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Abstract. In one-spatial dimension, the Maxwell equations governing
the propagation of light can sometimes be phrased as a Sturm-Liouville
problem. From Sturm-Liouville theory we know that such problems have
real eigenvalues and eigenfunctions that are orthogonal and complete.
In case one subjects the Maxwell equations to absorbing boundary con-
ditions, the problem no longer fits Sturm-Liouville theory. In certain
cases, however, the equations have complex eigenvalues with eigenfunc-
tions “orthogonal” in a (non-positive definite) bilinear form. In the
literature such eigenfunctions are known as quasi-normal modes. In this
project we try to expand solutions to the Maxwell equations using these
quasi-normal modes. More specifically, we try to address the problem
of expanding field-responses of bounded scatters measured by a distant
source and receiver.

1. Introduction

When one pluck a guitar string with fixed ends, the vibration can be
decomposed into a sum of normal modes. However, in the case of plucking
an infinite string with energy dissipating to infinity, one can decompose the
vibration with quasi-normal modes instead.

Quasi-normal modes were first introduced in the context of characterizing
the oscillation of black holes, due to the inevitable dissipation of energy of
black holes, there exists a damping term in these modes[7].

In our research, we study light waves and introduce a numerical solver for
electromagnetic waves scattering through a medium in open domain subject
to an outside signal. Thanks to professor Zimmerling for providing most of
the derivations in the report[9].

2. Maxwell’s Equation to Wave Equation

In one spatial-domain, assume the field quantities, medium and sources
only vary in the x direction. We may set ∂y = 0 and ∂z = 0 in Maxwell’s
equations[10]. Assuming E = E(x)ŷ, then H = H(x)ẑ, we take the Laplace
transform with respect to t and obtain

(1) ∂xHz + σEy + εrsEy = −Jext
y , ∂xEy + µrsHz = 0,
1
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where Ey: electric field strength, Hz: magnetic field strength. Jext
y : vol-

ume density of external electric-current source. εr: permittivity, µr: perme-
ability, and σ: conductivity.

Rename y = Ey, ŷ = Hz, assume µr is constant, no external magnetic
field current, and all variations are in εr to arrive at

(2) ∂xŷ + σy + εrsy = −Jext
y , ∂xy + µrsŷ = 0,

Taking the derivative in the x -direction of the second equation and sub-
stitute in ∂xŷ from the first equation we get

(3) ∂xxy − µs(σ + εs)y = µsJext
y = g(x).

3. Problem Statement

When the loss is proportional to the permittivity, we can set σ = 0.
Finally, we arrive at the wave equation form of Maxwell’s Equations

(4) ∂xxy −
s2

c2
y = g(x).

where 1
c2

= µrεr, and c represents the speed of electromagnetic waves
that varies according to εr.

Equation(4) we obtained above is called the Helmholtz Equation of the
form

(5) ∆u+ k2u = 0.

which is the time-independent wave equation obtained after separation of
variables of the standard wave equation.

The goal of our research is to expand solutions of equation(4) with a
forcing function (light source, signal) g(x) scattering on a Fabry-Perot in-
terferometer (the slab) subject to Sommerfeld radiation boundary condition,
which simulates the extension of the domain to infinity, with solutions ob-
tained solving the homogeneuous equation

(6) ∂xxy −
s2

c2
y = 0.

The system after taking Laplace transform is in frequency domain, since
setting s = iω in a standard Laplace transform F (s) =

∫∞
−∞ f(t)e−st dt re-

sults in the Fourier transform F (iω) =
∫∞
−∞ f(t)e−iωt dt which transformed

the system to frequency domain, where s is the Laplace frequency variable
obtained.

