Fall 2023 Graduate Course Descriptions

MATH 501. AIM Student Seminar	Alben, Silas Alben, Silas	Fri 1:00 PM-2:00 PM Fri 3:00 PM-4:00 PM	
At least two 300 or above level math courses, and Graduate standing; Qualified undergraduates with permission of instructor only. (1). May be repeated for a maximum of 6 credits. Offered mandatory credit/no credit.			
MATH 501 is an introductory and overview seminar course in the methods and applications of modern mathematics. The seminar has two key components: (1) participation in the Applied and Interdisciplinary Math Research Seminar; and (2)			
MATH 520. Life Contingencies I	Natarajan, Roger	T/Th 10:00 AM-11:30 AM	
MATH 424 and 425 with minimum grade of C-, plus declare enforced at registration.) (3). (BS). May not be repeated fo	d Actuarial/Financial M r credit.	athematics Concentration. (Prerequisites	
Quantifying the financial impact of uncertain events is the central challenge of actuarial mathematics. The goal of the Math 520-521 sequence is to teach the basic actuarial theory of mathematical models for financial uncertainties, mainly the time of death. The main topics are (1) developing probability distributions for the future lifetime random variable, and (2) using those distributions to price life insurance and annuities.			
Required Textbook: Actuarial Mathematics for Life Continge Howard R. ISBN-13: 978-1108478083	nt Risks, by Dickson, I	David C.M./Hardy, Mary R./Waters,	
MATH 523. Loss Models I Yo	oung, Virginia	T/Th 8:30 AM-10:00 AM	
MATH/STATS 425. (Prerequisites enforced at registration.)	(3). (BS). May not be i	repeated for credit.	
Risk management and modeling of financial losses. Review review of basic distributional quantities, continuous models frequency, the effect of coverage modification on severity a simulation.	of random variables (e for insurance claim se nd frequency distributi	emphasizing parametric distributions), verity, discrete models for insurance claim ons, aggregate loss models, and	
Textbook: Loss Models: From Data to Decisions, by Stuart A	A. Klugman, 97811183	15323	
MATH 525/STATS 525. Probability Theory	TBD TBD TBD	T/Th 11:30 AM-1:00 PM T/Th 1:30 PM-2:30 PM M/W/F 8:00 AM-9:00 AM	
MATH 451 (strongly recommended). MATH 425/STATS 425	would be helpful. (3).	(BS). May not be repeated for credit.	
	TBD		
MATH 526/STATS 526. Discrete State Stochastic Proc	esses Cohen, Asa Kolliopulos, N Kara, Ali	F T/Th 10:00 AM-11:30 AM ikos T/Th 8:30 AM-10:00 AM T/Th 11:30 PM-1:00 PM	
MATH 525 or STATS 525 or EECS 501. (3). (BS). May not b	e repeated for credit.		
This is a course on the theory and applications of stochastic include:	processes on discrete	state spaces. Some specific topics	
 (1) Markov chains - Markov property, - recurrence and transience, - stationarity, - ergodicity, - coupling, - exit probabilities and expected exit times; (2) Markov decision processes - optimal control, - Banach fixed point theorem; (3) Expendential distribution and Poisson processes - memoryloss property, - thisping and superposition - second distribution - second distributio			
 (3) Experienced distribution and Poisson processes - memoryless property, - trimming and superposition, - compound Poisson processes; (4) Markov chains in continuous time - generators and Kolmogorov equations, - embedded Markov chains, - stationary distributions and limit theorems, - exit probabilities and expected exit times, - Markov queues; (5) Martingales - conditional expectations, - gambling (trading) with martingales, - optional sampling, - applications to the computation of exit probabilities and expected exit times, - martingale convergence. 			
**Textbook: Essentials of Stochastic Processes, by Richard	Durrett, 3 rd Edition, 97	783319456133	

Math 538 Lie Algebras	Lam, Thomas		WF 10:00 AM-11:30 AM
Lie algebras arise naturally in mathematics and physics, and fascinating in their own right, and the study of finite dimensi such as root systems, Dynkin diagrams, and Coxeter groups. representation theory and the study of algebraic and Lie grou areas such as combinatorics, geometry, and physics.	are fundamental fro onal Lie algebras lea . This course should ups, and should also	m many pers ds to interest be valuable t be useful to t	pectives. Lie algebras are ing combinatorial structures, o those interested in those whose interests lie in
In this course, we will study the basic theory of Lie algebras, case. We intend to cover most of the content of Humphrey's Theory), including structure theorems for Lie algebras, classi theory.	with the majority of book (Introduction t fications of root syst	our focus on o Lie Algebra ems, and hig	the complex semisimple s and Representation hest weight representation
This course will be taught at the advanced undergraduate, or students with experience in abstract algebra and linear algeb	r introductory gradua ora.	ate level, and	should be accessible to
Required Text: Introduction to Lie Algebras and Representati 7TH 72 SPRINGER – Free version available online through UN	on Theory PAPERBA 9 Library	CK by Humph	reys, J.E. (9780387900520) -
MATH 555 Introduction to Functions of a Complex Variable with Applications	Burns, D.	T/Th 1:0	0 PM-2:30 PM
MATH 451 or equivalent experience with abstract mathemati	cs. (3). (BS). May no	ot be repeate	d for credit.
Intended primarily for students of engineering and of other of Interdisciplinary Mathematics (AIM) graduate program. Doct Complex numbers, continuity, derivative, conformal represer singularities, and applications to engineering and mathematic course for the AIM graduate program.	ognate subjects, as oral students in math ntation, integration, o cal physics, asympto	well as stude nematics sho Cauchy theor tics and mate	nts in the Applied and uld elect Mathematics 596. ems, power series, rix analysis. This is a core
Textbook: Introductory Complex Analysis by Silverman, Rich	ard A., 9780486646	862	
**MATH 556. Applied Functional Analysis	Borcea, Liliana	T/Th	10:00 AM-11:30 AM
MATH 217, 419, or 420; MATH 451; and MATH 555. (3). (BS). May not be repeat	ed for credit.	
This is an introduction to methods of applied functional analy applications of major results. The prerequisites include linear complex variables. This course is a core course for the Applie	vsis. Students are ex algebra, undergrad ed and Interdisciplina	pected to ma uate analysis iry Mathemat	ster both the proofs and , advanced calculus and ics (AIM) graduate program.
Required Textbook: Applied Analysis - by Hunter, John K. (9	789812705433) – 01		
MATH 558. Applied Nonlinear Dynamics <i>Topic: Advanced Ordinary Differential Equations</i>	Wu, Sijue	T/Th	2:30 PM-4:00 PM
MATH 216, 217, and 451/452. (3). (BS). May not be repeate	d for credit.		
Differential equations model systems throughout science and emphasizes the qualitative and geometric ideas which charac of topics with emphasis on techniques, and results that are u mathematics, engineering, and the natural sciences and is a graduate program.	l engineering and dis cterize the post Poinc iseful in applications. core course for the A	play rich dyn are era. The It is intende Applied and Ii	amical behavior. This course course surveys a broad range d for students in nterdisciplinary Mathematics
Course material will be taken from Chapters 1-10, and Chapt	ter 15 of the text.		
There will be weekly homeworks, midterm and final exams.			
Required Textbook: M. Hirsh, S. Smale, and R. <i>Devaney, Di</i> to Chaos, 3rd ed., Elsevier.	fferential Equations,	Dynamical Sy	stems, and an Introduction
**MATH 565. Combinatorics and Graph Theory	TBD	T/Th	8:30 AM-10:00 AM
MATH 465. (3). (BS). May not be repeated for credit.			
	TBD		

