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Abstract. Let F be a local field of ramification degree e over Qp or Fp ((t)), and let
D be a central simple division algebra over F of degree d so p > de+ 1.

For the pro-p Iwahori subgroup K = 1 + $DOD of D× we determine information
about the structure of H1(K,Fp) and H2(K,Fp) as modules over the Hecke algebra HK .
The computation of H1(K,Fp), as a byproduct, gives a method of constructing almost
all elements of [K,K]Kp. In the p-adic case, we show Poincaré duality respects the HK-
module structure and higher cohomology groups. For GL2(D), we compute H1(I1,Fp)
as a module over the Hecke algebra HI1 where I1 is a pro-p Iwahori subgroup of GL2(D).

For D×, we use this cohomological information to compute the groups Ext1D×(ρ, ρ′)
for all pairs ρ, ρ′ of smooth irreducible representations of D× over Fp. We then obtain
a partial description of Ext2D×(ρ, ρ′), and in the p-adic case use Poincaré duality to
describe higher extensions.
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1. Introduction

Let F be a p-adic field, and let C be C or Q` for ` 6= p. In the characteristic 0 case,
the local Langlands correspondence yields an injection{

continuous representations
Gal(F/F )→GLn(C)

}
/ '

{irreducible smooth
representations

of GLn(F ) over C

}
/ '

which satisfies certain nice properties. There exists a precise way to enlarge the left
side to make this a true bijection. Thus, we can translate difficult questions about field
extensions of F to questions about GLn(F ) which are often easier to answer. In the case
of n = 1, this is local class theory. Division algebras also play an important role, because
for a division algebra D of invariant 1/n there is a Jacquet-Langlands correspondence
yielding an injection{irreducible smooth

representations
of D× over C

}
/ '

{irreducible smooth
representations

of GLn(F ) over C

}
/ '

where one can describe the image. Putting these two correspondences together, we
can translate information about the smooth characteristic 0 representations of D× to
information about field extensions of F .

When we use coefficients in Fp instead of C, these correspondences no longer work.
There has been some progress towards giving a characteristic p local Langlands corre-
spondence, such as in [Bre10], but in general it is not clear how to formulate correspon-
dences like the Jacquet-Langlands correspondence or the local Langlands correspon-
dence given above. In [Sch15], for a division algebra of invariant 1/n over F , Scholze
constructs a functor{ smooth admissible

representations
of GLn(F ) over Fp

} {smooth admissible
representations
of D× over Fp

}
F

where F(ρ) also carries an action of Gal(F/F ). This gives some evidence for a mod p
analogue of the Jacquet-Langlands correspondence. Because of this, understanding the
representation theory of D× with Fp coefficients can be expected to be of use in the
mod p local Langlands program. This is what we seek to do.

In general, for a central simple division algebra D over a local field, we will be looking
at the representation theory of D× = GL1(D) and GL2(D). In the case of D×, because
the irreducible representations are already classified, we will be focused on gaining
information about extensions of these irreducible representations. Let K = 1 + $DOD
denote the pro-p Iwahori subgroup of D×. Here, $D and OD denote a uniformizer
and the ring of integers of D respectively. Most of the work will be in computing the
D×/K representation structure, or equivalently HK-module structure, of Hi(K,Fp) and
applying the Hochschild-Serre spectral sequence to deduce information about extensions.
For GL2(D), it is not as simple to obtain information directly about representations such
as extensions, since we do not even have a classification of irreducible representations
at hand. However, we do calculate the HI1-module structure of H1(I1,Fp) where I1
is a pro-p Iwahori subgroup of GL2(D). As explained in [Koz17], an understanding of
H•(I1,Fp) as a module over the Hecke algebra HI1 can give insight about the derived
category of smooth GL2(D) representations.

This paper is organized as follows: In §2, we review necessary background on local
fields, division algebras, and the representation theory of the unit groups of division
algebras. Theorem 5 reviews the classification of all smooth irreducible representations,
while Lemma 6 translates the problem of computing extensions of smooth characters
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to computing certain continuous cohomology groups. In §3, we turn to computing
the most difficult cohomology group that we use in order to compute Ext1D×(ρ, ρ′),
namely H1(K,Fp) with K acting trivially, where K = 1 + $DOD as given above. A
basis of this Fp vector space is presented in Theorem 17. We do this by constructing
almost all elements of [K,K]Kp. In §4, we use this basis to compute the dimension of
Ext1D×(ρ, ρ′) for any irreducible representations ρ and ρ′ of D× by computing H1(K,Fp)
as a representation of D×/K, or equivalently as a module over the Hecke algebra HK .
Theorem 20 reduces the computation of ExtnD×(ρ, ρ′) to computing extensions of certain
characters, and Theorem 24 explicitly says how to compute these extension groups for
n = 1.

