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Abstract

1 Introduction

In the field of nuclear Physics, Eugene Wigner first utilized random matrices to
model the nuclei of heavy atoms in the 1950s[12]. He proposed that the spacing
between the eigenvalues on the real line represents difference between energy
levels. After that, Freeman Dyson also encountered radndom matrices, GUE
specifically, in his Brownian motion model of Coulomb gas[2]. After that, Mehta
and Gaudin refined his work to offer a precise expression for the asymptotic be-
havior of eigenvalue density functions[5]. The model is also widely adopted in
studies of fermions in harmonic trap and queueing theory. Later on, scholars
like Tracy and Widom[10], as well as Forrester and Witte[3], furthur explored
the connection between random matrix properties and differential systems, in-
cluding the Painlevé system.

This report will introduce the definitions of the GUE first, with a brief deriva-
tion of its eigenvalue distribution function. Our research focuses on the finite
dimensional case, where entry distribution has an impact on the eigenvalue dis-
tribution. More specifically, our discussion concerns the maximum eigenvalues.
We first calculate the normalization constant for the maximum eigenvalue dis-
tribution function, then discuss the asymptotic behaviors. For the left tail, both
Hankel determinant and Toda equation offer complete solution. The righttail,
on the other hand, can be easily solved by the Fredholm determinant. After
that, we will briefly discuss a related ensemble named thinned ensemble. Finally,
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we resort to Brownian motion simulation to verify our computational results,
then showcase two physics models where GUE eigenvalue distribution plays a
major role.

2 Building Blocks of GUE

Start with these definitions,

• Hermitian matrices a matrix M is Hermitian if MT = M

• Unitary matrices a matrix M is Unitary if MT = M−1

• Gaussian random variable
Random variable X is Gaussian if it has distribution function

f(x) =
1

σ
√

2π
e−

1
2 (
x−µ
σ )2

where µ is the mean and σ is the standard deviation, denoted as X ∼ N(µ, σ2).

• Gaussian Unitary Ensemble
Collection of Hermitian matrices H whose entries are selected independently
from Gaussian random distribution; their probabilistic distributions are pre-
served with conjugation by unitary matrices, i.e.

Prob(H ∈ A) = Prob(UHU−1 ∈ A)

More explicitly, it has the form:

Hii ∼ N(0, 1√
2
) and Re(Hij), Im(Hij) ∼ N(0, 12 ) where i 6= j

It’s also worth noting that all eigenvalues of GUE matrices are real.

• Eigenvalue Distribution
We can express the probability distribution function of the eigenvalues in Rn as
in Forrester’s book on Log-Gases [4]

Prob((λ1, · · · , λn) ∈ B) =
1

Zn

∫
B

e−
∑n

1 λ
2
i

∏
|λj − λk|2

∏
dλl

This is the starting point of our research.

• Largest Eigenvalue
Given their probability distribution functions, we can calculate the distribution
of the largest eigenvalues:

P (λmax < t) = Prob((λ1, · · · , λn) ∈ (−∞, t)n
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=
1

Zn

∫
(−∞,t)n

e−
∑n

1 λ
2
i

∏
|λj − λk|2

∏
dλl

We are mainly concerned about its right and left tail asymptotic behaviors.

• Infinite Dimensional GUE Largest Eigenvalue Distribution
Dubbed the Tracy Widom distribution, it is well-known that maximum eigen-
value of infinite-dimensional GUE follows the probability distribution function
[11]

P (λmax, N) ∼
√

2N2/3f(
√

2N2/3(λmax −
√

2))

where f is some function that satisfies Painlevé II - a specific class of differential
equations. This result is actually universal to all random Hermitian matrices,
regardless of the distribution of their individual entries[9].

3 Normalization Constant

As we can see in the previous section, a normalization constant zn is needed to
ensure lim

t→∞
P (λmax < t) = 1. In this section we describe the steps to derive

an explicit formula for this constant. To do this, we need to introduce a few
definitions.

Hermite Polynomials
Hermite polynomials are formally defined as

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

To list the first few of them:

H0(x) =1

H1(x) =2x

H2(x) =4x2 − 2

H3(x) =8x3 − 12x

Hermite polynomials are orthogonal, i.e.