MATH 568/BIOINF 568. Mathematical and Computational Neuroscience	Booth, Victoria	M/W 10:00 AM-11:30 AM
MATH 463 or 462 (for undergraduate students) or Graduate May not be repeated for credit.	e standing. (Prerequisites	s enforced at registration.) (3). (BS).
Computational neuroscience investigates the brain at many computation to the dynamics of large neuronal populations. used to investigate neural activity at all these different leve Nernst potential, derivation of the Hodgkin-Huxley model, a and multi-compartmental models, reductions of the Hodgkin bifurcation analysis, synaptic currents, excitatory and inhibi	different levels, from sir This course introduces i ls. Topics covered includ action potential generation n-Huxley model, phase p tory network dynamics.	ngle cell activity to small, local network modeling and quantitative techniques e passive membrane properties, the n, action potential propagation in cable lane analysis, linear stability and
MATH 571. Numerical Linear Algebra	TBD	T/Th 8:30 AM-10:00 AM
MATH 214, 217, 417, 419, or 420; and one of MATH 450, 4	51, or 454. (3). (BS). M	ay not be repeated for credit.
	TBD	
MATH 573. Financial Mathematics I	Bayraktar, Erhan	T/Th 1:00 PM-2:30 PM
(3). (BS). May not be repeated for credit.		
This is an introductory course in Financial Mathematics. This of Asset Pricing and Hedging (Fundamental Theorem of Ass applied to problems of Pricing and Hedging of simple Finance proposed methods is presented, culminating with the Black of Optimal Investment in discrete time (including Markowitz extensions). This course shows how one can formulate and mathematical (in particular, probabilistic) methods. Althoug recommended that either these courses are taken in paralle	s course starts with the let Pricing in discrete time cial Derivatives. Finally, t -Scholes model. A part of Theory and CAPM) and solve relevant problems of Math 526 is not a prer el, or Math 526 precedes	pasic version of the Mathematical Theory e and discrete space). This theory is the continuous-time version of the of the course is devoted to the problems Risk Management (VaR and its of the financial industry via requisite for Math 573, it is strongly Math 573.
Required Textbook: Stochastic Finance: An Introduction in 978-3110463446	Discrete Time; Hans Föll	mer and Alexander Schied, 4th edition;
Optional Textbook: Economics and Mathematics of Financia	l Markets by Jaksa Cvita	nic and Fernando Zapatero
**MATH 591. Differentiable Manifolds	Spatzier, Ralf	M/W/F 10:00 AM-11:00 AM
MATH 451, 452 and 590. (3). (BS). May not be repeated for	r credit.	
This is one of the basic courses for students beginning the F emphasizes abstract concepts and proofs.	PhD program in mathem	atics. The approach is rigorous and
Topics: Product and quotient topology, group actions, topol manifolds with boundary, smooth maps, partitions of unity, submersions, immersions and embeddings, smooth submar transversality, Lie groups, vector fields, Lie brackets, Lie alg exterior derivatives, orientation, Stokes' Theorem, introduc	ogical groups, topologica tangent vectors and diff hifolds, Sard's Theorem, gebras, multilinear algeb tion to De Rham cohomo	Il manifolds, smooth manifolds, Ferentials, the tangent bundle, the Whitney Embedding Theorem, ra, vector bundles, differential forms, llogy groups, homotopy invariance.
Optional Textbooks: Introduction to Smooth Manifolds(2nd An Introduction to Manifolds(2nd edition)	edition), by John Lee; 93 on), by Loring W. Tu; 97	78-1-4419-9981-8 8-1-4419-7399-3

modules over PIDs, an introduction to categories and functors, and multilinear algebra. I will assume that students have had (at least) a full year long sequence in algebra at the advanced undergraduate level. In addition to the regular class time, we will meet weekly one more time (on a day and time to be decided) to work on problems, examples, etc. There is no textbook required for this course. **MATH 596. Analysis I Baik, Jinho T/Th 2:30 PM-4:00 PM **Topic Title: Complex Analysis** MATH 451. (3). (BS). May not be repeated for credit. Students with credit for MATH 555 may elect MATH 596 for two credits only. This is a theoretical and rigorous introductory course on complex analysis on the level of the first year math graduate students. Highly advanced math undergraduate students and graduate students from other disciplines may also take this course but they should expect that the workload is heavy and the pace is fast. Topics to be discussed include holomorphic functions, Cauchy's theorem, Cauchy's integral formula, power series, isolated singularities, meromorphic functions, Laurent series, conformal mappings, infinite product, and so on. Textbook: Complex Analysis, by Lars Ahlfors; 9781470467678 **MATH 602. Real Analysis II Chelkak, Dmitry T/Th 1:00 PM-2:30 PM **Topic: Functional Analysis** MATH 590 and 597. (3). (BS). May not be repeated for credit. Functional analysis is a core subject in mathematics. It has connections to probability and geometry, and is of fundamental importance to the development of analysis, differential equations, quantum mechanics and many other branches in mathematics, physics, engineering and theoretical computer science. The goal of this course is to introduce students to the basic concepts, methods and results in functional analysis. Topics to be covered include linear spaces, normed linear spaces, Banach spaces, Hilbert spaces, linear operators, dual operators, the Riesz representation theorem, the Hahn-Banach theorem, uniform boundedness theorem, open mapping theorem, closed graph theorem, compact operators, Fredholm Theory, reflexive Banach spaces, weak and weak* topologies, spectral theory, and applications to classical analysis and partial differential equations. Optional Textbook: Functional Analysis, Peter D. Lax, ISBN-13: 978-0471556046, ISBN-10: 0471556041 **MATH 614. Commutative Algebra T/Th 10:00 AM-11:30 AM Snowden, Andrew MATH 593 and Graduate standing. (3). (BS). May not be repeated for credit. Commutative algebra is a field that interacts strongly with many other areas of mathematics, including algebraic geometry, algebraic combinatorics, algebraic number theory, and several complex variables. This course is an introduction that will include material on the uses of the prime spectrum, behavior of primes under integral extensions of rings. Noetherian rings and modules, Noether normalization, the Hilbert basis theorem, an introduction to affine algebraic geometry, primary decomposition, normal rings, discrete valuation rings, Dedekind domains, Artinian rings, flatness, completion, and dimension theory, including the Krull height theorem. Some basic material from category theory will also be introduced. No textbook is required for this course.

