Problem 1. Let \mathbb{F}_{p} be the field with p elements and let U be a two dimensional vector space over \mathbb{F}_{p}. How many distinct tensors of the form $u \otimes v$ are there in $U \otimes U$?

Problem 2. Let V be a real vector space of finite dimension n and let \langle,$\rangle be a$ non-degenerate symmetric bilinear form on V. Suppose that there is a basis e_{1}, e_{2}, \ldots, e_{n} of V such that $\left\langle e_{i}, e_{i}\right\rangle$ is positive for all $1 \leq i \leq n$. What are the possible signatures of \langle,$\rangle ?$

Problem 3. Let $\mathbb{Z}[i]$ be the subring of the complex numbers generated by i (a square root of -1). Up to isomorphism, how many $\mathbb{Z}[i]$-modules are there with 25 elements? You may use without proof that $\mathbb{Z}[i]$ is a principal ideal domain (PID), and we helpfully point out that $5=(2+i)(2-i)$ is the prime factorization of 5 .

Problem 4. Let A be an $n \times n$ matrix of complex numbers and suppose that the characteristic polynomial of A is $(t-1)^{k} t^{n-k}$. Show that there is a polynomial $f(x)$ in $\mathbb{C}[x]$ such that $f(A)$ also has characteristic polynomial $(t-1)^{k} t^{n-k}$, and $f(A)^{2}=f(A)$.

Problem 5. Let $\mathbb{Q}(x)$ be the field of rational functions in x with coefficients in \mathbb{Q}. Let R be the subring of $\mathbb{Q}(x)$ consisting of functions of the form $\frac{f(x)}{g(x)}$ for $f, g \in \mathbb{Z}[x]$ and $g(0)=1$. Show that the ideal $x R$ is prime, but not maximal, in R.