In the appendix we explained the connection of this sort of open domain
problem with singular Sturm Liouville problem.
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Figure 1. The Slab

3.1. Sommerfeld radiation condition(absorbing boundary condi-
tion). Arnold Sommerfeld defined the condition of radiation for a scalar
field satisfying the Helmholtz equation as ”The sources must be sources,
not sinks of energy. The energy which is radiated from the sources must
scatter to infinity; no energy may be radiated from infinity into the field.”[5]

lim
r→∞

r

(
∂y

∂r
− iky

)
= 0, r =

√
x2 + y2 + z2, i =

√
−1.

This adopted condition ensures the uniqueness of solution towards scat-
tering boundary value problems[11].

In one dimension case we adopt the simplest notion of scattering waves
travelling in opposite direction and goes to infinity. The first equation
encapsulates a right propogating wave exp(− s

c(L)x) at the boundary and

the second equation encapsulates a left propogating wave exp( s
c(0)x) at the

boundary

(7)
y(L) + ∂xy(L)

c(L)

s
= 0,

y(0)− ∂xy(0)
c(0)

s
= 0.

3.2. Fabry-Perot interferometer(the slab). Fabry-Perot interferometer
arises when light shines through a cavity bounded by two reflective parallel
surfaces. Each time the light encounters one of the surfaces, a portion of it
is transmitted out, and the remaining part is reflected back[1].

In one dimension, we simplify the condition as

(8) c(x) = c2 if x ∈ [2/5L, 3/5L], else c(x) = c1.

which reflects the change of wavespeed when light scatters across the
interfaces.

4. Numerical Solver

Setting ŷ = s−1∂xy, we rewrite the second-order system as

(9)

[
−s c2∂x
∂x −s

] [
y(x, s)
ŷ(x, s)

]
= 0.
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Expanding the first order matrix form

(10)
−sy + c2∂xŷ = 0,

∂xy − sŷ = 0,

we have the second equation encoding information of the newly introduced
variable, and substituting that relation in the first equation we have the
governing equation(6) of the system.

4.1. Finite difference method. We introduce a primary and dual grid
descritization for the system along the x direction both with equal δ spacing.

δ

δ

x̂0 x̂1 x̂2 x̂N + 1

x0 = 0 x1 xN − 1 xN = L

discretization grid

4.1.1. general discretizing scheme. We approximate y(xi) = yi on the pri-
mary grid black nodes, and ŷ(x̂i) = ŷi on the dual grid white nodes. With
the primary grid encoding information for y and dual grid encoding infor-
mation for ŷ. We also denote c(xi) = ci.

For the middle part of the grid, taking the difference of adjacent nodes,
and divide by the distance δ, we have an O(δ2) error approximation of
the derivative of y at the dual grid mid point. Similarly, we approximate
derivative of ŷ as

(11)

−sŷi+1 +
yi+1 − yi

δ
= 0, ∀i = 0 . . . , N,

ŷi − ˆyi−1
δ

− s

c2i−1
yi−1 = 0, ∀i = 1 . . . , N + 1.

4.1.2. discretizing boundary conditions. The boundary conditions are dis-
cretized as

(12)
c−20 (−c0y0/δ − 1/2sy0) + ŷ1/δ = 0,

c−2N (−cNyN/δ − 1/2syN )− ŷN/δ = 0.

We introduce two ’ghost’ nodes x̂0, x̂N+1 in grey that are outside bound-
aries [0, L]. For the boundary condition at 0, we take the average of ŷ at
the first two dual grid nodes and due to the fact that sŷ(x) = ∂xy(x), we
can approximate the value of ∂xy(0) as

(13) ∂xy(x0 = 0) = sŷ(x0 = 0) = s
ŷ(x̂0) + ŷ(x̂1)

2
.