Mustata, Mircea M/W/F 2:00 PM-3:00 PM

MATH 412, 420, and 451 or MATH 494. (3). (BS). May not be repeated for credit.

MATH 593. Algebra I

The course will cover basic results about rings and modules, an introduction to homological algebra, the structure of

MATH 623/IOE 623. Computational Finance	Kim, Donghan	T/Th 10:00 AM-11:30 AM	
MATH 316 and MATH 425 or 525. (3). (BS). May not be re	peated for credit.		
This is a course in computational methods in finance and financial modeling. Particular emphasis will be put on interest rate models and interest rate derivatives. Specific topics include Black-Scholes theory, no-arbitrage and complete markets theory, term structure models, Hull and White models, Heath-Jarrow-Morton models, the stochastic differential equations and martingale approach, multinomial tree and Monte Carlo methods, the partial differential equations approach, finite difference methods.			
Required Texts: Monte Carlo methods in financial engineer	ring / Paul Glasserman/ 03	387004513	
Optional Texts: The Mathematics Of Financial Derivatives Dewynne, 9780511812545	A Student Introduction, Pa	aul Wilmott, Sam Howison, Jeff	
**MATH 625/STATS 625. Probability and Random Pr	ocesses I Rudelson,	Mark T/Th 10:00 AM-11:30 AM	
Topic: Probability Theory			
Math 597 or permission of instructor. (3). (BS). May not b	e repeated for credit.		
This is the first part of a graduate level probability course.			
Topics include: Kolmogorov's extension theorem, sums of independent random variables, the Law of Large Numbers, convergence of random variables, characteristic functions, Central Limit Theorems, filtrations, conditional expectation, discrete time martingales and their convergence, optional stopping theorem, elements of measure concentration. If time permits, we will also cover elements of large deviation theory and/or information theory.			
Textbooks: no textbook is required. Recommended textbook: Probability: Theory and Examples, by Rick Durrett; 978-1108473682.			
MATH 629. Machine Learning for Finance II 2PM	Nazari, Ali	F 1:00 PM- 2:30PM / S 10AM-	
MATH 629. Machine Learning for Finance II 2PM This is a graduate level course intended for students in the (Quant Program).	Nazari, Ali e Master's Program in Qua	F 1:00 PM- 2:30PM / S 10AM- ntitative Finance and Risk Management	
 MATH 629. Machine Learning for Finance II 2PM This is a graduate level course intended for students in the (Quant Program). The aim of the course is to prepare students in the Quant providing the students with a theoretical understanding of they pertain to financial mathematics. In addition, the top Python on financial data or other sample data when finance foundations, practical programming exercises, domain exp following content areas: 	Nazari, Ali e Master's Program in Qua Program to meet the need and practical experience ics will include practical im ial data not available. The pertise, and technical com	F 1:00 PM- 2:30PM / S 10AM- ntitative Finance and Risk Management ds of finance industry employers by in applying data science concepts as aplementation of the techniques in a course will focus on mathematical munication and will be divided into the	
MATH 629. Machine Learning for Finance II2PMThis is a graduate level course intended for students in the (Quant Program).The aim of the course is to prepare students in the Quant providing the students with a theoretical understanding of they pertain to financial mathematics. In addition, the top Python on financial data or other sample data when finance foundations, practical programming exercises, domain exp following content areas:I.Classical Statistical Learning (Classification, Regr II.II.Ensemble Learning, Dimensionality Reduction III.III.Neural Networks, Deep Networks IV.IV.Model Interpretability, Feature Importance, Feature	Nazari, Ali e Master's Program in Qua Program to meet the need and practical experience i ics will include practical im ial data not available. The pertise, and technical comm ession, Support Vector Ma	F 1:00 PM- 2:30PM / S 10AM- <i>intitative Finance and Risk Management</i> ds of finance industry employers by in applying data science concepts as inplementation of the techniques in a course will focus on mathematical munication and will be divided into the chine, Nearest Neighbors)	
 MATH 629. Machine Learning for Finance II 2PM This is a graduate level course intended for students in the (Quant Program). The aim of the course is to prepare students in the Quant providing the students with a theoretical understanding of they pertain to financial mathematics. In addition, the top Python on financial data or other sample data when finance foundations, practical programming exercises, domain exp following content areas: Classical Statistical Learning (Classification, Regree II. Ensemble Learning, Dimensionality Reduction III. Neural Networks, Deep Networks IV. Model Interpretability, Feature Importance, Featu Course content will be taught across two terms (two credit project at the end of the second semester. 	Nazari, Ali e Master's Program in Qua Program to meet the need and practical experience i ics will include practical im ial data not available. The pertise, and technical com ession, Support Vector Ma ure Reduction ts each term) and will culr	F 1:00 PM- 2:30PM / S 10AM- <i>intitative Finance and Risk Management</i> ds of finance industry employers by in applying data science concepts as inplementation of the techniques in course will focus on mathematical munication and will be divided into the chine, Nearest Neighbors)	
MATH 629. Machine Learning for Finance II 2PM This is a graduate level course intended for students in the (Quant Program). The aim of the course is to prepare students in the Quant providing the students with a theoretical understanding of they pertain to financial mathematics. In addition, the top Python on financial data or other sample data when finance foundations, practical programming exercises, domain exp following content areas: I. Classical Statistical Learning (Classification, Reground II. Ensemble Learning, Dimensionality Reduction III. Neural Networks, Deep Networks IV. Model Interpretability, Feature Importance, Feature Course content will be taught across two terms (two credite project at the end of the second semester. **MATH 631. Introduction to Algebraic Geometry	Nazari, Ali e Master's Program in Qua Program to meet the need and practical experience i ics will include practical im ial data not available. The pertise, and technical com ession, Support Vector Ma ure Reduction ts each term) and will culr Pixton, Aaron	F 1:00 PM- 2:30PM / S 10AM- Intitative Finance and Risk Management ds of finance industry employers by in applying data science concepts as inplementation of the techniques in a course will focus on mathematical munication and will be divided into the chine, Nearest Neighbors) ninate in students' completion of a final T/Th 11:30 AM-1:00 PM	
 MATH 629. Machine Learning for Finance II 2PM This is a graduate level course intended for students in the (Quant Program). The aim of the course is to prepare students in the Quant providing the students with a theoretical understanding of they pertain to financial mathematics. In addition, the top Python on financial data or other sample data when finance foundations, practical programming exercises, domain exp following content areas: Classical Statistical Learning (Classification, Regro II. Ensemble Learning, Dimensionality Reduction III. Neural Networks, Deep Networks IV. Model Interpretability, Feature Importance, Featu Course content will be taught across two terms (two credit project at the end of the second semester. **MATH 631. Introduction to Algebraic Geometry MATH 594 or permission of instructor. Graduate standing. language of category theory. Commutative algebra is reco localizations (of rings/modules) and tensor products thouge 	Nazari, Ali e Master's Program in Qua Program to meet the need and practical experience i ics will include practical im ial data not available. The pertise, and technical com ession, Support Vector Ma ure Reduction ts each term) and will culr Pixton, Aaron <i>Previous knowledge: Ger</i> <i>mmended but not essenti</i> <i>ith. (3). (BS). May not be r</i>	F 1:00 PM- 2:30PM / S 10AM- Intitative Finance and Risk Management ds of finance industry employers by in applying data science concepts as inplementation of the techniques in a course will focus on mathematical munication and will be divided into the chine, Nearest Neighbors) Ininate in students' completion of a final T/Th 11:30 AM-1:00 PM heral topology. Familiarity with the al; you should have a solid grasp of repeated for credit.	
 MATH 629. Machine Learning for Finance II 2PM This is a graduate level course intended for students in the (Quant Program). The aim of the course is to prepare students in the Quant providing the students with a theoretical understanding of they pertain to financial mathematics. In addition, the top Python on financial data or other sample data when finance foundations, practical programming exercises, domain exp following content areas: Classical Statistical Learning (Classification, Regree II. Ensemble Learning, Dimensionality Reduction III. Neural Networks, Deep Networks IV. Model Interpretability, Feature Importance, Featu Course content will be taught across two terms (two credit project at the end of the second semester. **MATH 631. Introduction to Algebraic Geometry MATH 594 or permission of instructor. Graduate standing. language of category theory. Commutative algebra is reco localizations (of rings/modules) and tensor products thouge This is the first half of a year-long sequence in algebraic g and objects of modern algebraic Geometry". 	Nazari, Ali e Master's Program in Qua Program to meet the need and practical experience i ics will include practical im ial data not available. The pertise, and technical commended ession, Support Vector Ma re Reduction ts each term) and will culr Pixton, Aaron Previous knowledge: Ger mmended but not essentia th. (3). (BS). May not be r eometry. In the first seme schemes. We will be loose	F 1:00 PM- 2:30PM / S 10AM- Initiative Finance and Risk Management ds of finance industry employers by in applying data science concepts as uplementation of the techniques in course will focus on mathematical munication and will be divided into the chine, Nearest Neighbors) Ininate in students' completion of a final T/Th 11:30 AM-1:00 PM meral topology. Familiarity with the al; you should have a solid grasp of repeated for credit. Ester, we will introduce the basic notions ly following Ravi Vakil's notes	

