Department of Mathematics, University of Michigan Complex Analysis Qualifying Exam

August 15, 2023; Morning Session

Problem 1: Let f be an analytic function in the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ such that f(0) = 0 and |f(z)| < 2023 for all $z \in \mathbb{D}$. Assume also that f satisfies the property f(iz) = f(z) for all $z \in \mathbb{D}$. Prove that $|f(\frac{1}{7})| < 1$.

Problem 2: Let $\mathbb{H} = \{z \in \mathbb{C} : \Im z > 0\}$ be the upper half-plane. Find a conformal mapping from the domain

$$\mathbb{H} \setminus \{ z \in \mathbb{H} : z = e^{i\theta}, \ \theta \in (0, \frac{\pi}{2}] \}$$

(i.e., $\mathbb H$ slit along a circular arc) back onto $\mathbb H$. You may write your solution as a composition of simpler maps.

Problem 3: Use contour integration to evaluate the integral

$$\int_{-1}^{1} \sqrt{\frac{1+x}{1-x}} \cdot \frac{dx}{1+x^2} \, .$$

[Simplification: If you experience difficulties, you can first change the variable of integration to t = (1+x)/(1-x) and use contour integration for the new integral.]

Problem 4: Let $\alpha \in \mathbb{C}$ satisfy $|\alpha| = 1$. Consider the equation $\sin z = \frac{\alpha}{z^2}$ for $z \in \mathbb{C}$.

- (a) Prove that for each $k \in \mathbb{Z} \setminus \{0\}$ this equation has exactly one solution inside the vertical strip $|\Re z \pi k| < \frac{\pi}{2}$.
- (b) How many solutions (counted with multiplicities) does this equation have inside the vertical strip $|\Re z|<\frac{\pi}{2}$?

Problem 5: Let $a_k \in \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ for all $k \in \mathbb{N}$. Consider functions

$$B_n(z) := \prod_{k=1}^n \frac{z - a_k}{1 - \overline{a}_k z}, \quad z \in \mathbb{D}.$$

- (a) Prove that the sequence $\{B_n\}_{n=1}^{\infty}$ contains a subsequence that converges uniformly on compact subsets of the unit disc \mathbb{D} .
- (b) Assume that $\limsup_{n\to\infty} (1-|a_n|) > 0$. Prove that each subsequential limit of the functions B_n is identically zero in \mathbb{D} .
- (c) Prove that the same holds if $\sum_{n=1}^{\infty} (1 |a_n|) = +\infty$.