
Faster dynamic algorithms and sensitivity oracles for graph

connectivity problems

Advisors: Thatchaphol Saranurak and Michael Zieve
Author: Jingyi Gao

July 2021

1 Acknowledgement

I want to thank my advisors Professor Saranurak and Professor Zieve for being very supportive and patient
through the research and I also want to thank University of Michigan Math department for providing this
opportunity and supporting the research.

2 Prelim

2.1 Motivation and abstract

Network is commonly used to display the relations between individuals, and the underlying structure of
the network is a directed graph, where the nodes stand for individuals and edges represent the relations
between people. Given a network, for any arbitrary pair of nodes, we might be interested in whether the
pair is connected or not, and how much they are connected with each other. k-edge(respectively vertex)
connectivity formally measures the connectedness of a pair of vertices in a graph. Specifically, the definitions
are as follows

Definition 2.1 (k−edge(respectively k−vertex) connectivity). Given a directed graph G = (V,E), a pair
of vertices u, v ∈ V are k−edge(resp. vertex) connected in G, if we need to remove at least k edges(resp.
vertices) in G to make u and v disconnected in G.

The project aims to find faster algorithms to check the k−edge(and k−vertex) connectivity between all
pairs of vertices when given a graph. Moreover, we find algorithms which can quickly compute the k−edge
(or k−vertex) connectivity in the new graph obtained from the initial graph by adding or deleting a few
edges, by utilizing the computations already done for the initial graph.

2.2 Problem

The goal of the project is to find faster algorithms to check the k−vertex connectivity and k− edge con-
nectivity of all pairs of vertices given a graph G. We also seek to faster dynamic algorithms and sensitivity
oracles that are able to maintain the connectivity when facing updates of the graph rather than compute
everything from the scratch for the new graph. In our problems the update refers to adding or deleting edges
in the original graph, and the definition of models are as follows:

Definition 2.2 (Sensitivity Oracle for k-vertex Connectivity). A sensitivity oracle for k-vertex connectivity
is a data structure that works in three phases as follows:

• Phase 1(preprocessing): given a directed graph G = (V,E) with n vertices and a connectivity
parameter k, preprocess the graph.

1

• Phase 2(update): given sets of edges Fi, Fd ⊆ E of size f = |Fi| + |Fd|, where Fi is the set of
inserting edges and Fd is the set of deleting edges. Change E into E ∪ Fi \ Fd.

• Phase 3(query): given two vertices s, t ∈ V , return Conn(s, t), the vertex connectivity between s and
t if they are k-vertex connected in Gnew = (V,E ∪ Fi \ Fd).

We define preprocessing time of the oracle to be the time the oracle takes in the first phase and space of
the oracle to be the space used by the oracle to store the data structure. Update time is the time used in the
second phase, and the query time is the time to return the answer of the query.

Theorem 2.3. There exists a sensitivity oracle for k-vertex connectivity problems, that given a directed
graph G with n vertices and connectivity parameter k, it takes O((nk)ω) preprocessing time, O(f2poly(k))
query time, O((fk2)ω) update time, and O((nk)2) space, where ω is the matrix multiplication exponent.

Definition 2.4 (Dynamic algorithm for k-vertex Connectivity). A dynamic algorithm for k-vertex connec-
tivity is able to first preprocess the graph G = (V,E), then receive a (infinite) sequence of updates one at a
time and maintain the desired properties after each update. The model will support the following operations:

• Update(insert or delete): given two vertices v1, v2 ∈ V, change the current status of −−→v1v2(connected
into disconnected and vice versa) and change E into the new set Enew accordingly(deleting or adding
one edge.)

• Query: given two vertices s, t ∈ V , return Conn(s, t), the vertex connectivity between s and t if they
are k-vertex connected in Gnew = (V,Enew).

Theorem 2.5. There exists a dynamic algorithm for k-vertex connectivity problems, that given a directed
graph G with n vertices and connectivity parameter k, it takes it takes O((nk)ω) preprocessing time, O((nk)2)
update time, O(kω) query time, and O((nk)2) space.