Fall 2023 Graduate Course Descriptions

**MATH 636. Topics in Differential Geometry <i>Topic:</i> Outer Automorphism Groups of Free Groups	Wright, Alexander	M/W/F 3:00 PM-4:00 PM		
Math 592				
This course will be an introduction to outer automorphism groups geometric group theory with rich analogies to mapping class grou topics such as automorphisms of free groups, metric graphs, Out	This course will be an introduction to outer automorphism groups of free groups. These groups are a central topic in geometric group theory with rich analogies to mapping class groups and arithmetic groups. The course will include related topics such as automorphisms of free groups, metric graphs, Outer space, the sphere complex, etc.			
The students will work together to produce notes on the lectures personal.umich.edu/~alexmw/Math797Notes.pdf for an example.	. See http://www-			
There is no required textbook for this course.				
**MATH 650. Fourier Analysis Ru	ıdelson, Mark	T/Th 1:00 PM-2:30PM		
Math 597 or permission of instructor				
Fourier analysis is one of the most powerful tools in PDEs, probal and computer science. This course will cover the basics of Fourier kernel and Fejer-Lebesgue theorem. We will continue with Fourier functions, theory of distributions and its applications, Sobolev sp of the course we will discuss Fourier transform in complex domai functions and Paley-Wiener theory for functions and distributions permitting, we will discuss applications of Fourier analysis to prol	bility, analytic number er analysis starting fron er integral in one and n acces and embedding th ins leading to boundary and applications of th bability, convex geome	theory, as well as signal processing n Fourier series, Dirichlet and Fejer nultiple dimensions, Schwartz neorems. At a more advanced stage v behavior of harmonic and analytic e Paley-Wiener theory to PDEs. Time etry, and number theory.		
No textbook for this course				
**MATH 655. Topics in Fluid Dynamics Veerapaneni, Shi	ravan	T/Th 2:30 PM-4:00 PM		
Numerical analysis, basic theory of ordinary and partial differenti MATLAB).	ial equations, experien	ce with programming (e.g.,		
Numerical analysis, basic theory of ordinary and partial differenti MATLAB). Topic: Mathematics of Microhydrodynamics	ial equations, experien	ce with programming (e.g.,		
Numerical analysis, basic theory of ordinary and partial differenti MATLAB). Topic: Mathematics of Microhydrodynamics This course will cover the mathematical theory of particulate and natural processes. Computational techniques for simulating comp of applications, from flows in thin films, porous media, and micro covered will include:	<i>ial equations, experiend</i> I multiphase flows enco plex fluids will be revie ofluidic chips to flows a	ce with programming (e.g., buntered in various engineering and wed. We will examine a wide range round suspended particles. Topics		
 Numerical analysis, basic theory of ordinary and partial differenti MATLAB). Topic: Mathematics of Microhydrodynamics This course will cover the mathematical theory of particulate and natural processes. Computational techniques for simulating comp of applications, from flows in thin films, porous media, and micro covered will include: Linearity and reversibility in Stokes flow, uniqueness, reciproca Constitutive laws for simple and complex interfaces, both passing 	ial equations, experience I multiphase flows enco plex fluids will be revier ofluidic chips to flows a al theorem ive and active	ce with programming (e.g., buntered in various engineering and wed. We will examine a wide range round suspended particles. Topics		
 Numerical analysis, basic theory of ordinary and partial differention MATLAB). Topic: Mathematics of Microhydrodynamics This course will cover the mathematical theory of particulate and natural processes. Computational techniques for simulating compof applications, from flows in thin films, porous media, and micro covered will include: Linearity and reversibility in Stokes flow, uniqueness, reciproca Constitutive laws for simple and complex interfaces, both passi Boundary integral equations Differential geometry in 2D, simulation of bubbles, vesicles and 	ial equations, experient I multiphase flows enco plex fluids will be revie ofluidic chips to flows a al theorem ive and active d active particles	ce with programming (e.g., ountered in various engineering and wed. We will examine a wide range round suspended particles. Topics		
 Numerical analysis, basic theory of ordinary and partial differention MATLAB). Topic: Mathematics of Microhydrodynamics This course will cover the mathematical theory of particulate and natural processes. Computational techniques for simulating compof applications, from flows in thin films, porous media, and micro covered will include: Linearity and reversibility in Stokes flow, uniqueness, reciproca Constitutive laws for simple and complex interfaces, both passi Boundary integral equations Differential geometry in 2D, simulation of bubbles, vesicles and Spherical harmonics, BIE analysis on spheres Small deformation theory and application 	ial equations, experient I multiphase flows enco plex fluids will be revie ofluidic chips to flows a al theorem ive and active d active particles	ce with programming (e.g., ountered in various engineering and wed. We will examine a wide range round suspended particles. Topics		
 Numerical analysis, basic theory of ordinary and partial differenti MATLAB). Topic: Mathematics of Microhydrodynamics This course will cover the mathematical theory of particulate and natural processes. Computational techniques for simulating comp of applications, from flows in thin films, porous media, and micro covered will include: Linearity and reversibility in Stokes flow, uniqueness, reciproca Constitutive laws for simple and complex interfaces, both passi Boundary integral equations Differential geometry in 2D, simulation of bubbles, vesicles and Spherical harmonics, BIE analysis on spheres Small deformation theory and application No textbook is required. 	ial equations, experient I multiphase flows enco plex fluids will be revie ofluidic chips to flows a al theorem ive and active d active particles ons Miller, Peter	ce with programming (e.g., ountered in various engineering and wed. We will examine a wide range round suspended particles. Topics		
