
AIM Qualifying Review Exam in ACCV: Solutions

January 2025

Problem 1

A C2 convex function f : Rn → R is one for which the Hessian ∂2f
∂xi ∂xj

is non-negative, i.e., for every

ξ = (ξ1, . . . , ξn) ∈ Rn, ∑
i,j

∂2f

∂xi ∂xj
ξiξj ≥ 0.

(a.) Show that for any a, b ∈ Rn, if f is a C2 convex function, then

f((1− t)a+ tb) ≤ (1− t)f(a) + tf(b), for all t ∈ [0, 1].

(b.) Sketch a picture of the result in part (a.), in the case n = 1.

(c.) If ∑
i,j

∂2f

∂xi ∂xj
ξiξj ≥ c

∑
i

ξ2i , for allxwhere c > 0,

and f(a) = f(b) = 0, show that

f(
a+ b

2
) ≤ − c

8
|a− b|2.

Hint: Show f − c
2 (x− a) · (x− b) is convex, where “·” is the usual dot product in Rn.

Solution: (a.) The question is really about a function in one variable, t, for any fixed a and b in Rn, and
is equivalent to showing

F (t) = f((1− t)a+ tb)− (1− t)f(a)− tf(b) ≤ 0,

for all t ∈ [0, 1]. Notice that F is also convex. For any δ > 0, consider the function

Fδ(t) = F (t) + δ t(t− 1),

which is strictly convex, i.e., F
′′

δ ≥ 2δ > 0, while Fδ(0) = Fδ(1) = 0. Since F
′′

δ > 0, Fδ assumes its maximum
on [0,1] at the endpoints, i.e., Fδ(t) ≤ 0, for all t ∈ [0, 1] and any positive δ. Fixing t, let δ → 0 and get
F (t) ≤ 0.

(b.) The graph of f lies below any chord joining two points on the graph.

(c.) Let F = f − c
2 (x− a) · (x− b). Following the hint,

∑
i,j

∂2F

∂xi∂xj
ξiξj =

∑
i,j

∂2f

∂xi∂xj
ξiξj − c

∑
i

ξ2i ≥ 0,

by assumption, so F is convex. Hence,

F (
a+ b

2
) = F (

a

2
+

b

2
) ≤ 1

2
F (a) +

1

2
F (b) =

1

2
f(a) +

1

2
f(b) = 0.
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Thus,

f(
a+ b

2
)− c

2
(
a+ b

2
− a) · (a+ b

2
− b) ≤ 0,

and hence

f(
a+ b

2
) ≤ c

2
(
a+ b

2
− a) · (a+ b

2
− b) = − c

8
|a− b|2.

Problem 2

Assume the standard integral
1√
2π

∫ ∞

−∞
e−x2/2 dx = 1.

(a.) Evaluate the complex line integral

I(ξ) =
1√
2π

∫
{Imz= ξ}

e−z2/2 dz,

where the contour is oriented from −∞+ iξ to +∞+ iξ.

(b.) Show that
1√
2π

∫ +∞

−∞
e−x2/2 eixξ dx = e−ξ2/2.

Solution: (a.) Consider the integral
∫
Cr

e
−z2

2 dz, where Cr is the rectangular contour, oriented counter-
clockwise, with four straight line pieces:

Cr,1 = {z = x ∈ R ⊂ C | − r ≤ x ≤ r};

Cr,2 = {z = r + it, t ∈ [0, ξ] or [ξ, 0];

Cr,3 = {z ∈ C | z = x+ iξ,−r ≤ x ≤ r};

Cr,4 = {z = −r + it, t ∈ [0, ξ] or [ξ, 0]}.

Then, 0 =
∫
Cr

e−
z2

2 dz, by Cauchy’s theorem, while∫
Cr

e−
z2

2 dz =
∑
j

∫
Cr,j

e−
z2

2 dz.

Note that

|
∫
Cr,2

e−
z2

2 dz| ≤ e−
r2

2 |ξ|e−|ξ|2 → 0,

as r → +∞. Similarly for
∫
Cr,4

e−
z2

2 dz. Hence,∫
{Im z= ξ}

e−
z2

2 dz =

∫ +∞

−∞
e−

x2

2 dx =
√
2π.
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(b.)
1√
2π

∫ +∞
−∞ e−x2/2 eixξ dx = e−

x2

2
1√
2π

∫ +∞
−∞ e−( x2−ξ2

2 +ixξ) dx

= e−
x2

2
1√
2π

∫
{Im z= ξ} e

− z2

2 dz

= e−
x2

2 , by part (a.).

Problem 3

(a.) Use complex variable techniques to show that the Taylor series of the real function g(x) = 1
1+x2 at x = 0

has radius of convergence equal to 1.

(b.) Let f be the function analytic for |z| > 1 given by

f(z) =
∑
j≥1

1

zj
.