In §5, we compute some information about ExtnD×(ρ, ρ′) for n > 1. For n = 2, we find a
lower bound on the dimension. Namely, we may again reduce to extensions of characters,
and Proposition 26 places the corresponding extension group in an exact sequence with
a cohomology group we compute in Lemma 27 and the cohomology group H2(K,Fp).
Theorem 34 gives information about each component of a Kunneth decomposition of
H2(K,Fp), where for two of the components we have complete information. In the case
of a division algebra over a p-adic field, Proposition 37 uses Poincaré duality to allow
us to apply knowledge of low cohomology groups to compute the highest cohomology
groups.

Finally, in §6 we focus on the group GL2(D). We compute H1(I1,Fp) in Theorem 43,
where I1 is now a pro-p Iwahori subgroup of GL2(D). While we cannot easily extract
concrete information about extensions, we do compute the HI1-module structure of this
group in Theorem 53, with the specific action given in Corollaries 51 and 52.

1.1. Notation. Throughout, we will fix the following notations:

· N ⊂ Z ⊂ Q ⊂ R ⊂ C are the positive integers, integers, rational numbers, real
numbers, and complex numbers

· p is an odd prime integer
· Zp is the ring of p-adic integers
· Qp is the field of p-adic numbers
· Fpn is the finite field with pn elements for positive integer n
· Fp =

⋃
n∈NFpn is the algebraic closure of Fp

· Fp ((t)) is the field of Laurent series over Fp

· F is a non-Archimedean local field
· e is the ramification degree of F over Fp ((t)) or Qp

· kF is the residue field of F , of order q
· f is the residue field degree of F over Fp ((t)) or Qp, so q = pf

· OF is the ring of integers of F
· πF is a uniformizer of F
· νF is the discrete valuation on F , normalized so that νF (πF ) = 1
· D is a degree d division algebra over F (d ≥ 2, so D is not a field)
· Nrd : D → F is the reduced norm on D
· νD = 1

d
νF ◦ Nrd is the valuation on D extending νF

· kD is the residue field of D, so kD ' Fqd

· [x] is the Teichmuller lift of x ∈ kD (or kF ) into D (or F )
· OD is the ring of integers of D
· $D is a uniformizer of D which satisfies $d

D = πF
· σ is a generator of Gal(kD/kF ) such that $D[x]$−1D = [σ(x)] for all x ∈ kD. Explicitly,
σ : x 7→ xq

r for some r coprime to d
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· K is the pro-p Iwahori subgroup 1 +$DOD of D×
· For a|d, D×a is the subgroup F×O×D〈$a

D〉 of D×
· For a field extension E/F , NmE/F and TrE/F are the field norm and field trace
· For a group G and g, h ∈ G, the commutator [g, h] is the product ghg−1h−1 and the
commutator subgroup [G,G] is the subgroup generated by all commutators

· For a compact open subgroup H of a locally profinite group G, the Hecke algebra HH

is the algebra Fp[H \G/H] of bi-H-invariant continuous functions of compact support
under convolution

· For a topological group G and G-module A, Hn(G,A) is the degree-n continuous
group cohomology, meaning cocycles are continuous in the topology of G and discrete
topology on A

· For G-representations ρ and ρ′, HomG(ρ, ρ′) is the space of G-equivariant linear maps
from ρ to ρ′, and ExtnG(ρ,−) is the nth derived functor of HomG(ρ,−)

· I1 . I2 . I3 . · · · are the subgroups(
1 +$DOD OD
$DOD 1 +$DOD

)
.

(
1 +$DOD $DOD
$2
DOD 1 +$DOD

)
.