∞∫
−∞

Hm(x)Hn(x)e−x
2

dx = (2mm!
√
π)δm,n

Also note that the leading term of the nth Hermite polynomial is always 2nxn.
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Christoffel-Darboux kernel
This kernel is defined in terms of Hermite polynomials

Kn(x, y) = e−
x2

2 −
y2

2

N−1∑
k=0

Hk(x)Hk(y)

2kk!
√
π

It has the following properties
1.
∫∞
−∞KN (x, x) dx = N

2.
∫∞
−∞KN (x, y)KN (y, z) dy = KN (x, z)

Now we’re ready to compute the normalization constants.

z = lim
t→∞

t∫
−∞

· · ·
t∫

−∞

∏
i<j

(λi − λj)2e−
∑
λ2
k

∏
dλk

=

∞∫
−∞

· · ·
∞∫
−∞

∏
i<j

(λi − λj)2e−
∑
λ2
k

∏
dλk

starting with the probability distribution integrated over the entire real line, we
express (λi − λj)2 in the form of Vandermonde determinants

=

∞∫
−∞

· · ·
∞∫
−∞

∣∣∣∣∣∣∣∣∣
1 λ1 . . . λN−11

1 λ2 . . . λN−12
...

...

1 λN . . . λN−1N

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1 . . . 1
λ1 . . . λN
...

...

λN−11 . . . λN−1N

∣∣∣∣∣∣∣∣∣ e
−

∑
λ2
k

∏
dλk

then we re-write them in terms of Hermite polynomials

=

N−1∏
k=0

2−2k
∞∫
−∞

· · ·
∞∫
−∞

∣∣∣∣∣H0(λ1) H1(λ1) . . . HN−1(λ1)
...

...
...

∣∣∣∣∣
∣∣∣∣∣∣∣
H0(λ1) . . .

...
HN−1(λ1) . . .

∣∣∣∣∣∣∣ e−
∑
λ2
k

∏
dλk

Here KN refers to the Christoffel-Darboux kernel.

=

N−1∏
k=0

2−2k
N−1∏
k=0

2kk!
√
π

∞∫
−∞

· · ·
∞∫
−∞

det(KN (λi, λj))i,j=1,...,N

∏
dλk

Now we expand the determinant with respect to the last row of matrix, then

expand again with respect to the last column. Denote as det
(
K

(N,i;N,j)
N

)
the

sub-matrix given by removing the Nth and ith row, as well as the Nth and ith

4



column.

det(KN (λi, λj))i,j=1,...,N =

N∑
j=1

(−1)j+NKN (λN , λj) det
(
K

(N ;j)
N

)
= KN (λN , λN ) det

(
KN (λi, λj)i,j=1,...,N−1

)
+

N−1∑
j=1

(−1)j+NKN (λN , λj)

N−1∑
i=1

(−1)i+N−1KN (λi, λN ) det
(
K

(N,i;N,j)
N

)
Recall the two properties about Christoffel-Darboux kernel:

∞∫
−∞

KN (x, x) dx = N

∞∫
−∞

KN (x, y)KN (y, z) dy = KN (x, z)

Integrate with respect to the last eigenvalue λN and use these properties to sim-
plify the kernels. Then convert the double summation back to the determinant
form with respect to i = N − 1

∞∫
−∞

det(KN (λi, λj))i,j=1,...,N dλN

= N det
(
KN (λi, λj)i,j=1,...,N−1

)
−
∞∫
−∞

N−1∑
i=1

N−1∑
j=1

(−1)i+jKN (λi, λN )KN (λN , λj) det
(
K

(N,i;N,j)
N

)
dλN

= N det
(
KN (λi, λj)i,j=1,...,N−1

)
−
N−1∑
i=1

N−1∑
j=1

(−1)i+jKN (λi, λj) det
(
K

(N,i;N,j)
N

)
= (N − (N − 1)) det

(
K

(N ;N)
N

)
By induction on the matrix size, we have:

∞∫
−∞

· · ·
∞∫
−∞

det(KN (λ1, λj) dλ1 . . . dλN ) = (N − (N − 1))(N − (N − 2)) . . . (N − (N − 1))

= N !

Therefore we found the normalization constant:

z = N !

N−1∏
k=0

2−k
√
πk!

= π
N
2 2−

N(N−1)
2

N∏
k=0

k!
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3.1 Verifications

We can expand the distribution into Vandermonde determinant form and quickly
calculate the distribution and normalization constants for small values of n like
n = 1, 2, 3 to verify our computation above.

First, an n× n Vandermonde matrix V has the form

V =

∣∣∣∣∣∣∣∣∣∣∣

1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12

1 x3 x23 . . . xn−13
...