The error of approximation is O(δ2), which is consistent with the general
finite difference scheme.
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Proof. Taylor expanding ŷ at x0 = 0 on both sides, we get ŷ(x̂0) and ŷ(x̂1)

(14) ŷ(x0+
δ

2
) = ŷ(x0)+(

δ

2
)ŷ′(x0)+(

δ

2
)2
ŷ′′(x0)

2!
+(

δ

2
)3
ŷ′′′(z1)

3!
, z1 ∈ (x̂0, x̂1),

(15) ŷ(x0−
δ

2
) = ŷ(x0)−(

δ

2
)ŷ′(x0)+(

δ

2
)2
ŷ′′(x0)

2!
−(

δ

2
)3
ŷ′′′(z2)

3!
, z2 ∈ (x̂0, x̂1).

Taking the average results

(16) (ŷ(x̂0) + ŷ(x̂1))/2 = (ŷ(x0 −
δ

2
) + ŷ(x0 −

δ

2
))/2 = ŷ(x0) +O(δ2). �

Substituting equation(12) our approximation of ∂xy(0) into the boundary
condition, we get

(17) y(0)− s ŷ(x̂0) + ŷ(x̂1)

2

c(0)

s
= 0.

Next, we substitute the newly obtained approximated value at the ’ghost’
node

(18) ŷ(x̂0) =
2y(0)

c(0)
− ŷ(x̂1),

into the general finite difference scheme

(19)
ŷ(x̂1)− ŷ(x̂0)

δ
− s

c(0)2
y(0) = 0,

to obtain

(20) c(x0)
2ŷ(x1)− c(x0)y(x0) = 1/2sy0.

encoding information for the boundary condition at 0. We descretize the
other boundary similarly.

4.2. System Setup. Now we can write the continuous system in a finite
difference case storing all finite-difference approximations in the vectors y
and ŷ as

(21) y = [y1, . . . yN+1]
T , ŷ = [ŷ1, . . . , ŷN ]T ,

B = diag(
c(0)

δ
, 0, 0 . . . , 0,

c(L)

δ
)(N+1)×(N+1),

C = diag(c(x0), c(x2), . . . , c(xN ))(N+1)×(N+1),

D =


−δ−1 δ−1

−δ−1 δ−1

· ·
−δ−1 δ−1


N×(N+1)

,

E = diag(
1

2
, 1, 1 . . . , 1,

1

2
)(N+1)×(N+1).
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The system becomes

(22)

[
C−2(−B− sE) −DT

D −sIN

] [
y
ŷ

]
= 0.

separating terms associated with s, we get

(23)

([
−C−2B −DT

D 0

]
− s

[
C−2E 0

0 IN

])[
y
ŷ

]
= 0.

4.2.1. Transforming to eigenvalue problem. Let K =

[
−C−2B −DT

D 0

]
and

Z =

[
C−2E 0

0 IN

]
. The equation becomes

(24) (K− sZ)

[
y
ŷ

]
= 0.

We turn equation (23) into a standard eigenvalue problem by diagonal

scaling, multiplying K with Z−1/2 = diag(CE−1/2, IN ) on both sides and
obtain

(25) (K− sZ)

[
y
ŷ

]
= Z1/2(Z−1/2KZ−1/2 − s)Z1/2

[
y
ŷ

]
= 0,

which is equivalent to solving

(26) (Z−1/2KZ−1/2 − s)Z1/2

[
y
ŷ

]
= 0.

Setting A = Z−1/2KZ−1/2, we arrive at the eigenvalue problem form of
the matrix equation

(27) (A− s)Z1/2

[
y
ŷ

]
=

([
−E−1B −CE−

1
2 DT

DE−
1
2 C 0

]
− s

)
Z1/2

[
y
ŷ

]
= 0.

The matrix A we obtained is symmetric in the M bilinear form with
eigenvectors orthogonal in the M bilinear form and the eigenvalues obtained
are non-positive and bounded. The proofs of these claims are given in the
matrix operator analysis section. Note the eigenvectors obtained are scaled
by Z−1/2 which needs to be scaled back when considering the solution of the
original system.

