THE UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS

Qualifying Review examination in Algebraic Topology

August 2023

1. The cone CX on a topological space X is the quotient of $X \times [0, 1]$ by identifying all the points (x, 1) to a single point *. Suppose that there exists an open neighborhood U of the point * in CX which is homeomorphic to \mathbb{R}^n . What are the possible sequences of groups

$$H_0(X), H_1(X), H_2(X), \ldots?$$

Solution: For n = 0, clearly, X has to be empty. For n > 0, we have

$$H_k(U, U \smallsetminus \{*\}) \cong H_k(CX, CX \smallsetminus \{*\}) \cong H_{k-1}(X)$$

(since $CX \setminus \{*\} \simeq X$). The left-hand side is \mathbb{Z} for k = n and 0 else. Thus, X has to have the homology of the (n-1)-sphere. So the only possible sequence for n = 0 is

 $0, 0, 0, \ldots,$

for $n = 1$, it is	
	$\mathbb{Z}\oplus\mathbb{Z},0,0\ldots,$
for $n = 2$, it i	
	$\mathbb{Z}, \mathbb{Z}, 0, \ldots,$
etc.	

2. Let F_n be the free group on n generators. For which n = 1, 2, ... does there exist an injective homomorphism $h: F_n \to F_2$? For which n = 1, 2, ... can h be chosen so the image has finite index in F_2 ?

Solution: Yes on both counts for $n \ge 2$. We need to find a covering space with fundamental group F_n of the graph with a single vertex and two edges. Any (n-1)-fold connected covering would do. For n = 1, the subgroup clearly exists, but not of finite index (since a covering has to have degree > 0).

3. Let X be a path-connected space with basepoint *. Let $x \neq y \in X$ be points, and let $Y = X/x \sim y$.

(a) Is the homomorphism $p_* : \pi_1(X, *) \to \pi_1(Y, *)$ induced by the projection $p : X \to Y$ necessarily injective?

(b) Can p_* be an isomorphism?

Solution: One proves that π_1 remains the same if we replace Y by the space Y' obtained by attaching [0, 1] by identifying 0, 1 with x, y, respectively. Then $\pi_1(Y, *)$ is the free product of $\pi_1(X, *)$ with \mathbb{Z} where p_* is the injection to the first factor. Thus, p_* is always injective, and never an isomorphism.

4. Describe all the homotopy equivalence classes of CW-complexes which have exactly three cells in dimension 0, 1, n, respectively, for a given n > 1.

Solution: The 1-skeleton is S^1 . For n = 2, the possibly different homotopy types arise by different choices of the homotopy class of the 2-cell attaching map, which is classified by degree $\in \mathbb{Z}$. However, degree $n \in \mathbb{Z}$ is identified with -n by reversing the orientation of the cell. Thus, we get different homotopy equivalence classes for attaching maps of degrees $0, 1, 2, \ldots$ (which are proved different using the first homology group).

For n > 2, the attaching map is $S^{n-1} \to S^1$, which is homotopic to a constant map (since it lifts to the universal cover of S^1 , which is contractible). Thus, there is only one class.

5. Compute the homology of the space $\mathbb{R}P^3/\mathbb{R}P^1$ (where $\mathbb{R}P^1$ is embedded in the standard way).

Solution: By using the long exact sequence in homology, we get homology groups $\mathbb{Z}, 0, \mathbb{Z}, \mathbb{Z}$. (One can also see directly that the quotient space is homotopy equivalent to $S^2 \vee S^3$.)