(
1 +$2

DOD $DOD
$2
DOD 1 +$2

DOD

)
.· · ·

of the chosen Iwahori subgroup I =

(
O×D OD

$DOD O×D

)
of GL2(D)

· T is the subgroup
(

1 +$DOD 0
0 1 +$DOD

)
of diagonal matrices in I1

· U+ and U− are the subgroups
(

1 OD
0 1

)
and

(
1 0

$DOD 1

)
of upper and lower unipo-

tent matrices in I1

2. Background

2.1. Local fields. The idea behind a local field can be seen from the usual construction
of R: we begin with Q, and then take the completion with respect to the usual absolute
value | · | on Q. This means we add in all limits of Cauchy sequences, where distance is
defined using the given absolute value.

However, there are more general absolute values we can consider.

Definition. Let F be a field. An absolute value on F is a map | · | : F → R satisfying:
· |x| ≥ 0, with equality if and only if x = 0,
· |xy| = |x| · |y|,
· |x+ y| ≤ |x|+ |y|.

An absolute value is non-Archimedean if the strong triangle inequality |x + y| ≤
max(|x|, |y|) holds - otherwise, it is Archimedean. Given an absolute value on F , it
becomes a topological field by making it into a metric space. We say | · | and | · |′ are
equivalent absolute values when |x| < 1 implies that |x|′ < 1 for all x ∈ F . These will
induce the same metric space topology.

On Q, another type of absolute value we can produce is the p-adic absolute value | · |p,
where p is some fixed prime number.

Definition. Define the p-adic valuation νp : Q → Z ∪ {∞} as νp(±
∏

q q
eq) = ep,

where νp(0) =∞. Then we define |x|p := p−νp(x), where we define p−∞ = 0.

Completing Q with respect to this absolute value gives the field Qp of p-adic numbers.
The following theorem tells us that these are all the absolute values we can produce on
Q, up to equivalence.
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Theorem (Ostrowski). Up to equivalence, the only nontrivial absolute values on Q
are the usual absolute value, denoted | · |∞, and the p-adic absolute values | · |p.

A common property that R and Qp have, although their topologies are very different
and the absolute value |·|p is actually non-Archimedean, is that they are locally compact,
or that every point has a compact neighborhood. This also holds when we complete
any algebraic extension F/Q with respect to some absolute value. In general, this is
precisely the property that we want to capture, and is the definition of a local field.

Definition. A local field is a field F equipped with a nontrivial absolute value | · |F
so that it is locally compact under the induced topology of | · |F .

It is not too difficult to classify the local fields from this definition.

Proposition. Let F be a local field. If the absolute value is Archimedean, it is
isomorphic to R or C. If it is non-Archimedean, it is isomorphic to a finite extension
of Qp or Fp ((t)).

In this paper, we will be focused on finite extensions extensions of Qp and Fp ((t)).
We will now explore the structure of these local fields in more detail.

Definition. Let F be a non-Archimedean local field with absolute value |x|F . We
define the ring of integers to be OF := {x ∈ F : |x|F ≤ 1}.

As defined, OF is not only a ring but a complete DVR. Here, complete is meant in
the topological sense (so that it contains its limit points). A DVR, or discrete valuation
ring, is a local principal ideal domain which is not a field.

By virtue of being a DVR, there is a unique maximal ideal m ⊂ OF . This is also a
principal ideal, and so we can pick a generator πF know as a uniformizer.

Definition. The residue field of OF is kF := OF/m = OF/πFOF .
We will use q to denote the order of the residue field. In direct analogy with how we

defined the p-adic valuation νp, we can also define a valuation νF : F → Z ∪ {∞} on F
mapping νF (πnFu) = n for u ∈ O×F and νF (0) =∞. Then the absolute values | · |F and
x 7→ q−νF (x) are equivalent.

The residue field of F will allow us to write down elements of F easily, using Teich-
muller lifts. This is enabled by the following lemma.

Lemma (Hensel’s Lemma). Let A be a complete DVR, with maximal ideal m and
residue field k = A/m. Then if f ∈ A[x] is a polynomial with reduction f ∈ k[x] having
a simple root, this root can be lifted to a root of f in A.

Corollary. Let F be a non-Archimedean local field. There is an injective homomor-
phism [·] : k×F → O

×
F .

