AIM Qualifying Review Exam in ACCV: Solutions

January 2025

Problem 1

2
A C? convex function f : R® — R is one for which the Hessian af_ é;, is non-negative, i.e., for every
i J
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(a.) Show that for any a,b € R", if f is a C? convex function, then
f((1=t)a+1tb) < (1 —1t)f(a)+tf(b), for allt € [0,1].
(b.) Sketch a picture of the result in part (a.), in the case n = 1.
(c) If
Z 3% Bx —&& > ;f?, for allz wherec > 0,
and f(a) = f(b) =0, show that

a+b

15

)< —gla—bP.
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Hint: Show f — §(x —a) - (x —b) is convex, where is the usual dot product in R™.

Solution: (a.) The question is really about a function in one variable, t, for any fixed a and b in R™, and
is equivalent to showing

F(t) = f(1=t)a+tb) — (1 =t)f(a) = tf(b) <0
for all ¢ € [0,1]. Notice that F is also convex. For any § > 0, consider the function
F5(t) =F(t)+dt(t —1),

which is strictly convex, i.e., F(;/ > 26 > 0, while F5(0) = F5(1) = 0. Since F(;/ > 0, Fs assumes its maximum
on [0,1] at the endpoints, i.e., Fs(t) < 0, for all ¢ € [0,1] and any positive ¢. Fixing ¢, let § — 0 and get
F(t) <o.

(b.) The graph of f lies below any chord joining two points on the graph.

(c.) Let FF = f— §(x —a) - (x —b). Following the hint,

i &6 =) 7 7-G& — E & >0,
p 0x;0x; > 830 8 >
by assumption, so F' is convex. Hence
a+b a b 1 1 1 1
— (2L )< = - _ - - _
P2 = (G +5) < 5F(@) + 5F0) = 5 f(a) + 5 /() =0



Thus,

and hence

Problem 2

Assume the standard integral

(a.) Evaluate the complex line integral

I e~ /2 dz,

1

where the contour is oriented from —oo + i€ to +o00 + €.

(b.) Show that
—2?/2 giz€ 1o — o=€"/2,

1 oo
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Solution: (a.) Consider the integral fc e 2 dz, where C, is the rectangular contour, oriented counter-
clockwise, with four straight line pieces:

Cri = {z=z€eRcCC|-r<z<r}
Cro = {z=r+it,t€[0,&or[¢0];

Cry = {2€Clz=a+i,—r<az<rk
Cra = {z=-r+it,t€[0,&or[£0]}.

z2
Then, 0 = fc e~ 7 dz, by Cauchy’s theorem, while
22 22
e 2 dz= / e 2 dz.

22 r2 2
e" T dz| <e T|¢|le” Il 0,
|
Cr2

Note that

22
as r — +oo. Similarly for fc , € % dz. Hence,

2

Z +m 12
/ e 2 dzz/ e 2 dox = 2.
{Im z=¢} —00
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Problem 3

(a.) Use complex variable techniques to show that the Taylor series of the real function g(z) = H% atz =0
has radius of convergence equal to 1.

(b.) Let f be the function analytic for |z| > 1 given by

1
Fe) ==
=
Evaluate the line integral
1
2 J{|z)=2}

where the circle {|z| = 2} is parametrized in the counter-clockwise direction.

Solution: (a.) ¢ is the restriction to R of the meromorphic function G(z) = ﬁ G has poles only at

z = =i, so G is holomorphic on the unit disk D = {z € C||z| < 1}, and hence the radius of convergence of
its Taylor series at z = 0 is 1. Therefore, the radius of convergence of the Taylor series of g is 1, since its
Taylor series is the same as that for G.

(b.) There are two simple ways to figure this. First, f is analytic for |z| > 1, with an essential singularity at
z = 0. Nevertheless, 2%” f{\z\:2} f(2) dz is just the residue of f at z = 0, which is just the coefficient of % in
the Laurent expansion of f at 0. Hence,

1
— f(z)dz=1.
210 J{|z)=2}

Or, one could change variable to { = % and get

1 1 ¢ 1 1 1
270 J{|2)=2} 2mi Jyg=py 1 —-¢ - ¢ 2mi Jqig=1y S(1=¢

again by the residue theorem at ¢ = 0.

Problem 4

Let A be Laplace’s operator in R?, i.e.,



and let u be in C?(B3(0,1) x Ry ), where B3(0,1) x Ry = {(x,t) € R3 x R||z| < 1, > 0}. Assume that the
function u(z,t) satisfies the heat equation

ou
A
ot~
as well as the boundary-initial conditions
u(z,0) = h(z), € B30,1),
u(z,t) = 0, z€dB0,1),t>0,

where h is a differentiable function on B3(0,1), and Z- is the outward unit normal along the boundary 9B>.
(a.) If u is interpreted as a distribution of heat on B3(0,1) x R, , interpret the boundary-initial conditions.
(b.) Calculate

lim u(x,t) de.
t——+oo B3(0,1)

Solution: (a.) The initial condition part just gives the distribution o f heat at time ¢ = 0. The boundary
term says that the flux of heat across the boundary (in space) is 0, i.e., the boundary is insulated.

(b.) We calculate:
(th f33(071) wa,t)de = fJBB(o,l) %“(xa t) dw
= fIB3(O,1) Au(z,t) dx
= f]BS(o 1 1. div(Vu(z,t)) dz, where V is the gradient in the z-variables only,
ou
f{|x\:1} 1- on ds + fBS(O,l) V1. -Vu dx

= 0.

Hence, f]B%3(0 1 u(zx,t) dx is constant in ¢, so
lim u(z,t) de = / u(x,0)dx = / h(z) dx.
t=+00 Jp3(0,1) B3(0,1) B3(0,1)

Problem 5

(a.) Let F be an analytic function on C such that |F(2)| < A|z|Y + B, for some positive constants A, B,
and positive integer N. Show that F' is a polynomial of degree at most N.

(b.) Let f: D — D be an analytic mapping of the unit disk D to itself, which is continuous on the closed
disk. Assume that f(z) # 0 for |z|] < 1 and that |f(z)| = 1if |z| = 1. Show that f is a constant function.

Solution: (a.) Fix any zg € C. By Cauchy’s formula

dNTIR (N +1)! F(¢)
dzN+1 (20) = 278 / Nt2 dg,
z T J{z—ze|=r} (€ — 20)




and therefore

(N+D! 27 [F(Q)] RdO

N+1
vt (z0)] < 2x  Jo RNI2

A

< (N;rl)!(ARNgfj;E(R) ) R2m, where E(R) is a polynomial in R of degree < N,

N+1 ..
< (N + 1)!%, where C, D are positive constants.

Letting R — 400, we get

dN+1F
W(ZO) =0.

Since zy was arbitrary in C, we must have that F' is a polynomial of degree at most N.

(b.) Define a function F as follows:

f(z), if|z[ <1
F(z) =

1/f(1/2), if |z| > 1.

Since f(z) # 0, and | f(2)| = 1, if |z| = 1, this is well-defined for all z € C. By the Schwarz reflection principle,
it is analytic on C. Since there is a positive ¢ < 1 such that |f(z)| > ¢ for |z| < 1, then |F(2)] < 1 < +o00
for all z € C. Hence, by Liouville’s theorem, F' must be a constant.