 Numerical analysis, basic theory of ordinary and partial differenti MATLAB). Topic: Mathematics of Microhydrodynamics This course will cover the mathematical theory of particulate and natural processes. Computational techniques for simulating comp of applications, from flows in thin films, porous media, and micro covered will include: Linearity and reversibility in Stokes flow, uniqueness, reciproca Constitutive laws for simple and complex interfaces, both passi Boundary integral equations Differential geometry in 2D, simulation of bubbles, vesicles and Spherical harmonics, BIE analysis on spheres Small deformation theory and application No textbook is required. MATH 656. Introduction to Partial and Differential Equation 	ial equations, experience I multiphase flows enco plex fluids will be revier ofluidic chips to flows a al theorem ive and active d active particles ons Miller, Peter anding. (3). (BS). May	ce with programming (e.g., puntered in various engineering and wed. We will examine a wide range round suspended particles. Topics T/Th 2:30 PM-4:00 PM not be repeated for credit.		
 Numerical analysis, basic theory of ordinary and partial differention (MATLAB). Topic: Mathematics of Microhydrodynamics This course will cover the mathematical theory of particulate and natural processes. Computational techniques for simulating compof applications, from flows in thin films, porous media, and microcovered will include: Linearity and reversibility in Stokes flow, uniqueness, reciproca Constitutive laws for simple and complex interfaces, both passi Boundary integral equations Differential geometry in 2D, simulation of bubbles, vesicles and Spherical harmonics, BIE analysis on spheres Small deformation theory and application No textbook is required. MATH 656. Introduction to Partial and Differential Equation MATH 558, 596 and 597 or permission of instructor. Graduate states Partial differential equations are at the core of models in science, and their solutions have interesting structures that are studied by mathematical fields. 	ial equations, experient I multiphase flows enco- plex fluids will be revier fluidic chips to flows a al theorem ive and active d active particles ons Miller, Peter <i>anding. (3). (BS). May</i> , technology, economic y methods of analysis,	ce with programming (e.g., buntered in various engineering and wed. We will examine a wide range round suspended particles. Topics T/Th 2:30 PM-4:00 PM not be repeated for credit. as and related fields. These equations geometry, probability and other		
 Numerical analysis, basic theory of ordinary and partial differention (MATLAB). Topic: Mathematics of Microhydrodynamics This course will cover the mathematical theory of particulate and natural processes. Computational techniques for simulating comport of applications, from flows in thin films, porous media, and microcovered will include: Linearity and reversibility in Stokes flow, uniqueness, reciproca Constitutive laws for simple and complex interfaces, both passi Boundary integral equations Differential geometry in 2D, simulation of bubbles, vesicles and Spherical harmonics, BIE analysis on spheres Small deformation theory and application No textbook is required. MATH 656. Introduction to Partial and Differential Equation (MATH 558, 596 and 597 or permission of instructor. Graduate states and their solutions have interesting structures that are studied by mathematical fields. This course will introduce students in pure and applied mathematical developed to understand and analyze the properties of solutions 	ial equations, experience I multiphase flows enco- plex fluids will be revier ofluidic chips to flows a al theorem ive and active d active particles ons Miller, Peter <i>anding. (3). (BS). May</i> , technology, economic y methods of analysis, tics to concepts and m to partial differential e	ce with programming (e.g., buntered in various engineering and wed. We will examine a wide range round suspended particles. Topics T/Th 2:30 PM-4:00 PM not be repeated for credit. es and related fields. These equations geometry, probability and other ethods that mathematicians have quations.		
 Numerical analysis, basic theory of ordinary and partial differention MATLAB). Topic: Mathematics of Microhydrodynamics This course will cover the mathematical theory of particulate and natural processes. Computational techniques for simulating compof applications, from flows in thin films, porous media, and microcovered will include: Linearity and reversibility in Stokes flow, uniqueness, reciproca Constitutive laws for simple and complex interfaces, both passi Boundary integral equations Differential geometry in 2D, simulation of bubbles, vesicles and Spherical harmonics, BIE analysis on spheres Small deformation theory and application No textbook is required. MATH 656. Introduction to Partial and Differential Equation MATH 558, 596 and 597 or permission of instructor. Graduate states and their solutions have interesting structures that are studied by mathematical fields. This course will introduce students in pure and applied mathematideveloped to understand and analyze the properties of solutions Topics that may be covered include nonlinear first order equation method of characteristics, spenergy methods, maximum principle 	ial equations, experience I multiphase flows enco- plex fluids will be revier offluidic chips to flows a al theorem ive and active d active particles ons Miller, Peter <i>randing. (3). (BS). May</i> , technology, economic y methods of analysis, tics to concepts and m to partial differential en- s; linear elliptic, whypes, Fourier transforms	ce with programming (e.g., puntered in various engineering and wed. We will examine a wide range round suspended particles. Topics T/Th 2:30 PM-4:00 PM <i>not be repeated for credit.</i> es and related fields. These equations geometry, probability and other ethods that mathematicians have quations. perbolic and parabolic equations; the and Sobolev spaces.		

