Problem 1. Let \mathbb{F}_p be the field with p elements and let U be a two dimensional vector space over \mathbb{F}_p . How many distinct tensors of the form $u \otimes v$ are there in $U \otimes U$?

Problem 2. Let V be a real vector space of finite dimension n and let \langle , \rangle be a non-degenerate symmetric bilinear form on V. Suppose that there is a basis e_1, e_2, \ldots, e_n of V such that $\langle e_i, e_i \rangle$ is positive for all $1 \leq i \leq n$. What are the possible signatures of \langle , \rangle ?

Problem 3. Let $\mathbb{Z}[i]$ be the subring of the complex numbers generated by i (a square root of -1). Up to isomorphism, how many $\mathbb{Z}[i]$ -modules are there with 25 elements? You may use without proof that $\mathbb{Z}[i]$ is a principal ideal domain (PID), and we helpfully point out that 5 = (2 + i)(2 - i) is the prime factorization of 5.

Problem 4. Let A be an $n \times n$ matrix of complex numbers and suppose that the characteristic polynomial of A is $(t-1)^k t^{n-k}$. Show that there is a polynomial f(x) in $\mathbb{C}[x]$ such that f(A) also has characteristic polynomial $(t-1)^k t^{n-k}$, and $f(A)^2 = f(A)$.

Problem 5. Let $\mathbb{Q}(x)$ be the field of rational functions in x with coefficients in \mathbb{Q} . Let R be the subring of $\mathbb{Q}(x)$ consisting of functions of the form $\frac{f(x)}{g(x)}$ for $f, g \in \mathbb{Z}[x]$ and g(0) = 1. Show that the ideal xR is prime, but not maximal, in R.