...
...

. . .
...

1 xn x2n . . . xn−1n

∣∣∣∣∣∣∣∣∣∣∣
or V(i,j) = xj−1i

Induction on matrix size n easily gives

det(V ) =
∏

1≤i<j leqn

(xj − xi)

We can calculate the normalization constant explicitly by employing the
Vandermonde determinant described above.The largest eigenvalue is no greater
than t means that all eigenvalues fall into the interval (−∞, t), so we integrate
the probability function we found earlier on this interval.

P (λmax < t) =
1

z

t∫
−∞

· · ·
t∫

−∞

∏
(λi − λj)2e−

∑
λ2
k dλ1 · · · dλN

We replace each of the product in
∏

(λi − λj)2 =
∏

(λi − λj)
∏

(λi − λj) with
the corresponding matrices according to the Vandermonde determinant. Using
the transpose has no effect on the determinant.

=
1

z

t∫
−∞

· · ·
t∫

−∞

∣∣∣∣∣∣∣
1 · · · 1
...

. . .
...

λN−11 . . . λN−1N

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 · · · 1
...

. . .
...

λN−11 . . . λN−1N

∣∣∣∣∣∣∣ e−
∑
λ2
k dλ1 · · · dλN

Calculate the determinant for the second matrix, but this time using permuta-
tions,

=
1

z

∑
σ

sign(σ)

t∫
−∞

· · ·
t∫

−∞

∣∣∣∣∣∣∣
1 · · · 1
...

. . .
...

λN−11 . . . λN−1N

∣∣∣∣∣∣∣
∏

λ
σ(i)−1
i e−

∑
λ2
k dλ1 · · · dλN

Multiply the permuted λs from the second matrix into the first matrix,

=
1

z

∑
σ

sign(σ)

t∫
−∞

· · ·
t∫

−∞

∣∣∣∣∣∣∣∣
λ
σ(1)−1
1 · · · λ

σ(N)−1
N

...
. . .

...

λ
σ(1)+N−2
1 . . . λ

σ(N)+N−2
N

∣∣∣∣∣∣∣∣ e
−

∑
λ2
k dλ1 · · · dλN
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Multiply each of the eλ
2
k into the kth column of the first matrix. Now each

column in the matrix contains only one λ, so we can bring in the n-integral.
Integrating the ith column with respect to λi,

=
1

z

∑
σ

sign(σ)

∣∣∣∣∣∣∣∣
∫ t
−∞ λ

σ(1)−1
1 e−λ

2
1 dλ1 . . .

∫ t
−∞ λ

σ(N)−1
N e−λ

2
N dλN

...
. . .

...∫ t
−∞ λ

σ(1)+N−2
1 e−λ

2
1 dλ1 . . .

∫ t
−∞ λ

σ(N)+N−2
N e−λ

2
N dλN

∣∣∣∣∣∣∣∣
For each of the permutations, swap columns so that the ith λ lands in the ith
column. This will give another sign(σ), which cancels out the sign in front.
Therefore:

=
n!

z
det{

t∫
−∞

λi+je−λ
2

dλ i,j=0,...,N−1}

For n = 1, 2, 3, we can calculate the probability relatively easily with this
method:

Prob1(t) =
1

z1

t∫
−∞

e−λ
2 dλ =

1

2
(1 + erf(t))

where z1 =
√
π.

Prob2(t) =
1

z2
det

∣∣∣∣∣
∫ t
−∞ e−λ

2

dλ
∫ t
−∞ λe−λ

2

dλ∫ t
−∞ λe−λ

2

dλ
∫ t
−∞ λ2e−λ

2

dλ

∣∣∣∣∣
=

1

z2
(

t∫
−∞

e−λ
2

dλ

t∫
−∞

λ2e−λ
2

dλ− (

t∫
−∞

λe−λ
2

dλ)2)

=
1

z2
((

√
π

2
(1 + erf(x)))(

√
π

4
+

√
π

4
erf(t)− e−t

2

2
)− (−e

−t2

2
)2)

With the help of Wolfram, we find z2 = π
2 .