Curves Ziev, Michael M/W 11:30 AM-1:00 PM a at the level of Math 93/494 or Math 533/594 duction to elliptic curves, focusing on the arithmetic side of the theory. It develops the theory of side synthese of fields, and in particular over algebraic number fields. of Elliptic Curves by Joseph H. Silverman; 9780387094964 m Theory Chan, Ruiyan Optimities Set Theory (DST), a branch of mathematical logic with many connections to other areas analysis with the work of Borel, Baire, and Lebesgue in understanding the precise nature of sets and navious things: the general study of "explicitly definable" sets and functions, and how hard it is to or of "computable" sets and functions relative to arbitrary oracles; "measure theory without proposition of the development of integration and measure theory. Nowadays, depending on who hard it is to or of "computable" sets and functions relative to arbitrary oracles; "measure theory without proposition of the development of integration and the sets and functions, and how hard it is to or of "computable" sets and functions relative to arbitrary oracles; "measure theory without proposition of the development of integration and measure theory. Nowadays, depending on who hard it is to of "computable" sets and functions relative to arbitrary oracles; "measure theory without proposition of the development of integration and measure theory. Nowadays, depending on who hard it is to a "computable" sets and projective hierarchies, Baire category, and Lebesgue measure. Other topics we may be interstive to arbitrary oracles; Theorem, infinite boropage and the fore leterminacy theorem, infinite boropage. Nowing the more development of integrate theory and cassification problems (are there "more" groups or graphs?), point-free typis and the fore letermin	v emerging paradigms e used for discretization selected topics from (i antum algorithms.	; in solving large-scale scientific cor on and computational solution of pa) Classical fast algorithms, (ii) ML f	nputing problems. Emphasis will be given on Irtial differential equations (PDEs). Broadly, or PDE solution, (iii) Tensor network methods
a at the level of Math 493/494 or Math 593/594 duction to elliptic curves, focusing on the arithmetic side of the theory. It develops the theory of ious types of fields, and in particular over algebraic number fields. <i>of Elliptic Curves</i> by Joseph H. Silvermar; 9780387094946 in Thory Chr. Ruiyun J.T.I. 100 PM-2: 30 PM Descriptive Set Theory (DST), a branch of mathematical logic with many connections to other areas, new, which led to the development of integration and measure theory. Nowadys, depending on who an various things: the general study of "explicitly definable" sets and functions, and how hard it is to of "computable" sets and functions relative to arbitrary oracles; "measure theory without for upps, rings, and other algebraic structures; infinitary propositional/first-order logic; and the faction problems" throughout mathematics. sics of DST from a logician's perspective, including Boolean (sigma-)algebras and spaces, Polish and pe Borel and projective hierarchies, Baire category, and Lebesgue measure. Other topics we may phinsm?), infinite two-player games and the Borel determinacy theorem, infinite Borel combinatorics aputable model theory and classification problems (are there "more" groups rog graphs?), point-free terests of the class: Polish groups and their actions (the groups R and RY-2 are isomorphic; can phinsm?), infinite two-player games and the Borel determinacy theorem, infinite Borel combinatorics aputable model theory and classification problems (are there "more" groups or graphs?), point-free terests, other than mathematical maturity appropriate for a 600-level course. Some familiarity with and instructor. Graduate standing. (3). (BS). May not be repeated for credit. The functions forduate standing. (3). (BS). May not be repeated for credit. Theorem anthematician understands what they have in common. The purpose of this course topics cohomology theories, such as K-theory, will also be discussed. as or quizzes, homework will be collected on a weekly basis. the course in Alg	Curves	Zieve, Michael	M/W 11:30 AM-1:00 PM
Addition to deliptic curves, focusing on the arithmetic side of the theory. It develops the theory of the dilds, and in particular over algebraic number fields. The deliptic Curves by Joseph H. Silverman; 9780387094945 In Theory Char, and Lebargue in understanding the precise nature of sets and new work of Borel, Baire, and Lebersgue in understanding the precise nature of sets and new work of borel Baire, and Lebersgue in understanding the precise nature of sets and new work of borel Baire, and Lebersgue in understanding the precise nature of sets and new work of borel Baire, and Lebersgue in understanding the precise nature of sets and new work of borel Baire, and Lebersgue in understanding the precise nature of sets and new work of borel Baire, and Lebersgue in understanding the precise nature of sets and new to the dot the development of integration and measure theory. Nowadays, depending on who and a viso of "computable" sets and functions, and functions, and how hard it is to or of "computable" sets and functions relative to arbitrary oracles; "measure theory without groups, rings, and other algebraic structures; infinitary propositional/first-order logic; and the set Borel and projective hierarchies, Baire category, and Lebesgue measure. Other topics we may be interests of the class: Polish groups and their actions (the groups R and R^2 are isomorphic; care putable model theory and classification problems (are there "more" groups or graphs?), point-free affective DST. The devises, other than mathematical maturity appropriate for a 600-level course. Some familiarity with or instructor. Graduate standing, (3). (BS). May not be repeated for credit. The devise for a functions of first-order logic would be helpful, but is not required; we will review be as condongy arises from, the understands what they have in common. The purpose of this course dos cohomology rises from, the underlying field of homotopy theory, and the many contexts its tarting from the concrete cases of spaces and chain complexes, we wil	a at the level of Math	493/494 or Math 593/594	
a Highe Curves by Joseph H. Silverman; 9780387094965 n meor Chen, Ruyan Descriptive Set Theory (DST), a branch of mathematical logic with many connections to other areas, ane, which led to the development of integration and measure theory. Nowadays, depending on who are vious things: the general study of "explicitly definable" sets and functions, and how hard it is to a proups, fings, and other algebraic structures; infinitary propositional/first-order logic; and the factor problems" throughout mathematics. sits of DST from a logician's perspective, including Boolean (sigma-)algebras and spaces, Polish and perspective hierarchies, Baire category, and Lebesgue measure. Other topics we may in interests of the class: Polish groups and their actions (the groups R and R^2 are isomorphic; an phism?), infinite two-player games and the Borel determinacy theorem, infinite Borel combinatorics and phose of theory and classification problems (are there "more" groups or graphs?), point-free effective DST. equisites, other than mathematical maturity appropriate for a 600-level course. Some familiarity with the topic (sepecially ordinals), and/or first-order logic would be helpful, but is not required; we will review bare of a first. and Topolog I Krix JGr M/KF 9::00AP-10::00AP Mission of the may contexts its structures, is and the spece of a spece series and the may contexts its structures, and other incomplexes, we will then move on to frameworks are spece, and where one does not encounter the term "cohomology." While the term may refer spis, a modern mathematician understands what they have in common. The purpose of this course structures, so that they have in common. The purpose of this course spis, anodern mathematician understands what they have in common. The pur	duction to elliptic curv rious types of fields, a	ves, focusing on the arithmetic side and in particular over algebraic num	of the theory. It develops the theory of uber fields.
n Inery Den Ruguan T/Th 1:0 PM-2:0 PM To many Den Ruguan T/Th 1:0 PM-2:0 PM The provide Set Theory (DST), a branch of mathematical logic with many connections to other areas, any which led to the development of integration and measure theory. Nowadays, depending on which ary on the provide stand functions relative to arbitrary oracles; "measure theory without" ary on the provide stand functions relative to arbitrary oracles; measure theory without is not around provide the algebraic structures; infinitary propositional/first-order logic; and the set of DST from a logician's perspective, including Boolean (sigma-)algebras and spaces, Polish and the Borel and projective hierarchies, Baire category, and Lebesgue measure. Other topics we may interests of the class: Polish groups and the Borel determinacy theorem, infinite Borel combinatorics be provide and projective hierarchies, Baire category, and Lebesgue measure. Other topics we may provide and projective hierarchies, Baire category, and Lebesgue measure. Other topics we may provide and projective hierarchies, Baire category, and Lebesgue measure. Other topics we may provide interests. Polish groups and the Borel determinacy theorem, infinite Borel combinatorics but determinacy theory and classification problems (are there "more" groups or graphs?), point-free affective DST. and conogly T Kr y Mry Proventions (Mry Proventions (Mry Proventions (Mry Proventions (Mry Proventions (Mry Mry Proventions (Mry Proventions (Mry Proventions (Mry Proventions (Mry Proventions (Mry Mry Proventions (Mry Mry Proventions (Mry Mry Proventions (Mry Proventions (Mry Mry Mry Proventions (Mry Mry Mry Mry Proventions (Mry Mry Proventions (Mry Mry Mry Mry Mry Mry Mry Mry Mry Mry 	of Elliptic Curves by J	oseph H. Silverman; 978038709494	46