Next, we introduce

(28) M = diag(−IN+1, IN ),

We can further symmetrize matrix A as a complex symmetrix matrix

(29) M1/2AM−1/2 =

[
−E−1B −iCE−

1
2 DT

−DE−
1
2 Ci 0

]
,
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Figure 2. Quasi-Normal Mode

where i =
√
−1 is the imaginary unit. Then the eigenvalue problem can

be rewritten as

(30) (M1/2AM−1/2 − s)M1/2Z1/2

[
y
ŷ

]
= 0.

4.3. Quasi Normal Mode Expansion.

Definition 4.1. The solutions s of our original problem equation(6) are the
quasi-normal frequencies of the system, and the corresponding solutions y
are the quasi-normal modes of the system.

Equation(30) is the final numerical version of the problem we try to solve.

We assume that our complex symmetrized matrix M1/2AM−1/2 has distinct
eigenvalues, which has been shown true numerically through our simulation
so far. Also, since the set of complex n × n matrices that are not diag-
onalizable over C as a subset of CN×N has lebesgue measure 0[4]. We
made a bold assumption that it is most likely that our complex symmet-
ric matrix is diagonalizable. By [8, Theorem 4.4.27], it can be complex

orthogonally diagonalized. One can write, M1/2AM−1/2 = VΛVT , where

Λ =


λ1

λ2
. . .

λ2N+1

, V =

 | | |
ṽ1 ṽ2 · · · ṽ2N+1

| | |

 such that VTV = I.

Here, Λ contains the eigenvalues which are the quasi normal frequencies
of the system, and the vis after rescaling with (M1/2Z1/2)−1 corresponds to

solutions

[
y
ŷ

]
which form the quasi-normal modes of the system. Figure 2

illustrates a quasi-normal mode obtained.
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4.3.1. Expandin Forcing Function. When one subject the equation to an
outside source (forcing term) g, we attempted to solve the equation with
the quasi normal modes as follows.

Let ỹ =

[
y
ŷ

]
, g̃ =

[
g
0

]
where g an arbitrary forcing function of the system

(31) (A− sI)ỹ = g̃.

Rewrite A = (M−1/2V)Λ(M−1/2V)−1, since VT = V−1 we have

(32) ((M−1/2V)Λ(M−1/2V)−1 − sI)ỹ = g̃,

which is equivalent to

(33) ((M−1/2V)(Λ− sI)(M−1/2V)−1)ỹ = g̃,

therefore

(34) ỹ = ((M−1/2V)(Λ− sI)(M−1/2V)−1)−1g̃.

To expand the solution in a transpose manner, we can factor out a M
term and achieve

(35) ỹ = ((M−1/2V)(Λ− sI)−1(M−1/2V)T )Mg̃.

Notice that (Λ − sI) may not be invertible when the frequency s is at
one of the eigenvalues, the solution would be infinite in these cases, which
indicates resonance of the system.

Setting qi to be the ith column vector in M−1/2V, with V containing the
quasi-normal modes. we obtain the following quasi-normal mode expansion
of the solution

(36) ỹ(s) =

2N+1∑
i=1

qi(1/(λk − s))qT
i Mg̃,

Taking the inverse Laplace transform of ỹ(s), we obtain the solution back
in time domain

(37) ỹ(t) = −
2N+1∑
i=1

qiexp(λkt)q
T
i Mg̃.

The first N + 1 entries of ỹ(t) corresponds to our approximated solution
of y.

5. Testing numerical solver

We tested our numerical solver with a specific configuration of the slab

(38) L = 1000, δ = 1,

We set the Fabry-Perot interferometer as

(39) c(x) = 0.5. If x ∈ [2/5L, 3/5L], else c(x) = 1

and obtained the following results.
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Figure 3. Eigenvalues

Due to the piecewise constant nature of the slab, we could solve the
problem analytically in the time domain with eigenvalues

(40) λn = − 1

4T
ln
c1 + c2
c2 − c1

+
iπn

4T
.

with

(41) 4T = (x2 − x1)/c2,

and plotted part of the analytical eigenvalues (colored yellow). The numeri-
cal eigenvalues obtained are complex and comes in conjugate pairs as shown
in Figure 3.