Prob3(t) =
1

z3
det

∣∣∣∣∣∣∣
∫ t
−∞ e−λ

2 dλ
∫ t
−∞ λe−λ

2 dλ
∫ t
−∞ λ2e−λ

2 dλ∫ t
−∞ λe−λ

2 dλ
∫ t
−∞ λ2e−λ

2 dλ
∫ t
−∞ λ3e−λ

2 dλ∫ t
−∞ λ2e−λ

2 dλ
∫ t
−∞ λ3e−λ

2 dλ
∫ t
−∞ λ4e−λ

2 dλ

∣∣∣∣∣∣∣
Mathematica gives the result as
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And the corresponding z3 = π
3
2

4 .

We briefly sketched out these cumulative probability distributions:

(a) n = 1 (b) n = 2 (c) n = 3

Figure 1: Cumulative Distribution Function For Small n

They confirmed the intuition that having more eigenvalues will shift the dis-
tribution to the right since it’s more likely to yield a larger maximum.

4 Left-Tail Asymptotic

4.1 Hankel Determinant Method

Theorem 1. At negative infinity, Big O for the maximum eigenvalue distribu-
tion for N ×N GUE is

Prob(λmax < t) ' (−1)N
∏N−1
k=0 k!

π
N
2 2

N(N+1)
2

e−Nt
2

tN2 , t→ −∞

Proof. We start with the general distribution from the introduction and inte-
grate over (−∞, t)N as the probability that all eigenvalues fall into this interval.
Shift the integral to eliminate variable t from the interval we’re integral on.

Prob(λmax < t) =
1

z

∫
(−∞,t)N

∏
1≤i<j≤N

(λi − λj)2
∏

e−λ
2
k dλi

=
1

z

∫
(−∞,0)N

∏
1≤i<j≤N

(λi − λj)2
∏

e−(λk+t)
2

dλi

Furthur separate λk from t since the t term remains constant when integrating
with respect to λ.

Prob(λmax < t) =
1

z

∫
(−∞,0)N

∏
1≤i<j≤N

(λi − λj)2
∏

e−λ
2
ke−2λkte−t

2

dλi

=
e−Nt

2

z

∫
(−∞,0)N

∏
1≤i<j≤N

(λi − λj)2
∏

e−λ
2
ke−2λkt dλi
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Use change of variable λit = xi and adjust the signs accordingly

Prob(λmax < t) = (−1)N
1

z
e−Nt

2

∫
(0,∞)N

∏
1≤i<j≤N

(
xi
t
− xj

t
)2
∏

e−
x2k
t2
−2xk(

1

t
dxi)

= (−1)N
1

z

e−Nt
2

tN2

∫
(0,∞)N

∏
1≤i<j≤N

(xi − xj)2
∏

e−
x2k
t2
−2xk dxi

At t→ −∞, xi →∞ while
x2
k

t2 is some constant, therefore∏
e−

x2k
t2
−2xk '

∏
e−2xi = e

∑
−2xi

Substitute back into the integral,

Prob(λmax < t) ' (−1)N
1

z

e−Nt
2

tN2

∫
(0,∞)N

∏
1≤i<j≤N

(xi−xj)2e
∑
−2xi dxi, t→ −∞

Use change of variable yi = 2xi to get rid of 2 in the exponent

Prob(λmax < t) ' (−1)N
1

z

e−Nt
2

tN2

∫
(0,∞)N

∏
1≤i<j≤N

(
yi
2
− yj

2
)2e−

∑
yk(

1

2
dyi)

' (−1)N
1

z

e−Nt
2

(2t)N2

∫
(0,∞)N

∏
1≤i<j≤N

(yi − yj)2e
∑
−yk dyi

Follow a process similar to the one introduced in the normalization constant
section, we express the term

∏
1≤i<j≤N (yi − yj)2 in the form of Vandermonde

determinant and expand the second matrix by permutation,

Prob(λmax < t) ' (−1)N
1

z

e−Nt
2

(2t)N2

∫
(0,∞)N

∣∣∣∣∣∣
1 . . . yn−11

. . .
1 . . . yn−1n

∣∣∣∣∣∣
∣∣∣∣∣∣

1 . . . 1
. . .

yn−11 . . . yn−1n

∣∣∣∣∣∣ e
∑
−yk dyi

' (−1)N
1

z

N !e−Nt
2

(2t)N2 det

 ∞∫
0

yi+je−y dy i,j=0,...,N−1


Substitute z = π

N
2 2−

N(N−1)
2

∏N
k=0 k! into our equation,

Prob(λmax < t) ' (−1)N

π
N
2 2

N(N+1)
2

∏N−1
k=0 k!

e−Nt
2

tN2 det

 ∞∫
0

yi+je−y dy i,j=0,...,N−1


Notice that the determinant part gives a constant, denoted as zL. We can com-
pute this constant following a procedure analogous of constant computation in
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the last section. Instead of Hermite polynomials, this time we use the Laguerre
polynomials with its corresponding kernel.

