
AIM Qualifying Review Exam in Advanced Calculus and Complex Variables

August 2024

There are five (5) problems in this examination.

There should be sufficient room in this booklet for all your work. But if you use other sheets of paper, be
sure to mark them clearly and staple them to the booklet. No credit will be given for answers without

supporting work and/or reasoning.

Problem 1

A function f : C → R is said to satisfy the mean value property if for every z0 ∈ C, and every r > 0, we have

f(z0) =
1

πr2

∫
Br(z0)

f(z) dA(z),

where Br(z0) = {z ∈ C | |z − z0| < r}, the disk of radius r about z0. In other words, f(z0) is the average of
the values of f over any disk in C centered at z0. Suppose that f satisfies the mean value property, and in
addition is C∞ on C (such high regularity is not really necessary). Show that f satisfies

∆f =
∂2f

∂x2
+

∂2f

∂y2
= 0

on all of C.

[20]

Solution

Since f is C2, we can use Taylor’s theorem at order two:

f(z) = f(z0) +
∂f
∂x (z0)(x− x0) +

∂f
∂y (z0)(y − y0)

+ 1
2 (

∂2f
∂x2 (z0)(x− x0)

2 + 2 ∂2f
∂x∂y (z0)(x− x0)(y − y0) +

∂2f
∂y2 (z0)(y − y0)

2)

+o(|z − z0|2).

Average this equation over Br(z0) and use the mean value property to get

f(z0) = f(z0) +
1

πr2

∫
Br(z0)

1

2
(
∂2f

∂x2
(z0)(x− x0)

2 +
∂2f

∂y2
(z0)(y − y0)

2)dA(z) + o(r2),
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where the integrals of odd functions of x− x0 or y − y0 over Br(z0) have given 0. Thus,

0 =
1

πr2
(
∂2f

∂x2
(z0)

∫
Br(z0)

(x− x0)
2 dA(z) +

∂2f

∂y2
(z0)

∫
Br(z0)

(y − y0)
2 dA(z)) + o(r2).

But ∫
Br(z0)

(x− x0)
2 dA(z) =

∫
Br(z0)

(y − y0)
2 dA(z),

by change of variable, and so we have

0 = 1
πr2∆f(z0)

∫
Br(z0)

|z|2dA(z) + o(r2)

= ∆f(z0)
1
r2 · r4

2 + o(r2)

= ∆f(z0)(
r2

2 + o(r2)).

Since r2

2 + o(r2) = r2( 12 + o(r2)
r2 ) > 0, for r sufficiently small, we get ∆f(z0) = 0. Since z0 was arbitrary,

∆f ≡ 0.

Another way to see this starts from setting

πr2f(z0) =

∫
Br(z0)

f(z)dA(z),

because of the mean value property, where r, z0 are arbitrary. Fixing z0, by differentiating with respect to
r, we see:

2πrf(z0) = d
dr

∫ r

0

∫ 2π

0
f(z0 + ρeiθ) ρ dθ dρ

=
∫ 2π

0
f(z0 + reiθ)rdθ,

a mean value statement over circles. Differentiate this new equation again with respect to r and get

2πf(z0) =
∫ 2π

0
∂f
∂r r dθ +

∫ 2π

0
f dθ

=
∫
∂Br(z0)

∂f
∂r rdθ + 2πf(z0).

But ∂
∂r is the unit normal to the boundary of Br(z0). Hence, by the divergence theorem, we conclude that

0 =

∫
Br(z0)

∆f(z) dA(z).

Since ∆f is continuous and this last equation is true for all r > 0, we get ∆f(z0) = 0. Since z0 was arbitrary,
∆f ≡ 0.

Problem 2

Consider the analytic function f(z) = 1
2 (z +

1
z ), which is defined and analytic on C∗ = C \ {0}. Show that

f maps the exterior of the unit circle {z ∈ C | |z| > 1} to the region C \ [−1, 1] in a one-to-one manner, and
calculate its inverse function.

[20]
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Solution

Let us construct the analytic inverse of f . For w ∈ C \ [−1, 1], if we have

w =
1

2
(z +

1

z
),

then
2zw = z2 + 1, or z2 − 2wz + 1 = 0.

By the quadratic formula,

z =
2w ±

√
4w2 − 4

2
= w ±

√
w2 − 1 = h(w).

The problem remains: is the square root single-valued on C \ [−1, 1]? First let us fix its value to be
positive on the real interval (1,+∞). Choose the + sign in the quadratic formula for h(w). Consider
w2 − 1 = (w + 1)(w − 1). We can construct

√
w2 − 1 as

√
w + 1

√
w − 1. But as we analytically continue√

w − 1 counterclockwise once around the circle C = {|z| = 2}, say, it comes back to the real axis changed by
multiplication by -1. Similarly for

√
w + 1, so the product is unchanged after analytic continuation around

C and therefore is well defined. As w → ∞, h(w) → ∞. As w → [−1, 1], h(w) → the unit circle, since
f(unit circle) = [−1, 1], and h is an inverse for f on C \ [−1, 1].

Problem 3

Consider the surface S ⊂ R3 given by

S = {(x, y, z) ∈ R3 | q(x, y, z) = x2 + 2xy + 3y2 + 2xz + 2z2 = 10}.

(a) Let f(x, y, z) be the linear function

f(x, y, z) = 4x+ 7y + 5z + 3.