To make our numerical solver more efficient, we took the 30 closest nu-
merical eigenvalues to the analytical eigenvalues with relatively small real
and imaginary parts (colored red), and expanded the solution via these
eigenvalues corresponding quasi-normal modes.

Next, we animated our full expansion and truncated expansion of a Gauss-
ian forcing function g = N (500, 25) in the time domain and obtained the
following result.

The approximation works well when the Gaussian forcing term lives within
the slab as Figure 4 shows. The left column showcases the full numerical
solved solution. The right column showcases the solution with truncated
expansion of only 30 quasi-normal modes that have numerical eigenvalues
closer to the analytical eigenvalues. .

The truncated expansion becomes inaccurate when the Gaussian slab is
placed outside the slab,i.e. g = N (200, 25), as Figure 5 shows. One can see
the decomposition of reflection and transmitted parts as the wave scatters
the slab at 400.
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Figure 4. Gaussian Forcing within Slab Animation

Figure 5. Gaussian Forcing outside Slab Animation

6. Relating to Sturm Liouville Problem

6.1. Sturm Liouville Theory. [9] regular Sturm Liouville problems are
second-order, linear, ordinary differential equations on bounded domains of
the form

(42)
d

dx
[p(x)

d

dx
y(x)] + q(x)y(x) = −λw(x)y(x),
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with positive p(x), w(x) > 0, and p(x), p′(x), q(x), w(x) continuous on [a, b]
with non vanishing, homogeneous Robin boundary conditions

(43) α1y(a) + α2y
′(a) = 0 and β1y(b) + β2y

′(b) = 0.

The Sturm Liouville problem is called singular if one of the following
occurs

(1)p(a) = 0 or p(b) = 0 or both (2)The interval (a, b) is infinite.

Taking

(44) Ly = −
(

d

dx

[
p(x)

dy

dx

]
+ q(x)y

)
,

as a linear operator on function y. The regular Sturm Liouville problem
becomes an eigenvalue problem

(45) Ly − λw(x)y = 0.

L is a hermitian operator on the bounded domain. For real valued func-
tions f, g we have 〈Lf, g〉 = 〈f,Lg〉 under the w(x) weighted inner product

< f(x), g(x) >w(x)=
∫ b
a f(x)g(x)w(x)dx

Theorem 6.1. [9] Sturm Lioville problems have an infinite set of eigenvec-
tors yi and eigenvalues λi as solution with the following properties:

(1) The functions yi(x) are orthonormal in the w(x) weighted inner prod-
uct. Thus < yi(x), yj(x) >w(x)= δij

(2) The eigenvalues are unique, real, and have no accumulation point
λ1, λ2, . . . ,∞

(3) The eigenfunctions form a basis (they are complete) in the Hilbert
space L2([a, b], w(x)). This means you can expand arbitrary func-
tions from L2 in this space.

Utilizing these properties, we can expand a forcing function f to the
equation. The derivation follows worksheet[3].

Consider f ∈ L2([a, b])

(46) Ly − λw(x)y = f.

By completeness of the eigenfunctions of Sturm Liouville problem, we can
suppose solution y has the form

(47) y =
∞∑
i=1

aivi(x),

where vi(x)s are the eigenfunctions of the homogeneuous equation of the
regular Sturm-Liouville problem equation(42), with corresponding eigenval-
ues λis, and ai being undetermined coefficients.

Then

(48) L
∞∑
i=1

aivi(x)− λw(x)

∞∑
i=1

aivi(x) = f.
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By linearity of the operator L we have

(49)
∞∑
i=1

(λi − λ)aiw(x)vi(x) = f.

To obtain desired coefficient aj we multiply eigenfunction vj(x) on both
sides and integrate

(50)

∫ b

a
vj(x)

∞∑
i=1

(λi − λ)aiw(x)vi(x)dx =

∫ b

a
vj(x)fdx.