Laguerre Polynomials
Define the nth Laguerre polynomial Ln as

Ln(x) =
ex

n!

dn

dxn
e−xxn

List the first few Ln

L0 = 1

L1 = −x+ 1

L2 =
1

2
x2 − 2x+ 1

L3 = −1

6
x3 +

3

2
x2 − 3x+ 1

Notice that the coefficient of the leading term in Ln is (−1)n
n! . They have or-

thogonality condition
∞∫
0

Li(x)Lj(x)e−x dx = δi,j

Associated Christoffel-Darboux kernel
Define the kernel in terms of Laguerre polynomials

Kn(x, y) =

n−1∑
i=0

Li(x)Li(y)

This kernel has the property that

∞∫
0

Kn(x, x)e−x dx =

n−1∑
i=0

∞∫
0

Li(x)Li(x)e−x dx =

n−1∑
i=0

1 = n

Now we are ready to tackle this constant. Follow the same steps to expand
the squared term, re-write them in the form of Laguerre polynomials, then
calculate the new determinant with property of the kernel.

zL = det

 ∞∫
0

yi+je−y dy i,j=0,...,N−1


=

1

N !

N−1∏
k=0

(
k!

(−1)k
)2
∞∫
0

· · ·
∞∫
0

∣∣∣∣∣L0(y1) . . . LN−1(y1)
...

...

∣∣∣∣∣
∣∣∣∣∣∣∣
L0(y1) . . .

...
LN−1(y1) . . .

∣∣∣∣∣∣∣ e−
∑
yk
∏

dyk

=
1

N !

N−1∏
k=0

(
k!

(−1)k
)2
∞∫
0

· · ·
∞∫
0

det(KN (yi, yj))i,j=0,...,N−1e
−

∑
yk
∏

dyk
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Expand this determinant with respect to the last row of the matrix, then
the last column.

det(KN (yi, yj))i,j=0,...,N−1e
−

∑
yk
∏

dyk

=

N∑
j=1

(−1)j+NKN (yN , yj) det
(
K

(N ;j)
N

)
= KN (yN , yN ) det

(
KN (yi, yj)i,j=1,...,N−1

)
+

N−1∑
j=1

(−1)j+NKN (yN , yj)

N−1∑
i=1

(−1)i+N−1KN (yi, yN ) det
(
K

(N,i;N,j)
N

)
= KN (yN , yN ) det

(
KN (yi, yj)i,j=1,...,N−1

)
+

N−1∑
i=1

N−1∑
j=1

(−1)i+jKN (λi, λN )KN (λN , λj) det
(
K

(N,i;N,j)
N

)
dλN

Very similar to the process introduced in the normalization constant section, we
integrate with respect to yN then collapse the double summation term into an
(N − 1)× (N − 1) matrix determinant

∞∫
−∞

det(KN (yi, yj))i,j=1,...,N dyN

= N det
(
KN (yi, yj)i,j=1,...,N−1

)
−
N−1∑
i=1

N−1∑
j=1

(−1)i+jKN (yi, yj) det
(
K

(N,i;N,j)
N

)
= (N − (N − 1)) det

(
K

(N ;N)
N

)
Induction on matrix size gives

∞∫
0

· · ·
∞∫
0

det(KN (yi, yj))i,j=0,...,N−1e
−

∑
yk
∏

dyk = (N−(N−1))(N−(N−2)) · · · = N !

Therefore

zL =

N−1∏
k=0

(k!)2

And we arrive at our conclusion

Prob(λmax < t) ' (−1)N
∏N−1
k=0 k!