Evaluate the line integral
1

2πi

∫
{|z|=2}

f(z) dz,

where the circle {|z| = 2} is parametrized in the counter-clockwise direction.

Solution: (a.) g is the restriction to R of the meromorphic function G(z) = 1
1+z2 . G has poles only at

z = ±i, so G is holomorphic on the unit disk D = {z ∈ C | |z| < 1}, and hence the radius of convergence of
its Taylor series at z = 0 is 1. Therefore, the radius of convergence of the Taylor series of g is 1, since its
Taylor series is the same as that for G.

(b.) There are two simple ways to figure this. First, f is analytic for |z| > 1, with an essential singularity at
z = 0. Nevertheless, 1

2πi

∫
{|z|=2} f(z) dz is just the residue of f at z = 0, which is just the coefficient of 1

z in

the Laurent expansion of f at 0. Hence,

1

2πi

∫
{|z|=2}

f(z) dz = 1.

Or, one could change variable to ζ = 1
z and get

1

2πi

∫
{|z|=2}

f(z) dz = − 1

2πi

∫
{|ζ|= 1

2}

ζ

1− ζ
· − 1

ζ2
dζ =

1

2πi

∫
{|ζ|= 1

2}

1

ζ(1− ζ
dζ = 1,

again by the residue theorem at ζ = 0.

Problem 4

Let ∆ be Laplace’s operator in R3, i.e.,

∆ =

i=3∑
i=1

∂2

∂x2
i

,
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and let u be in C2(B3(0, 1)×R+), where B3(0, 1)×R+ = {(x, t) ∈ R3 ×R | |x| ≤ 1, t ≥ 0}. Assume that the
function u(x, t) satisfies the heat equation

∂u

∂t
= ∆u,

as well as the boundary-initial conditions

u(x, 0) = h(x), x ∈ B3(0, 1),

∂u
∂n (x, t) = 0, x ∈ ∂B3(0, 1), t ≥ 0,

where h is a differentiable function on B3(0, 1), and ∂
∂n is the outward unit normal along the boundary ∂B3.

(a.) If u is interpreted as a distribution of heat on B3(0, 1)×R+, interpret the boundary-initial conditions.

(b.) Calculate

lim
t→+∞

∫
B3(0,1)

u(x, t) dx.

Solution: (a.) The initial condition part just gives the distribution o f heat at time t = 0. The boundary
term says that the flux of heat across the boundary (in space) is 0, i.e., the boundary is insulated.

(b.) We calculate:

d
dt

∫
B3(0,1)

u(x, t) dx =
∫
B3(0,1)

∂
∂t u(x, t) dx

=
∫
B3(0,1)

∆u(x, t) dx

=
∫
B3(0,1)

1 · div(∇u(x, t)) dx, where ∇ is the gradient in the x-variables only,

=
∫
{|x|=1} 1 · ∂u

∂n dS +
∫
B3(0,1)

∇1 · ∇u dx

= 0.

Hence,
∫
B3(0,1)

u(x, t) dx is constant in t, so

lim
t→+∞

∫
B3(0,1)

u(x, t) dx =

∫
B3(0,1)

u(x, 0) dx =

∫
B3(0,1)

h(x) dx.

Problem 5

(a.) Let F be an analytic function on C such that |F (z)| ≤ A|z|N + B, for some positive constants A,B,
and positive integer N . Show that F is a polynomial of degree at most N .

(b.) Let f : D → D be an analytic mapping of the unit disk D to itself, which is continuous on the closed
disk. Assume that f(z) ̸= 0 for |z| < 1 and that |f(z)| = 1 if |z| = 1. Show that f is a constant function.

Solution: (a.) Fix any z0 ∈ C. By Cauchy’s formula

dN+1F

dzN+1
(z0) =

(N + 1)!

2πi

∫
{|z−z0|=R}

F (ζ)

(ζ − z0)N+2
dζ,
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and therefore

|d
N+1F
dzN+1 (z0)| ≤ (N+1)!

2π

∫ 2π

0
|F (ζ)|
RN+2 Rdθ

≤ (N+1)!
2π (ARN+B+E(R)

RN+2 )R 2π, where E(R) is a polynomial in R of degree < N,

≤ (N + 1)!CRN+1+D
RN+2 , where C,D are positive constants.

Letting R → +∞, we get
dN+1F

dzN+1
(z0) = 0.

Since z0 was arbitrary in C, we must have that F is a polynomial of degree at most N .

(b.) Define a function F as follows:

F (z) =


f(z), if |z| ≤ 1

1/f(1/z̄), if |z| ≥ 1.

Since f(z) ̸= 0, and |f(z)| = 1, if |z| = 1, this is well-defined for all z ∈ C. By the Schwarz reflection principle,
it is analytic on C. Since there is a positive c ≤ 1 such that |f(z)| ≥ c for |z| ≤ 1, then |F (z)| ≤ 1

c < +∞
for all z ∈ C. Hence, by Liouville’s theorem, F must be a constant.
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