)}(0)$ and hence $a_n = (n!)^{-1} f^{(n)}(0) = 0$ unless n is a multiple of 4. Therefore, one can write $f(z) = g(z^4)$, where $g(z) = \sum_{n=1}^{\infty} a_{4n} z^n$. The function g is analytic in the unit disc \mathbb{D} and satisfies |g(z)| < 2023 for all $z \in \mathbb{D}$, as well as g(0) = 0. Thus, Schwarz-Pick's lemma gives the desired estimate

$$\left| f\left(\frac{1}{7}\right) \right| = \left| g\left(\frac{1}{7^4}\right) \right| \le \frac{2023}{7^4} < \frac{2023}{45^2} < 1$$

Problem 2: Let $\mathbb{H} = \{z \in \mathbb{C} : \Im z > 0\}$ be the upper half-plane. Find a conformal mapping from the domain

 $\mathbb{H} \setminus \{ z \in \mathbb{H} : z = e^{i\theta}, \ \theta \in (0, \frac{\pi}{2}] \}$

(i.e., \mathbbmsc{H} slit along a circular arc) back onto $\mathbbmsc{H}.$ You may write your solution as a composition of simpler maps.

Solution: First, consider the linear-fractional transform $f_1(z) = (z-1)/(z+1)$, which maps \mathbb{R} to \mathbb{R} , the point +1 to 0, the point -1 to ∞ , and the point $i = e^{i\frac{\pi}{2}}$ to i. The image of the domain in question under f_1 is $\mathbb{H} \setminus \{z \in \mathbb{H} : \Re z = 0, \Im z \leq 1\}$; the upper half plane with a straight vertical cut. Next, consider the mapping $f_2(z) = z^2$, which conformally maps this half-plane with a vertical cut onto $\mathbb{C} \setminus [-1, +\infty)$; the full plane cut along a ray. Finally, set $f_3(z) = \sqrt{z+1}$ and consider $f_3 \circ f_2 \circ f_1$.

Problem 3: Use contour integration to evaluate the integral

$$\int_{-1}^{1} \sqrt{\frac{1+x}{1-x}} \cdot \frac{dx}{1+x^2} \, .$$

[Simplification: If you experience difficulties, you can first change the variable of integration to t = (1+x)/(1-x) and use contour integration for the new integral.]

Solution: We use the calculus of residues for the function $f(z) = \sqrt{\frac{1+z}{1-z}} \cdot \frac{1}{(1+z^2)}$ defined for $z \in \mathbb{C} \setminus [-1,1]$, where the branch of the square root is chosen so that $\lim_{y\to 0+} f(x+iy) > 0$ for $x \in (-1,1)$. (Note that f is single-valued in the domain $\mathbb{C} \setminus [-1,1]$.) Given (small) $\varepsilon > 0$, consider the contour γ_{ε} that consists of the segment $S_{\varepsilon}^+ := [-1+i\varepsilon, 1+i\varepsilon]$ (oriented from left to right), a half-circle of radius ε around the point +1 (oriented clockwise), the segment $S_{\varepsilon}^- := [1-i\varepsilon, -1-i\varepsilon]$ (oriented from right to left) and a half-circle around the point -1 (oriented clockwise). Also, let R > 2 be big enough and Γ_R denote the circle of radius R centered at the origin, oriented counterclockwise. Cauchy's residue theorem gives

$$\int_{\gamma_{\varepsilon}} f(z)dz + \int_{\Gamma_R} f(z)dz = 2\pi i \cdot (\operatorname{res}(f,i) + \operatorname{res}(f,-i)).$$

It is clear that $|f(z)| = O(R^{-2})$ for $z \in \Gamma_R$. Hence, $\int_{\Gamma_R} f(z) dz = O(R^{-1})$ and one has (e.g., by considering the limit $R \to +\infty$) the equality

$$\int_{\gamma_{\varepsilon}} f(z)dz = 2\pi i \cdot (\operatorname{res}(f,i) + \operatorname{res}(f,-i)).$$

Also, $|f(z)| = O(|z-1|^{-1/2})$ near the point +1 and $|f(z)| = O(|z+1|^{1/2})$ near the point -1, which means that $\int_{z:|z\pm 1|=\varepsilon} |f(z)| |dz| = O(\varepsilon^{1/2})$ as $\varepsilon \to 0$. Further,

$$\lim_{\varepsilon \downarrow 0} \int_{S_{\varepsilon}^+} f(z) dz = \lim_{\varepsilon \downarrow 0} \int_{S_{\varepsilon}^-} f(z) dz = \int_{-1}^1 \sqrt{\frac{1+x}{1-x}} \cdot \frac{dx}{1+x^2}$$

due to the uniform integrability in neighborhoods of the points ± 1 . (The same sign for S_{ε}^{-} is the result of the compensation of two minuses: the first comes from the opposite value of the square root, the second from the right-to-left orientation of the segment.) Therefore,

$$\int_{-1}^{1} \sqrt{\frac{1+x}{1-x}} \cdot \frac{dx}{1+x^2} = \pi i \cdot (\operatorname{res}(f,i) + \operatorname{res}(f,-i))$$

and it remains to compute the residues of the function f at its (simple) poles $\pm i$. Since $(1 \pm i)/(1 \mp i) = \pm i$, we have

$$\operatorname{res}(f,i) = \pm e^{i\frac{\pi}{4}}/(2i)$$
 and $\operatorname{res}(f,-i) = \pm e^{-i\frac{\pi}{4}}/(-2i)$.