Descriptive Set Theory (DST), a branch of mathematical logic with many connections to other areas. analysis with the work of Borel, Baire, and Lebesgue in understanding the precise nature of sets and ne, which led to the development of integration and measure theory. Nowadays, depending on who an various things: the general study of "explicitly definable" sets and functions, and how hard it is to of "computable" sets and functions relative to arbitrary oracles; "measure theory without groups, rings, and other algebraic structures; infinitary propositional/first-order logic; and the fication problems" throughout mathematics. sics of DST from a logician's perspective, including Boolean (sigma-)algebras and spaces, Polish and he Borel and projective hierarchies, Baire category, and Lebesgue measure. Other topics we may in interests of the class: Polish groups and the Borel determinacy theorem, infinite Borel combinatorics pountable model theory and classification problems (are there "more" groups or graphs?), point-free l effective DST. requisites, other than mathematical maturity appropriate for a 600-level course. Some familiarity with hory (especially ordinals), and/or first-order logic would be helpful, but is not required; we will review itse. aic Topology I <i>Kriz, Igor</i> <i>M/W/F 9:00 AM-10:00 AM</i> on of instructor. Graduate standing. (3). (BS). May not be repeated for credit. Thathematics today where one does not encounter the term "cohomology." While the term may refer cepts, a modern mathematical nuderlying field of homotopy theory, and the many contexts its tarting from the concrete cases of spaces and chain complexes, we will then move on to frameworks pries, calculational tools such as spectral sequences, as well as general phenomena such as duality. ed cohomology theories, such as K-theory, will also be discussed. s or quizzes, homework will be collected on a weekly basis. cise Course in Algebraic Topology, Peter May, ISBN 13: 9780226511825	on Theory	Chen, Ruiyuan	T/Th 1:00 PM-2:30 PM
sics of DST from a logician's perspective, including Boolean (sigma-)algebras and spaces, Polish and he Borel and projective hierarchies, Baire category, and Lebesgue measure. Other topics we may he interests of the class: Polish groups and their actions (the groups R and R^2 are isomorphic; can phism?), infinite two-player games and the Borel determinacy theorem, infinite Borel combinatorics buntable model theory and classification problems (are there "more" groups or graphs?), point-free d effective DST. requisites, other than mathematical maturity appropriate for a 600-level course. Some familiarity with fory (especially ordinals), and/or first-order logic would be helpful, but is not required; we will review rise. aic Topology I <i>Kriz, Igor</i> <i>M/W/F 9:00 AM-10:00 AM</i> <i>on of instructor. Graduate standing. (3). (BS). May not be repeated for credit.</i> Trathematics today where one does not encounter the term "cohomology." While the term may refer topts, a modern mathematician understands what they have in common. The purpose of this course ods cohomology arises from, the underlying field of homotopy theory, and the many contexts its tarting from the concrete cases of spaces and chain complexes, we will then move on to frameworks ories, calculational tools such as spectral sequences, as well as general phenomena such as duality. at cohomology theories, such as K-theory, will also be discussed. s or quizzes, homework will be collected on a weekly basis. tise Course in Algebraic Topology, Peter May, ISBN 13: 9780226511825 Page 7 of 8	Descriptive Set Theor analysis with the wor ine, which led to the o an various things: the y of "computable" set groups, rings, and oth fication problems" the	y (DST), a branch of mathematical k of Borel, Baire, and Lebesgue in u development of integration and mea general study of "explicitly definal s and functions relative to arbitrary her algebraic structures; infinitary p roughout mathematics.	logic with many connections to other areas. understanding the precise nature of sets and asure theory. Nowadays, depending on who ble" sets and functions, and how hard it is to oracles; "measure theory without ropositional/first-order logic; and the
requisites, other than mathematical maturity appropriate for a 600-level course. Some familiarity with bory (especially ordinals), and/or first-order logic would be helpful, but is not required; we will review file. Finite Topology I Kriz, Igor M/W/F 9:00 AM-10:00 AM <i>on of instructor. Graduate standing. (3). (BS). May not be repeated for credit.</i> Tranthematics today where one does not encounter the term "cohomology." While the term may refer topts, a modern mathematician understands what they have in common. The purpose of this course ods cohomology arises from, the underlying field of homotopy theory, and the many contexts its tarting from the concrete cases of spaces and chain complexes, we will then move on to frameworks bries, calculational tools such as spectral sequences, as well as general phenomena such as duality. ed cohomology theories, such as K-theory, will also be discussed. is or quizzes, homework will be collected on a weekly basis. cise Course in Algebraic Topology, Peter May, ISBN 13: 9780226511825 Page 7 of 8	asics of DST from a lo ne Borel and projectiv he interests of the cla phism?), infinite two- puntable model theor d effective DST.	gician's perspective, including Boole e hierarchies, Baire category, and l iss: Polish groups and their actions -player games and the Borel detern y and classification problems (are t	ean (sigma-)algebras and spaces, Polish and Lebesgue measure. Other topics we may (the groups R and R^2 are isomorphic; can ninacy theorem, infinite Borel combinatorics here "more" groups or graphs?), point-free
Paic Topology IKriz, IgorM/W/F 9:00 AM-10:00 AMon of instructor. Graduate standing. (3). (BS). May not be repeated for credit.If mathematics today where one does not encounter the term "cohomology." While the term may refer bods cohomology arises from, the underlying field of homotopy theory, and the many contexts its tarting from the concrete cases of spaces and chain complexes, we will then move on to frameworks ories, calculational tools such as spectral sequences, as well as general phenomena such as duality. ed cohomology theories, such as K-theory, will also be discussed.s or quizzes, homework will be collected on a weekly basis.cise Course in Algebraic Topology, Peter May, ISBN 13: 9780226511825Page 7 of 8	requisites, other than eory (especially ordina rise.	mathematical maturity appropriate als), and/or first-order logic would b	e for a 600-level course. Some familiarity with be helpful, but is not required; we will review
on of instructor. Graduate standing. (3). (BS). May not be repeated for credit. Temathematics today where one does not encounter the term "cohomology." While the term may refer tepts, a modern mathematician understands what they have in common. The purpose of this course tods cohomology arises from, the underlying field of homotopy theory, and the many contexts its tarting from the concrete cases of spaces and chain complexes, we will then move on to frameworks tories, calculational tools such as spectral sequences, as well as general phenomena such as duality. ed cohomology theories, such as K-theory, will also be discussed. Is or quizzes, homework will be collected on a weekly basis. Cise Course in Algebraic Topology, Peter May, ISBN 13: 9780226511825 Page 7 of 8	aic Topology I	Kriz, Igor	M/W/F 9:00 AM-10:00 AM
The mathematics today where one does not encounter the term "cohomology." While the term may refer to the tepts, a modern mathematician understands what they have in common. The purpose of this course bods cohomology arises from, the underlying field of homotopy theory, and the many contexts its tarting from the concrete cases of spaces and chain complexes, we will then move on to frameworks bries, calculational tools such as spectral sequences, as well as general phenomena such as duality. Ead cohomology theories, such as K-theory, will also be discussed. It is or quizzes, homework will be collected on a weekly basis. The course in Algebraic Topology, Peter May, ISBN 13: 9780226511825 Page 7 of 8	on of instructor. Grad	'uate standing. (3). (BS). May not b	e repeated for credit.
s or quizzes, homework will be collected on a weekly basis. cise Course in Algebraic Topology, Peter May, ISBN 13: 9780226511825 Page 7 of 8	⁴ mathematics today cepts, a modern math ods cohomology arise tarting from the conc pries, calculational too ed cohomology theori	where one does not encounter the t nematician understands what they h is from, the underlying field of hom rete cases of spaces and chain com ols such as spectral sequences, as w es, such as K-theory, will also be d	erm "cohomology." While the term may refer nave in common. The purpose of this course otopy theory, and the many contexts its uplexes, we will then move on to frameworks well as general phenomena such as duality. iscussed.
cise Course in Algebraic Topology, Peter May, ISBN 13: 9780226511825 Page 7 of 8	s or quizzes, homewo	ork will be collected on a weekly bas	sis.
Page 7 of 8	cise Course in Algebra	aic Topology, Peter May, ISBN 13: 9	9780226511825
			Page 7 of 8