Proof. Consider the roots of x|k
×
F | − 1 ∈ kF [x]. These are all distinct and simple, and

are precisely the elements of k×F . By Hensel’s lemma, there is then a map of sets
[·] : k×F → O

×
F provided by Hensel lifting. The lifts are |k×F |th roots of unity in O×F , and

hence a product of them is also such a root of unity. Because reduction to the residue
field is a homomorphism, we see the reduction of [x] · [y] is xy, which lifts to [xy]. Hence,
we obtain a homomorphism - it is easily seen to be injective. �

This map is known as the Teichmuller lift. A consequence of this map is that we can
write any element of F as

x =
∑
i≥n

[xi]π
i
F



5

for some n ∈ Z, xn ∈ k×F , and xi ∈ kF for i > n (where we define [0] = 0). Using
Teichmuller representatives to write elements, we can then decompose F× as

F× ' πZ
F × k×F × (1 + πFOF ).

The field kF = Fq is a finite extension of Fp = kQp = kFp((t)), so we can write kF = Fpf

for some positive integer f , which we call the residue field degree of F . We can similarly
define the residue field degree relative to any extension.

Definition. Let E/F be a finite extension of F . Then fE/F = [kE : kF ], and eE/F =
νE(πF ). These are the residue field degree and ramification degree respectively.

Given some E/F with ramification degree eE/F , it follows from this definition that
π
eE/F

E OE = πFOE, so π
eE/F

E and πF are unit multiples of each other. In particular, if F
is an extension of Qp, then πeF = pu for some unit u ∈ O×F .

For our field F , over the base field Qp or Fp ((t)), we denote the ramification degree
and residue field degree by e and f . We call F an unramified extension of Qp or Fp ((t))
if e = 1, and a ramified extension if e > 1.

Given any F/Qp there is a unique subfield F ′ such that we have the tower of fields

F

F ′

Qp

The extension F ′ is unramified, and contains all unramified extensions of Qp in F .
It satisfies [F ′ : Qp] = fF/Qp = f . The extension F/F ′ is totally ramified - that is,
[F : F ′] = eF/Qp = e, and fF/F ′ = 1. The situation is identical for F/Fp ((t)).

The unramified extensions of any non-Archimedean local field F are easy to describe:
there is one for each finite field extension of kF . Moreover, this is an equivalence

CunrF ' CsepkF ,
where CunrF is the category of unramified extensions and the maps are F -algebra homo-
morphisms. On the other side, we have the category of separable extensions of kF with
kF -algebra homomorphisms.

2.2. Division algebras. In this section we provide a brief overview of division algebras.
For a more comprehensive survey, see [PY96, II].

Let F be a non-Archimedean local field. We will be studying central simple division
algebras over F , which are a type of central simple algebra.

Definition. A central simple algebra (CSA) over F is a simple, not necessarily com-
mutative ring A with center F .

A central simple division algebra D over F is a CSA over F where every nonzero
element has a unique inverse. Throughout, we assume D is also not a field. It is always
the case for a CSA A that dimF A = d2 for some d. We call d the degree of A.

Any such D can always be written as a cyclic algebra.

Definition. Let E/F be a degree d cyclic extension of F , and let σ be a generator
of Gal(E/F ). Letting α ∈ F× there exists a central simple algebra (E, σ, α) defined as
follows: let E[t]σ be the polynomials

∑
i ait

i as an algebra over E with multiplication
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t · λ = σ(λ) · t for λ ∈ E. Then (td − α) is a two-sided ideal in E[t]σ, so we can define
(E, σ, α) := E[t]σ/(t

d − α).

By Theorem 5’ in [Has32], this is a division algebra precisely when αd is the least
power of α which is in the image of the norm map NmE/F . Thus, we already have an
explicit description of division algebras over F . In particular, this allows us to write
elements of a division algebra D uniquely using the decomposition

D = E ⊕ E$ ⊕ · · · ⊕ E$d−1

where E/F is a degree d unramified extension and $ is some choice of an element
so $d = πF . For all λ ∈ E, we also have $λ$−1 = σ(λ) for some generator σ of
Gal(E/F ) ' Gal(kE/kF ). We then see D can be written as a matrix algebra over E.
An element x =

∑
0≤i≤d−1 xi$

i for xi ∈ E is uniquely represented by the matrix
x0 x1 · · · xd−1

σ(xd−1)πF σ(x0) · · · σ(xd−2)
...

... . . . ...
σd−1(x1)πF σd−1(x2)πF · · · σd−1(x0)

 .

Given a central simple division algebra D over F , we can extend νF to D in a natural
way. To do this, we must first define the reduced norm Nrd : D → F .

Definition. Let D be a division algebra over F of degree d, and let E/F be the
degree d unramified extension used to define D. Then we define the reduced norm Nrd
to be the determinant map on D with elements of D viewed as matrices over E.