π
N
2 2

N(N+1)
2

e−Nt
2

tN2
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4.2 τ Function Theory and Painlevé Equation

Building on the Fredholm determinant method, Tracy and Widom established a
connection between the eigenvalue distribution to solutions of differential equa-
tions. More precisely, one property of the Fredholm determinant states

∂

∂λk
log det(I −K) = (−1)k−1KN (λk, λk)

Here KN (λk, λk) refers to the Christoffel-Darboux kernel. Therefore,

Prob(λmax < t) = exp

− ∞∫
t

R(s)


where R(s) = KN (s, s). Such a function R(s) has been proven to satisfy the σ
version of Painlevé IV with parameters µ1 = 0, µ2 = 2N [7]

(R′′)2 + 4(R′)2(R′ + 2N)− 4(tR′ −R)2 = 0

More explicitly, R(s) can be written as

R(s) = Ny − s2

2
y − s

2
y2 − 1

8
y3 +

1

8y
(y′)2

where y solve Painlevé IV with parameters α = 2N − 1, β = 0

d2y

ds2
=

1

2y
(
dy

ds
)2 +

3

2
y3 + 4ty2 + 2(t2 − α)y +

β

y

Finally, we conclude that

P (λmax < t) = exp

{
−
∫ ∞
t

R(s) ds

}
Additionally, we can find the expanded form of R(t) at infinity by specifying
lim
t→∞

R(t):

R(s) = −2Ns− N2

s
+
N3

s3
− N2(1 + 9N2)

4s5
+
N3(10 + 27N2)

4s7
+ . . .

Thus we found a representation of the eigenvalue distribution with Painlevé
transcendent. Based on this asymptotic expression of R(s), we can find the
leading term of lefttail distribution. According to Tracy and Widom,

Prob(λmax < t) ' cNe
−Nt2

(−t)N2 , t −→ −∞ (1)

By explicitly calculation from section 3, we determined the cN for some small
values of N :
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N 1 2 3 4
cN

1
2
√
π

1
8π

1

32π
3
2

3
256π2

This constant is very costly to compute for larger N due to the complexity of
N-integrals. We can generalize it for larger N using the Toda Equation. To start
with, Witte and Forrester [3] established the connection between the probability
distribution and the τ function as noted in section 2.1:

P (λmax < t) = C∗τ3[N ](t)

where the τ functions satisfy the following condition

d2

dt2
log
(
ent

2

τ3[n]
)

= C
τ3[n+ 1]τ3[n− 1]

τ3[n]2

Given that at t→∞

τ3[N ](t) =
1

C∗
P (λmax < t) =

1

C∗
(1 +O(t2N−3e−t

2

))

we have
d2

dt2
log
(
eNt

2

τ3[N ]
)

= 2Nt+O(
2N − 3

t
− 2t)

At t −→∞, the equation simplifies to:

2N = C

Now that we know C = 2N , we can plug in the left tail estimate in (1) and find
a recurrence relationship between cN :

c2N =
2

N
cN+1cN−1

Equivalently,

cN+1

cN
=
N

2

cN
cN−1

=
N !

2N−1
c2
c1

=
N !

2N+1
√
π

Therefore,

cN = c1

N−1∏
i=1

cN+1

cN
=

∏N−1
i=1 i!

2
N
2 (N+1)π

N
2

The numerator is the superfactorial function sf(N − 1). Our computational
results from the last section agree with this formula. Therefore, we solved the
left-tail asyomptotic problem through a different approach.
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5 Fredholm Determinant And Right Tail Asymp-
totic Behavior

We can derive another expression using the Fredholm determinant method, as
shown below.

• Fredholm Determinant:

det(I − ξKNχJ) = 1 +

N∑
n=1

(−ξ)n

n!

∫
J×···×J

det
(
K(n)

) n∏
k=1

dλk

with matrix K(n) defined by the Christoffel-Darboux Kernel:

K(n) = Kn(λi, λj), i, j = 1, . . . , n

Note that its form resembles the matrix given by the Vandermonde method.

This method was first developed by Mehta and Gaudin based on their the-
orem that the eigenvalue distribution of an N ×N Hermitian random matrices
can be described by the Fredholm determinant of integral operators associated
with the weight function. Generally, given weight function w(x), let {pk(x)}
denote the sequence of polynomials orthonormal with respect to w(x), then
define

φk(x) := pk(x)
√
w(x)

then

E(n, J) := Prob(there are n eigenvalues in the interval J)

=
(−1)n

n!

dn

dλn
det(I − ξKN )

where KN is the integral operator on interval J with kernel

KN (x, y) :=

N−1∑
k=0

φk(x)φk(y)

In the case of GUE, the weight function is w(x) = e−x
2

, the Hermite poly-
nomials play the role of the orthonormal polynomials, and Christoffel-Darboux
kernel serves as the kernel for the integral operator. Also, recall from our nor-
malization constant calculation that integrating the Christoffel-Darboux kernel
gives the probability on a certain interval. Staring with the inclusion-exclusion
theorem, we deduce
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Prob(λmax < t) = Prob(there is no eigenvalue on (t,∞))

= 1 +

N∑
i=1

(−1)iProb(there exists at least i eigenvalues on [t,∞))

= 1 +

N∑
i=1

(−1)i
(
N

i

)
1

z

∫
(t,∞)i

∫
RN−i

∏
2−kk!