2.3 Known Results

In this section, we will introduce some known results that our work will be based on. Cheung et.al [CLL11]
presented an algorithm to transfer the problem of all pairs min-edge-cut in digraph into computing the rank
of corresponding matrices in O(mω) time. Another result from Abboud et.al [AGI+18] proved an analogous
algorithm to solve all pairs min-vertex-cut in digraph. More specifically, the key theorem stated as follows:

Lemma 2.6. [AGI+18] Given a digraph G = (V,E), for any vertex s ∈ V , denote the vertices that are
adjacent to s with an edge has s as head as Is, and the vertices that are adjacent to s with an edge has s
as tail as Os. We add two layers of vertices I ′s and O′s in G, where |I ′s| = |O′s| = k + 1. All vertices in
I ′s has an edge attached to s where s is the head, and Is and I ′s forms a complete directed bipartite graph,
directed away from Is. Similarly all vertices in O′s has an edge attached to s where s is the tail, and Os and
O′s forms a complete directed bipartite graph, directed away from O′s. We call the new graph G′ = (V ′, E′).
Then construct an n(2k + 3)× n(2k + 3) matrix M as follows:

Mi,j =


xi,j if −−→vivj ∈ E′

−1 if i=j

0 otherwise

then replace each indeterminate in M with a random element in field F , and the s− t vertex connectivity
is equal to the rank of the submatrix M−1Nout(s),Nin(t) with high probability, where N in(u) and Nout(u) are the

set of vertices such that v ∈ N in(u), vu ∈ E′ and ∀v ∈ Nout(u), uv ∈ E′; and the submatrix of A containing
rows B and columns C is denoted as AB,C .

this lemma turns the graph problem into computing the rank of a matrix. In order to use the current
fastest algorithm for computing matrix rank, we would need to work with matrices with entries containing
elements from a field. To guarantee the correctness of the algorithm when replacing indeterminates with
specific elements in field, we introduce the following facts:

2

Theorem 2.7 (Sherman-Morrison-Woodbury[vdBS19]). Let A be n×n matrix and P,Q be n× f matrices,
such that det(M), det(M + PQT) 6= 0. Define the f × f matrix N := Id · det(M) + QT adj(M)P. Then we
have

adj(M + PQT) =
adj(M) det(N)− (adj(M)P)adj(N)(QT adj(M))

det(M)f

3 Algorithms

We start with describing the structure of the algorithms.

3.1 Sensitivity Oracle for k-vertex Connectivity

Given a digraph G = (V,E) with unit vertex capacity, the k−vertex connectivity sensitivity oracle is as
follows:

• Preprocessing(G): we first construct G′ = (V ′, E′) and M using Abboud et al’s reduction as in Lemma
2.6, then compute adj(M) and det(M). The preprocessing step will take total O((nk)ω) time.

• Update(F ⊆ E): we construct |V ′| × fk2 matrices P and Q for which the multiplication PQT is the
matrix encoding all updates. Then we let N := Id · det(M) + QT adj(M)P and compute adj(N) and
det(N). The update will take total O((fk2)ω) time.

• Query(s,t): we compute the specific k2 entries in adj(M + PQT)(namely the k2 entries in adj(M +
PQT)Nout(s),Nin(t) then compute and return the rank of the matrix consist of these k2 elements,

denoted as C̃onn(s, t), and return this value. The query step will take O(f2k6 + kω) time.

3.2 Dynamic algorithm for k-vertex Connectivity

The dynamic algorithm to check all pairs k−vertex connectivity has the same preprocessing step as the
above sensitivity oracle, and is using a similar idea for the update except for the query step we would need
to compute everything out instead of compute specific entries since we would need the whole matrix to get
prepared for the possible upcoming updates:

• Update(F ⊆ E) and Delete(F ⊆ E): we construct |V ′|×k2 matrices P and Q for which the multiplica-
tion PQT is the matrix encoding one update. We use Theorem 2.7 directly to compute adj(M +PQT),
which will take O((nk)2) time.