In order to avoid a careful consideration of the signs of the square roots one can use the fact that the answer must be purely real and positive, namely

$$\int_{-1}^{1} \sqrt{\frac{1+x}{1-x}} \cdot \frac{dx}{1+x^2} = \frac{\pi}{2} \cdot (e^{i\frac{\pi}{4}} + e^{-i\frac{\pi}{4}}) = \frac{\pi}{\sqrt{2}}$$

Problem 4: Let $\alpha \in \mathbb{C}$ satisfy $|\alpha| = 1$. Consider the equation $\sin z = \frac{\alpha}{z^2}$ for $z \in \mathbb{C}$. (a) Prove that for each $k \in \mathbb{Z} \setminus \{0\}$ this equation has exactly one solution inside the vertical strip $|\Re z - \pi k| < \frac{\pi}{2}$.

(b) How many solutions (counted with multiplicities) does this equation have inside the vertical strip $|\Re z| < \frac{\pi}{2}$?

Solution: (a) It is easy to see that $|\sin z| = \frac{1}{2}(e^{\Im z} + e^{-\Im z}) \ge 1$ if $\Re z = \frac{\pi}{2} + \pi k$. Moreover, $|\sin z| \ge \frac{1}{2}(e^{|\Im z|} - e^{-|\Im z|}) \ge 1$ if $|\Im z|$ is large enough. Therefore, Rouche's theorem applied in each rectangle $[-\frac{\pi}{2} + \pi k; \frac{\pi}{2} + \pi k] \times [-C, C]$ with $k \ne 0$ implies that the function $\sin z - \alpha z^{-2}$ has the same number of roots (counted with multiplicities) inside this rectangle as the function $\sin z$. As all roots of the function $\sin z$ are simple and located at points $\pi k, k \in \mathbb{Z}$, this proves the claim by sending $C \to +\infty$.

(b) A similar reasoning can be applied in rectangles $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times \left[-C, C\right]$ to the functions $z^2 \sin z - \alpha$ and $z^2 \sin z$. Since $|z^2 \sin z| \ge |z^2| > 1 = |\alpha|$ on the boundary of this rectangle (provided that C is chosen large enough), the entire function $z^2 \sin z - \alpha$ has exactly *three* roots (counted with multiplicity) inside such a rectangle (for all C large enough) and hence in the full vertical strip $|\Re z| < \frac{\pi}{2}$. As z = 0 cannot be a root, the same is true for the equation $\sin z = \alpha z^{-2}$.

Problem 5: Let $a_k \in \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ for all $k \in \mathbb{N}$. Consider functions

$$B_n(z) := \prod_{k=1}^n \frac{z - a_k}{1 - \overline{a}_k z}, \quad z \in \mathbb{D}.$$

(a) Prove that the sequence $\{B_n\}_{n=1}^{\infty}$ contains a subsequence that converges uniformly on compact subsets of the unit disc \mathbb{D} .

(b) Assume that $\limsup_{n\to\infty} (1-|a_n|) > 0$. Prove that each subsequential limit of the functions B_n is identically zero in \mathbb{D} .

(c) Prove that the same holds if $\sum_{n=1}^{\infty} (1 - |a_n|) = +\infty$.

Solution: (a) Each factor is a linear-fractional transform of the unit disc \mathbb{D} onto itself. In particular, $|B_n(z)| = 1$ if |z| = 1 and the functions B_n are uniformly bounded inside \mathbb{D} . Montel's theorem says that families of uniformly bounded holomorphic functions are normal and thus the sequence $(B_n)_{n=1}^{\infty}$ has a locally uniformly convergent subsequence.

(b) Assume that $\limsup_{n\to\infty}(1-|a_n|)=\varepsilon > 0$. Then, the number of zeros (counted with multiplicity) of B_n inside the disc $(1-\frac{1}{2}\varepsilon)\mathbb{D}$ grows to infinity as $n\to\infty$. On the other hand, if there existed a non-trivial subsequential limit B of B_n , then B would have only finitely many isolated zeros of finite order in $(1-\frac{1}{2}\varepsilon)\mathbb{D}$, a contradiction. (Note that each point a that appears at least m times in the sequence $(a_n)_{n=1}^{\infty}$ must be a zero of B of order at least m since a is a zero of order m of each B_n with n large enough and the convergence of B_n to B holds for all derivatives.)

(c) First, note that $|B_n(0)| = \prod_{k=1}^n |a_k| \to 0$ as $n \to \infty$ since $\sum_{k=1}^\infty (1-|a_k|) = +\infty$. Our goal is to prove a similar claim for other z's in \mathbb{D} . It is not hard to see that

$$\left|\frac{z-a_n}{1-\overline{a}_n z}+a_n\right| = \frac{|z|\cdot(1-|a_n|^2)}{|1-\overline{a}_n z|} \le \frac{1-|a_n|}{2} \quad \text{if} \quad |z| \le \frac{1}{5}.$$

Therefore,

$$|B_n(z)| = \prod_{k=1}^n \left| \frac{z - a_n}{1 - \overline{a}_n z} \right| \le \prod_{k=1}^n \frac{1 + |a_n|}{2} \xrightarrow[n \to \infty]{} 0 \quad \text{if } |z| \le \frac{1}{5}$$

(since $\sum_{k=1}^{\infty} (1 - \frac{1}{2}(1 + |a_k|)) = \frac{1}{2} \sum_{k=1}^{\infty} (1 - |a_k|) = +\infty$). It follows from this estimate that each subsequential limit B of B_n must identically vanish at least in the disc $\frac{1}{5}\mathbb{D}$. Since B is an analytic function in \mathbb{D} , it then necessarily vanishes everywhere in the unit disc.