By orthogonality of the eigenfunctions in the w(x) weighted inner product

(51) (λj − λ)aj =

∫ b

a
vj(x)fdx.

We can determine the coefficients as

(52) aj =

∫ b
a vj(x)fdx

λj − λ
.

Therefore

(53) y =

∞∑
j=1

∫ b
a vj(x)fdx

λj − λ
vj(x). �

6.1.1. Comparisons. Setting p(x) = 1, q(x) = 0, w(x) = 1, the Sturm Liou-
ville problem becomes

(54) ∂xxy(x) + λw(x)y(x) = 0,

which is our governing homogeneuous equation in disguise if we set λ = −s2
and w(x) = 1/c2. The problem is set upon an open domain which matches
the second criterion of a singular Sturm Liouville problem.

We chose to chop off the domain and implement absorbing boundary
condition to better study the local solutions, which also made computation-
ally solving the problem possible since all computers have finite computing
power.

Comparing to the regular Sturm Liouville problem, adopting the Som-
merfeld radiation boundary condition with the extra frequency term s in
our specified problem’s boundary conditions broke the original setup for the
regular Sturm-Liouville Theory. The eigenfunctions of the homogeneuous
equation are no longer orthogonal as we’ve shown they’re orthogonal in a
non-positive definite bilinear form instead, which made expanding solutions
of the forcing term with the obtained modes difficult.
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6.2. Matrix Operator Analysis.

Proposition 6.2 ([9]). Matrix A is symmetric in a non-positive definite M
bilinear form.

Proof. Let v,w ∈ C2N+1, since

(55) (MA)T = MA, MT = M.

we have
(56)

〈Av,w〉M = (Av)TMw = vTATMw = vT (MA)Tw = vTMAw = 〈v,Aw〉M. �

Proposition 6.3. Suppose matrix A has distinct eigenvalues, then the
eigenvectors of matrix A are orthogonal in the M bilinear form.

Proof. Based on our assumption that matrix A has distinct eigenvalues,
consider two distinct eigenvalues λ1 6= λ2 of matrix A, with corresponding
eigenvectors x1,x2. By proposition 6.2

(57)

〈Ax1,x2〉M−〈x1,Ax2〉M = (Ax1)
TMx2−xT

1 MAx2 = (λ1x1)
TMx2−xT

1 Mλ2x2 = 0.

Then

(58) (λ1 − λ2)xT
1 Mx2 = 0.

Since λ1 6= λ2, (λ1 − λ2) 6= 0, we have

(59) 〈x1,x2〉M = xT
1 Mx2 = 0. �

Proposition 6.4. The solutions

[
y
ŷ

]
of equation(23) are orthogonal in a

non-positive definite bilinear form, which form the quasi normal modes of
the system.

Proof. By proposition 6.3, we have xT
1 Mx2 = 0, recall the eigenvectors of

A are scaled by Z1/2 of the original solutions

[
y
ŷ

]
to the system. Let

[
y1

ŷ1

]
,[

y2

ŷ2

]
be two solutions. substituting in, we have

(60) (Z1/2

[
y1

ŷ1

]
)TMZ1/2

[
y2

ŷ2

]
= 0.

Therefore

(61)

[
y1

ŷ1

]T
Z1/2MZ1/2

[
y2

ŷ2

]
= 0.

where Z1/2MZ1/2 is a non-positive bilinear form.

Proposition 6.5. Real part of eigenvalues of matrix A are all non-positive.
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Proof. The proof follows the structure of a proof given in [6, appendix C]

Let X =

[
0 −CE−

1
2 DT

DE−
1
2 C 0

]
, R =

[
E−1B 0

0 0

]
and I be the identity

matrix of same size of matrix A.
We can separate matrix as A = X −R. Suppose λi is an eigenvalue of

matrix A with corresponding eigenvector vi, then

(62) (A− λiI)vi = 0.