• Query(s,t): we compute and return the rank C̃onn(s, t) of adj(M + PQT)Nout(s),Nin(t) in O(kω).

4 Analysis of algorithms

In this section, we proved Theorem 2.3 and Theorem 2.5.

4.1 Sensitivity oracle for k-vertex Connectivity

The main structure of the algorithms based on the result in Lemma 2.6 where all-pairs k−vertex connectivity
problem turns into getting the rank of a submatrix. The algorithm given by Abboud et al. is only able
to deal with a static graph whereas our algorithm should be able to handle edge updates of the graph and
maintain the k−vertex connectivity.

Lemma 4.1. C̃onn(s, t) = min{k,Conn(s, t)} with high probability, where Conn(s, t) is the vertex connec-
tivity between s and t.

3

Proof. As in Lemma 2.6, the rank of the corresponding submatrix of the inverse of coefficient matrix M is
the vertex connectivity between two vertices. We next articulate the details in the descriptions of sensitivity
oracle for k−vertex connectivity for digraph.
If we want to add a batches of f updates, we denote the new graph to be Gnew and do the follows. First of
all, we let P and Q be n(2k + 3)× fk2 matrices where P and Q have exactly fk2 nonzero elements. When
we treat f and k as constants that are much smaller than n, P and Q are very sparse.
Essentially we want to change fk2 entries in M, denote the new matrix as M ′ = M + PQT , then get
the inverse M ′−1 in which encodes the vertex connectivity between all pairs of vertices in the new graph
Gnew. This is because when we add a new edge −−→v1v2 in G, according to the construction in Lemma 2.6, in
G′new we would need to construct a complete directed bipartite graph between O′v1 and I ′v2 directed from
O′v1 . Therefore, adding one edge in G corresponds to adding k2 edges in G′, whence adding f edges in G
corresponds to adding fk2 edges in G′, and this means that we would need to turn fk2 zero entries in M
into nonzero entries.
We use the Theorem 2.7(Sherman-Morrison-Woodbury) to make the update more efficient and take the
best use of the previous results that had been computed. The idea is basically the same as in the paper
of Brand and Saranurak [vdBS19]. To be concrete, since adjoint matrix is inverse matrix multiply by the
determinant factor, and the rank of the matrix is invariant under multiplying a constant factor, it is suffices
for us to look at matrix adj(M + PQT) instead of (M + PQT)−1. Let N = Id · det(M) + QT adj(M)P, then

adj(M ′) = adj(M + PQT) =
adj(M) det(N)− (adj(M)P)adj(N)(QT adj(M))

det(M)f

according to Theorem 2.7. When the vertex connectivity of a pair of vertices is queried, we want to compute
the rank of a submatrix of M ′. Since by the construction in Lemma 2.6, the inner degree and outer degree
of all vertices are exactly k, when any pair of vertices are queried, we would need to compute k2 entries of
M ′ then compute the rank of the matrix consist of these entries. By the method in [vdBS19], we don’t need
to compute a complete matrix in order to get some specific parts of it. Indeed, since

adj(M ′)i,j = adj(M + PQT)i,j = adj(M)i,j
det(N)

det(M)f
−

(
~ei

T adj(M)P
)

adj(N)
(
QT adj(M)~ej

)
det(M)f

(1)

we only need to do k2 such computation to get all we want. And notice that adj(M),det(M), and
adj(N),det(N) are required for computing any arbitrary entry in M ′, whence the computation of adj(M) and
det(M) can be done once the original graph is given, namely in the preprocessing phase, and adj(N),det(N)
can be computed once the update is given, namely in the update phase.

Note that it’s nontrivial how the update can be done in constant time (if we treat f and k as constants.)
The most straightforward way is to compute the whole inverse (M + PQT)−1, which takes O((nk)ω) time,
and take the corresponding submatrix then compute the rank. We next analyze the time complexity and
prove Theorem 2.3.