This introductory course in combinatorial matrix theory will focus on connections between linear algebra and algebraic

Tentative list of topics: Combinatorial techniques in linear algebra. Basic algebraic graph theory. Determinantal identities. Matroids and projective geometry. Grassmannians and Schubert cells. Canonical forms and factorizations. Polynomials with

There is no required textbook for this course. MATH 671. Numerical Methods I Veerapaneni, Shravan

Emerging topics in large-scale scientific computing

****MATH 668. Advanced Combinatorics**

combinatorics.

This course will survey techniques that can be the course will cover and (iv) Variational qu

**MATH 679. Eliptic

real roots. Totally positive matrices.

Familiarity with algebra

This course is an intro elliptic curves over va

Textbook: Arithmetic

MATH 682. Recursio

This course will cover DST originated in real functions on the real you ask, DST may me define them; the stud measures"; infinitary "classification of classi

We will develop the ba quasi-Polish spaces, tl cover, depending on t you think of an isomo and Ramsey theory, c topology and DST, an

There are no hard pre basic topology, set the these topics as they a

**MATH 695. Algeb

MATH 591 or permissi

There are few areas o to vastly different con is to explore the meth techniques apply to. S such as derived categ Examples of generaliz

There will be no exam

Optional Texts: A Con

T/Th 1:00 PM - 2:30 PM

MATH 565 or 566 or equivalent. Graduate standing. (3). (BS). May not be repeated for credit.

T/Th 11:30 AM-1:00 PM Fomin, Sergey

****MATH 697. Topics in Topology Topic:** Heegaard Floer Homology Truong, Linh

T/Th 2:30 PM-4:00 PM

This course will assume a basic understanding of smooth manifolds (smooth maps, derivatives, differential forms) and algebraic topology (homology, cohomology).

Since its introduction in the late 1980s, Floer homology has become an important tool in low-dimensional topology. This course will introduce a version of Floer homology called Heegaard Floer homology, an invariant for knots, three-manifolds, and four-manifolds. As applications we may discuss minimal genus problems, detecting exotic smooth structures on four-manifolds and finding topological properties of knots.

There is no required textbook for this course.