Using the method of Lagrange multipliers, find the maximum of f restricted to S.

[15]

(b) Explain geometrically why the method works.

[5]

Solution

(a) The method of Lagrange multipliers says to solve this system of 4 equations in 4 unknowns, x, y, z, λ, to
find the points where f might be maximal on S:

∇q = λ∇f,

q(x, y, z) = 10.

Explicitly, the first three equations are

2(x+ y + z) = 4λ,

6y + 2x = 7λ,

4z + 2x = 5λ.
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Solve these equations to get

x = −5

2
λ, y = 2λ, z =

5

2
λ.

Substituting in the fourth equation, we get

10 = (
λ

2
)2q(−5, 4, 5) = (

λ

2
)2 33,

or

λ = ±2

√
10

33
.

(Sorry for the radical!) So the maximum occurs at one of the two points

[x, y, z]T = ±
√

10

33
[−5, 4, 5]T .

Evaluating f on these two points gives f = ±33 ·
√

10
33 + 3. Therefore the maximum is

f = +
√
330 + 3,

at

[x, y, z]T = +2

√
10

33
[−5, 4, 5]T .

(b) If ∇q(x, y, z),∇f(x, y, z), and λ are all non-zero, then the equation ∇q(x, y, z) = λ∇f(x, y, z) says that
for every vector v⃗ tangent to S at (x, y, z), then the directional derivative ∇v⃗f(x, y, z) = ∇f(x, y, z) ·
v⃗ (by the chain rule) = 0.

Problem 4

Define the n-th Laguerre polynomial Ln(x) as

Ln(x) =
1

n!
(
d

dx
− 1)nxn, for x ∈ R,

so the first few are given by
L0(x) = 1,

L1(x) = −x+ 1,

L2(x) = 1
2x

2 − 2x+ 1,

and so on.

Show that if a continuous function f : [0, 1] → R satisfies∫ 1

0

Ln(x) f(x) dx = 0, for alln,

then f ≡ 0 on [0,1].

[20]
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Solution

First notice that Ln(x) = (−1)nxn

n! + lower order terms, the linear span of the polynomials Li(x), i =
0, . . . , Ln(x) is the same as the linear span of 1, . . . , xn, i.e., all polynomials of degree ≤ n. Hence, our
function f satisfies

∫
[0,1]

P (x)f(x)dx = 0, for any polynomial P (x). But by the Weierstrass approximation

theorem, there is a sequence of polynomials Pm(x) such that limm→∞ Pm(x) = f(x) uniformly in x on [0,1].
By a theorem about convergence of sequences of integrals

0 = lim
m→∞

∫
[0,1]

Pm(x) · f(x) dx =

∫
[0,1]

( lim
m→∞

Pm(x)) · f(x) dx =

∫
[0,1]

f2(x) dx.

Since f is continuous, this implies f ≡ 0 on [0,1].

Problem 5

Consider the curve (circle) C ⊂ C given by |z − z0| = 1. Let ϕ(ζ), ζ ∈ C, be a differentiable function, not
necessarily analytic.

(a) Show that the function

Φ(z) =
1

2πi

∫
C

ϕ(ζ)

ζ − z
dζ,

defined for z /∈ C, is analytic in z.

[15]

(b) If ϕ(ζ) has an extension to all of C as an analytic function, call it still ϕ(z), what is Φ(z)?

[5]

Solution

(a) There are two cases; |z − z0| < 1 and |z − z0| > 1. Treat the first case first.

If |z − z0| < 1, then ζ − z = (ζ − z0)− (z − z0) = (ζ − z0)(1− z−z0
ζ−z0

). Since

|z − z0
ζ − z0

| = |z − z0|
|ζ − z0|

= |z − z0| < 1,

we have
1

1− z−z0
ζ−z0

=
∑
n=0

(
z − z0
ζ − z0

)n,

uniformly in z if |z − z0| ≤ r < 1. Therefore,

Φ(z) = 1
2πi

∫
C

ϕ(ζ)
ζ−z dζ

= 1
2πi

∫
C

1
ζ−z0

· (
∑

n=0
(z−z0)

n

(ζ−z0)n
)ϕ(ζ) dζ

=
∑

n=0[
1

2πi

∫
C

ϕ(ζ)
(ζ−z0)n+1 dζ] · (z − z0)

n

=
∑

n=0 an(z − z0)
n,
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where an = 1
2πi

∫
C

ϕ(ζ)
(ζ−z0)n+1 dζ. Since |an| ≤ 1

2π

∫ 2π

0
|ϕ(ζ)| dθ ≤ M , where M = maxζ∈C |ϕ(ζ)|,Φ(z) is

given by a convergent power series in z − z0 and so is analytic on {|z − z0| < 1}.

The case |z−z0| > 1 is treated the same way once you make the (analytic) change of variables w = 1
z−z0

,
which takes the exterior of {|z − z0| = 1} to the interior of {|w| = 1}.

There are many other ways of approaching this problem!

(b) There are two cases. If z ∈ {z | |z − z0| < 1}, then Φ(z) = ϕ(z) by Cauchy’s integral formula. If

|z − z0| > 1, then ϕ(ζ)
ζ−z is analytic in ζ on ζ ∈ {ζ | |ζ − z0| < 1}. Hence, Φ(z) = 0, for |z −0 | > 1, by

Cauchy’s theorem.
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