Proof of Theorem 2.3. The correctness of the algorithm is proven in Lemma 4.1. We next analyze the time
complexity of each phase and the space complexity:

1. Preprocessing: for the prerocessing step, we compute det(M) and adj(M). According to the construc-
tion in Lemma 2.6, M is a n(2k + 1)×n(2k + 1) matrix, and therefore it would take O((nk)ω) time to
preprocess the matrix M.

2. Update: after receiving P and Q, we compute adj(N) and det(N) for the update step where recall
that N := Id · det(M) + QT adj(M)P.

(a) We first compute QT adj(M)P in O(f2k4) operations. This is because P and Q only has fk2

nonzero entries respectively, whence left multiply adj(M) by QT is simply taking the scalar mul-
tiple of fk2 rows of adj(M), and similarly right multiply QT adj(M) by P is simply taking the
scalar multiple of fk2 columns of adj(M). Therefore the matrix QT adj(M)P is just f2k4 elements
of adj(M) each multiplied by a non-zero element of P and Q.

4

(b) Then we can compute det(N) and adj(N) in O((fk2)ω) time.

3. Query: eventually we compute the desired k2 entries in adj(M ′) and the rank of the matrix consist
of these elements in O(f2k6 + kω). To compute adj(M ′)i,j , according to equation (1), we still need to

compute ~p =
(
~ei

T adj(M)P
)

and ~q =
(
QT adj(M)~ej

)
and put everything together. It takes O(fk2) to

compute both ~p and ~q since they are fk2 elements in adj(M) multiply by scalar in P and Q. Then, it
takes O(f2k4) to compute ~padj(M)~q. Hence, it takes O(f2k6) to compute all k2 elements and O(kω)
to compute the rank.

For this algorithm, we only need the space to store the n(2k + 3)× n(2k + 3) coefficient matrix, which gives
O((nk)2) space.
Notice that the update and query time and the space complexity is optimal if we treat f and k as constants.
O(n2) is the optimal space complexity can be proven by contradiction. Assume the opposite. If we want
to store the relation between all pairs within n vertices, and if we treat this as a function(where preimages

are pairs of vertices and images are 0 or 1 indicaating connected or disconnected) we have 2n
2

possible such

functions. If we have s spaces where s < n2, then we can only store 2s such functions. Since 2n
2

> 2s, we
have a surjective map from space of size 2n

2

to space of size 2s. This is to say that by pigeon hole principle,
there must exists at least two functions that are mapped into a same spot, namely there exists two different
graphs G1 = (V,E1) and G2 = (V,E2), where |V | = n, such that when we query any two vertices, the
algorithm will return an identical result, which is a contradiction, and the optimality is proved.

4.2 Dynamic algorithm for k-vertex Connectivity

Proof of Theorem 2.5. The dynamic algorithm for k−vertex connectivity for digraph works similarly as the
sensitivity oracle. The only difference is that for the update step, instead of applying Theorem 2.7 and only
compute the specific entries of adj(M + PQT), in this case we need to compute the whole matrix since we
are facing consecutive sequence of updates instead of a batches of updates, and hence we always need the
whole matrix to be ready for the next update.

References

[AGI+18] Amir Abboud, Loukas Georgiadis, Giuseppe F Italiano, Robert Krauthgamer, Nikos Parotsidis,
Ohad Trabelsi, Przemys law Uznański, and Daniel Wolleb-Graf. Faster algorithms for all-pairs
bounded min-cuts. arXiv preprint arXiv:1807.05803, 2018.

[CLL11] Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Graph connectivities, network coding, and
expander graphs. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science,
pages 190–199. IEEE, 2011.

[vdBS19] Jan van den Brand and Thatchaphol Saranurak. Sensitive distance and reachability oracles for
large batch updates. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS), pages 424–435. IEEE, 2019.

5

	Acknowledgement
	Prelim
	Motivation and abstract
	Problem
	Known Results

	Algorithms
	Sensitivity Oracle for k-vertex Connectivity
	Dynamic algorithm for k-vertex Connectivity

	Analysis of algorithms
	Sensitivity oracle for k-vertex Connectivity
	Dynamic algorithm for k-vertex Connectivity