Multiply the conjugate transpose vector v∗i on both sides of the equation
then take the real parts we obtain,

(63) Re(v∗i (X−R− λiI)vi) = 0.

Due to the skew symmetric nature of matrix X

(64) (v∗i Xvi)
∗ = −v∗i Xvi,

we must have

(65) Re(v∗i Xvi) = 0.

Then the equation simplifies to

(66) Re(λi)‖vi‖2 +Re(v∗i Rvi) = 0.

Since matrix R is positive semi-definite

(67) Re(v∗i Rvi) ≥ 0.

Therefore

(68) Re(λi)‖vi‖2 = −Re(v∗i Rvi) ≤ 0.

Since eigenvector vi is non-zero

(69) Re(λi) ≤ 0. �

Proposition 6.6. The numerical eigenvalues λ obtained for matrix A are
bounded by union of Gershgorin disks, λ ∈ D(0, 2

√
2c1/δ)∪D(−2c1/δ,

√
2c1/δ).

Proof. Matrix A has the structure of

−2c(0)/δ
. . .

−2c(L)/δ

−
√

2c(0)/δ
−c(x1)/δ c(x1)/δ
· · · √

2c(L)/δ

−
√

2c(0)/δ
√

2c(x1)/δ

−
√

2c(x1)/δ
√

2c(x2)/δ
· · ·

−
√

2c(xN−1)/δ
√

2c(xN )/δ
0


We bounded the numerical eigenvalues obtained via Gershgorin circle

theorem.
For the Upper half of the matrix, the eigenvalues are bounded byD(−2c1/δ,

√
2c1/δ)

and D(0, 2c1/δ). For the bottom half of the matrix, the eigenvalues are
bounded by D(0, 2

√
2c1/δ). Taking the union of the three disks, we obtain a

bound for the eigenvalues such that λ ∈ D(0, 2
√

2c1/δ)∪D(−2c1/δ,
√

2c1/δ)
which showcases the numerical simulation limitations. �
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7. Appendix 1

The derivatives in general finite difference scheme are approximated of
O(δ2) error since

f(x+δ/2) = f(x)+δ/2f ′(x)+(δ/2)2
f ′′(x)

2!
+(δ/2)3

f ′′′(ξ)

3!
, ξ ∈ (x, x+(δ/2)),

f(x−δ/2) = f(x)−δ/2f ′(x)+(δ/2)2
f ′′(x)

2!
−(δ/2)3

f ′′′(ξ
′
)

3!
ξ
′ ∈ (x, x+(δ/2)),

f ′(x) = (f(x+ δ/2)− f(x− δ/2))/δ +O(δ2).

8. Appendix 2

Definition 8.1 (matrix bilinear form[2]). If we take V = Fn, then every
n× n matrix A gives rise to a bilinear form by the formula

〈v, w〉A = vtAw

Definition 8.2 (hermitian). A Square matrix A ∈Mn is Hermitian if A∗ =
A, where A∗ = ĀT is the conjugate tranpose of A, i.e., A Real symmetric
matrix A ∈Mn is Hermitian.

Definition 8.3 (positive definite). A Hermitian matrix A ∈Mn is positive
definite if x∗Ax > 0 for all nonzero x ∈ Cn, positive semi-definite if x∗Ax ≥
0 for all nonzero x ∈ Cn

Theorem 8.4 (Gershgorin circle theorem). If A is an n × n matrix with
complex entries ai,j, then every eigenvalue of a matrix lies within at least one
Gershgorin disc, where a Gershgorin disc is the disc D (ai,i, ri(A)) centered
at diagonal entries aii on the complex plane with radius ri(A) =

∑
i 6=j |ai,j |.

Theorem 8.5 (Horn[8]). Let A ∈Mn be symmetric. Then A is diagonaliz-
able if and only if it is complex orthogonally diagonalizable.
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