√
π det

(
K(N)

) N∏
k=1

dλk

Recall that z = N !
∏N−1
k=0 2−k

√
πk!. Therefore we first solve the integral for

the N − i eigenvalues together with the binomial coefficient(
N

i

)
1

z

∫
RN−i

∏
2−kk!

√
π det

(
K(N)

) N∏
k=i+1

dλk =
1

i!(N − i)!

∫
RN−i

det
(
K(N)

) N∏
k=i+1

dλk

integrate over the last row and column

=
1

i!(N − i)!
(N − (N − 1))

∫
RN−i

det
(
K(N−1)

) N∏
k=i+2

dλk

repeatedly integrate for N − i times

=
1

i!(N − i)!
(N − i)! detK(i) =

1

i!
detK(i)

For the remaining i eigenvalues on the interval (t,∞),

Prob(λmax < t) = 1 +

N∑
i=1

(−1)i

i!

∫
(t,∞)i

det
(
K(i)

) i∏
k=1

dλk

= det
(
I −KNχ(t,∞)

)
As t→∞, the integration interval gets increasingly small. Integrating over

more dimensions means multiplying with smaller numbers, so the first term with
n = 1 dominates over all other terms. This form offers the unique advantage of
easy access to its right tail asymptotic behavior. We have:

Prob(λmax < t ' 1− 2N−2t2N−3e−t
2

√
π(N − 1)!

, t→∞

6 Thinned Ensemble: A Side Note

When discussing the asymptotic behaviors of a standard GUE, we also briefly
looked into the case of so called “thinned ensemble”. This “ensemble” is defined
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just like a standard GUE, except that every eigenvalue is assigned a probability
0 < ξ < 1 to remain valid. Note that ξ = 1 gives exactly the standard case for
GUE. However, when analyzing the left tails, computation by both the Fredholm
determinant and Vendermone determinant yields

lim
t→−∞

Prob(λmin ≤ t) = (1− ξ)N 6= 0

which violates definition for probability distribution functions.

This, however, is understandable since we compute the probability by count-
ing the cases where no eigenvalues resides in the interval [t,∞). In the case that
no eigenvalue remains which happens with probability (1 − ξ)N , there is defi-
nitely no eigenvalue in any interval so this brings up the lower probability limit
from 0 to (1− ξ)N .

If we’re only concerned about the cases when at least one eigenvalue remains,
then we should subtract this number from the probability and re-scale it

P ′ = (P − (1− ξ)N )
1

1− (1− ξ)N

so that
lim

t−→−∞P (x < t) = 0, lim
t−→∞P (x < t) = 1

Then we can perform left- and right-tail analysis just as usual and apply the
same transformation to yield the adjusted asymptotic behaviors.

On the other hand, we can also study the second leading term only.

7 Applications In Physics

7.1 O’Connell-Yor Model

O’Connell and Yor built a model with Brownian motions that offers insight
into polymer free energy and other physical properties[6]. Their model mainly
concerns a directed random polymer in random media. Here we’re mainly in-
terested in the semi-discrete case. Consider a sequence of n Brownian queues
B(1), B(2), . . . in tandem that are independent of each other. Let β denote

1
temperature . Then the polymer partition function of the system can be expressed
as

ZN (t) =

∫
0<s1<···<sN−1<t

e
β(B

(1)

(s1)
+B

(2)

(s1,s2)
+... )

ds1 . . . dsN−1

And the polymer free energy FN (t) can be explicitly calculated as

FN (t) = − log(ZN (t))

β
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At zero temperature, i.e. limβ →∞,

−FN (t) = sup
0≤s1≤···≤sn−1

B
(1)
(0,s1)

+ · · ·+B
(n)
(sn−1,1)

This distribution with respect to t has the same law as the largest eigenvalue
distribution of GUE per observation by Baryshnikov[1]. Therefore, we can de-
duce the polymer energy distribution at temperature close to zero with the
asymptotic behaviors we found in our research.

