Problem 1. Let \mathbb{F}_{p} be the field with p elements and let U be a two dimensional vector space over \mathbb{F}_{p}. How many distinct tensors of the form $u \otimes v$ are there in $U \otimes U$?

Solution. If $u, u^{\prime}, v, v^{\prime} \in U$ are non-zero then

$$
u \otimes v=u^{\prime} \otimes v^{\prime} \Longleftrightarrow u=\alpha u^{\prime} \text { and } v=\alpha^{-1} v^{\prime}
$$

for scalar some α. To see this, first suppose that u and v are linearly independent, and thus a basis for U. Then $u \otimes u, u \otimes v, v \otimes u$, and $v \otimes v$ are a basis for $U \otimes U$. Writing u^{\prime} and v^{\prime} in the (u, v) basis and computing $u^{\prime} \otimes v^{\prime}$ leads to the result. The case where u and v are dependent is similar (use an auxiliary third vector to make a basis). We thus see that the map $(u, v) \mapsto u \otimes v$ (on non-zero vectors) is ($p-1$)-to- 1 , and so we obtain $\left(p^{2}-1\right)^{2} /(p-1)$ distinct tensors. The final answer is one more than this since the zero vector is also of the form $u \otimes v$ (take $u=v=0$).

Problem 2. Let V be a real vector space of finite dimension n and let \langle,$\rangle be a$ non-degenerate symmetric bilinear form on V. Suppose that there is a basis e_{1}, e_{2}, \ldots, e_{n} of V such that $\left\langle e_{i}, e_{i}\right\rangle$ is positive for all $1 \leq i \leq n$. What are the possible signatures of \langle,$\rangle ?$

Solution. The signature cannot be $(0, n)$, i.e., the form cannot be negative definite, since there are vectors with positive norm. Every other signature is possible. To see this, consider the vector space $U=\mathbb{R}^{n}$ equipped with the standard form of signature (r, s), with $r>0$; that is, e_{1}, \ldots, e_{n} are orthogonal and $\left\langle e_{i}, e_{i}\right\rangle$ is 1 if $1 \leq i \leq r$, and -1 if $i>r$. Let $v_{i}=e_{i}$ for $1 \leq i \leq r$, and $v_{i}=2 e_{1}+e_{i}$ for $i>r$. Then v_{1}, \ldots, v_{n} is a basis of U, and each v_{i} has positive norm.

Problem 3. Let $\mathbb{Z}[i]$ be the subring of the complex numbers generated by i (a square root of -1). Up to isomorphism, how many $\mathbb{Z}[i]$-modules are there with 25 elements? You may use without proof that $\mathbb{Z}[i]$ is a principal ideal domain (PID), and we helpfully point out that $5=(2+i)(2-i)$ is the prime factorization of 5 .

Solution. If M is a finite $\mathbb{Z}[i]$-module then the structure theorem tells us that

$$
M=\mathbb{Z}[i] /\left(\pi_{1}^{e_{1}}\right) \oplus \cdots \oplus \mathbb{Z}[i] /\left(\pi_{n}^{e_{n}}\right)
$$

where π_{1}, \ldots, π_{r} are prime elements. This decomposition is unique up to re-ordering and changing the π_{j} 's by units. Now suppose that M has 25 elements. Then $25 \cdot M=$ 0 , and so we must have $\pi_{j} \mid 25$ for each j. Since $5=(2+i)(2-i)$ is the prime factorization of 5 , it follows that we must have $\pi_{j}=2+i$ or $\pi_{j}=2-i$ for each j. Since $\mathbb{Z}[i] /(2+i)$ has 5 elements and $\mathbb{Z}[i] /(2+i)^{2}$ has 25 elements (and similarly for $2-i$), we see that the possibilities for M are

$$
\begin{gathered}
\mathbb{Z}[i] /(2+i) \oplus \mathbb{Z}[i] /(2+i), \quad \mathbb{Z}[i] /(2+i) \oplus \mathbb{Z}[i] /(2-i), \quad \mathbb{Z}[i] /(2-i) \oplus \mathbb{Z}[i] /(2-i) \\
\mathbb{Z}[i] /(2+i)^{2}, \quad \mathbb{Z}[i] /(2-i)^{2}
\end{gathered}
$$

So there are 5 modules with 25 elements, up to isomorphism.
Problem 4. Let A be an $n \times n$ matrix of complex numbers and suppose that the characteristic polynomial of A is $(t-1)^{k} t^{n-k}$. Show that there is a polynomial $f(x)$ in $\mathbb{C}[x]$ such that $f(A)$ also has characteristic polynomial $(t-1)^{k} t^{n-k}$, and $f(A)^{2}=f(A)$.

Solution. Using Jordan normal form, we see that A can be conjugated into block form

$$
\left(\begin{array}{cc}
1+X & 0 \\
0 & Y
\end{array}\right)
$$

where the top left block is $k \times k$, and X and Y are strictly upper triangular (and thus nilpotent). We have

$$
A^{n}=\left(\begin{array}{cc}
1+X^{\prime} & 0 \\
0 & 0
\end{array}\right)
$$

where X^{\prime} is also strictly upper triangular. We thus have

$$
\left(1-A^{n}\right)^{n}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Thus $1-\left(1-A^{n}\right)^{n}$ is idempotent and has the same characteristic polynomial as A.
Problem 5. Let $\mathbb{Q}(x)$ be the field of rational functions in x with coefficients in \mathbb{Q}. Let R be the subring of $\mathbb{Q}(x)$ consisting of functions of the form $\frac{f(x)}{g(x)}$ for $f, g \in \mathbb{Z}[x]$ and $g(0)=1$. Show that the ideal $x R$ is prime, but not maximal, in R.
Solution. There is a well-defined ring homomorphism $\phi: R \rightarrow \mathbb{Z}$ given by evaluation at 0 , i.e., $\phi(f / g)=f(0)$ (choosing g so that $g(0)=1$). We claim that $\operatorname{ker}(\phi)=x R$. Since ϕ is surjective and $R / \operatorname{ker}(\phi)=\mathbb{Z}$ is a domain and not a field, this will prove that $x R$ is prime and not maximal.

It is clear that $x \in \operatorname{ker}(\phi)$, and so $x R \subset \operatorname{ker}(\phi)$. Now suppose that $f / g \in \operatorname{ker}(\phi)$, where $g(0)=1$. Then $f(0)=0$, and so x divides f in $\mathbb{Z}[x]$, and so we can write $f=x f^{\prime}$ for some $f^{\prime} \in \mathbb{Z}[x]$. Thus $f / g=x\left(f^{\prime} / g\right)$ belongs to $x R$, as required.