7.2 GUEs and Queues

As mentioned in the last section,

Dn = sup
0≤s1≤···≤sn−1

n−1∑
i=0

B
(i)
(si,si+1)

has the same distribution as the GUE maximum eigenvalue. Taken out of the
context of polymer free energy, the same result has implications in queueing
theory as well[1].

Also, we can use this model to test the accuracy of our calculation. For
example, at n = 1, this upper limit is simply D1 = B(0,s), where 0 < s < 1. We
can run a very simple simulation to illustrate this relationship

Figure 2: Prob(D1 < x), with x on the horizontal axis

We can see that it fits very well with the normal distribution denoted by the
thin black line.

The n = 2 case can still be simulated with easy by breaking (0, 1) into s
small intervals and pick

D2 ∼ max
i=1,2,...,s

(B
(1)

(0, is )
+B

(2)

( is ,1)
)
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Again, it fits well with our predicted cumulative distribution function curve
denoted by the black line:

Figure 3: Prob(D2 < x), with x on the horizontal axis

7.3 Fermions In Confining Potential

Statistical physicists made the connection to GUE when modeling near-the-edge
behavior of fermions trapped in confining potentials[8]. In the center of the trap,
the physical properties of the fermions are well established by the Local Density
Approximation by Thomas Fermi. These approximation, however, fails at the
edge of the trap.

To be more specific, the one-body Hamiltonian for N spinless fermions can
be written as

HHH =
ppp2

2
+ V (x)

In the one-dimensional zero-temperature case (d = 1, T = 0), we consider
the harmonic oscillator potential

V (x) =
1

2
x2

In the ground state, we fill up the first N energy levels

εk = k +
1

2
, k = 0, 1, 2, . . . , N − 1

with N fermions. Then we can establish the wave function

Ψ0(x1, x2, . . . , xN ) ∼ e− 1
2

∑N
i=1 x

2
i det[Hi(xj)]

up to a constant. Here the term Hi(xj) refers to Hermite polynomial we intro-
duced before. Its determinant can be reduced to a Vandermonde determinant
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∏
i<j(xi − xj). As a result,

|Ψ0(x1, x2, . . . , xN )|2 =
1

C

∏
i<j

(xi − xj)2e−
∑N
i=1 x

2
i

This is exactly the eigenvalue probability distribution of GUE. As an analogy,
the largest eigenvalue correspond to the right-most fermion in the trap. The
distribution asymptotic behavior we calculated translates directly into the like-
lihood of the rightmost fermion appearing in some point far from the origin.
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8 Mathematica Coding Sample

8.1 Calculate And Plot The Distributions

n=3; %%choose the matrix size

mat= Table[Integrate[x^(i+j-2)*Exp[-x^2],{x,-Infinity, t}], {i, 1, n}, {j, 1, n}];

dist = Det[mat]

const = Limit[dist,t->Infinity];

Plot[dist/const, {t,-2,2}]

8.2 Simulating Brownian Queues

8.2.1 N=1 Case

sample = RandomFunction[WienerProcess[], {0, 1, 1}, 100]["States"][[All,2]];

Show[DiscretePlot[CDF[EmpiricalDistribution[sample], x], {x, -2, 2, .01}],

Plot[CDF[NormalDistribution[0,1], y],{y,-2,2}, PlotStyle->{Black,Thin}]]

8.2.2 N=2 Case

stepsize = 100;

samplesize = 100;

endpoint = 1/2;

sample1 = RandomFunction[WienerProcess[], {0, endpoint, endpoint/stepsize},

samplesize]["States"];

sample2 = RandomFunction[WienerProcess[], {0, endpoint, endpoint/stepsize},

samplesize]["States"];

sampleCombined = Table[Max[Table[sample1[[i,j]] - sample2[[i,j]] +

sample2[[i,stepsize + 1]], {j, 1, stepsize + 1}]], {i, 1, samplesize}];

Show[DiscretePlot[CDF[EmpiricalDistribution[sampleCombined], x], {x, -2, 2, 0.01}],

Plot[((-(1/4)/E^(2*t^2) + Pi/8 - ((1/4)*Sqrt[Pi]*t)/E^t^2 +

(1/4)*Pi*Erf[t] - ((1/4)*Sqrt[Pi]*t*Erf[t])/E^t^2 + (1/8)*Pi*Erf[t]^2)*

2)/Pi, {t, -2, 2}, PlotStyle -> {Black, Thin}], PlotRange -> All]
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