It is a fact that the image of Nrd is contained in F . Now we can define a valuation
on D.

Lemma. Let D be a degree d central simple division algebra over F . Then νD(x) :=
1
d
νF (Nrd(x)) is the unique valuation on D extending νF .

Given this, we can define OD and a uniformizer $D precisely as with F . For any
choice of uniformizers $D and πF , we again have $d

D = πFu for some u ∈ O×D. We can
also define a residue field kD/kF as a quotient by the maximal ideal - note that in this
setting D need not be commutative, however it remains the case that the maximal ideal
is a principal two-sided ideal 〈$D〉. It is a fact that [kD : kF ] = d, so [kD : Fp] = fd
with f the residue field degree of F . The Teichmuller representative representation of
elements can also be extended.

Lemma. Let D be a central simple division algebra over F . There is a map [·] : kD →
OD, such that we have a unique representation of any x ∈ D as

x =
∑
i≥n

[xi]$
i
D.

We will make use of this representation frequently - it is far easier to use in our
situation than the cyclic algebra representation of D. The following lemma will make it
easier to use Teichmuller representatives, since we will know they work almost additively
with some error term.

Lemma (Witt vectors). For Teichmuller representatives, we have [x] + [y] = [x+ y] +
O(p). This means when F/Fp ((t)), the error is equal to zero, and when F/Qp, the error
is O($de

D ).
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By choosing a certain uniformizer $D, we can recover, in terms of Teichmuller rep-
resentatives, the degree d unramified extension E/F used in defining D as a cyclic
algebra.

Lemma. There is a choice of uniformizer $D such that $d
D = πF . When we use this

$D, the field E consists of series of the form E =
{∑

i≥n[xid]$
id
D : xid ∈ kD

}
.

Henceforth, we will assume that we are using this uniformizer $D. The reduced norm
Nrd is easy to understand on E.

Lemma. The restriction Nrd |E is equal to NmE/F .

Thus, we can apply our understanding of NmE/F to get many results about Nrd. For
example, the following result is well known.

Lemma. Let E/F be an unramified extension of non-Archimedean local fields. Then
the norm map NmE/F : E → F restricts to a surjection NmE/F : O×E → O

×
F .

Proof. See [Ser13b], Chapter V §2. �

Corollary. The reduced norm Nrd : D → F is surjective.

Proof. It is clear that Nrd(0) = 0, so it suffices to show that Nrd surjects onto F×.
From F× ' πZ

F × O×F , for some n we have x ∈ πnFO×F . Note that Nrd($n
D) ∈ πnFO×F as

well. Then by the previous lemma, we get
Nrd($n

DO×E) = Nrd($n
D) · O×F = πnFO×F ,

and so there is a preimage of x under Nrd. �

The final thing that is important to remember is that D will not be commutative. To
actually make commutations using the Teichmuller representative representation of an
element, we will need to understand $D[x]$−1D in terms of [x]. This will always equal
[σ(x)] for some generator σ ∈ Gal(kD/kF ). Once such a σ has been specified, we can
decompose D× as

D× ' $Z
D n (k×D n (1 +$DOD)),

where the first coordinate gives the smallest power n of $D to appear in the Teichmuller
representative representation, and the second coordinate gives the coefficient of $n

D.
As it turns out, the commutation relation and the degree of a division algebra suffice

to describe the isomorphism classes of all division algebras over F . To classify division
algebras, we return to the larger context of central simple algebras over F .

Definition. Two CSAs A and B over F are Brauer equivalent if the division alge-
bras in the isomorphisms A ' Matn(D) and B ' Matm(D′) provided by the Artin-
Wedderburn structure theorem are isomorphic.

Equivalently, A and B are stably isomorphic: for some n,m we have Matn(A) '
Matm(B). We let [A] denote the equivalence class of A. Under the tensor product
−⊗F −, the set of Brauer equivalence classes form a group Br(F ).

Theorem. Let F be any field. There is an isomorphism

Br(F ) H2(Gal(F sep/F ), (F sep)×).'

Here, F sep denotes the separable closure and the absolute Galois group Gal(F sep/F )
acts in the natural way on (F sep)×.

Local class field theory gives us, through the cohomological interpretation of the
Galois group, a better description of Br(F ).
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Theorem. Let F be a non-Archimedean local field. There is an isomorphism

H2(Gal(F sep/F ), (F sep)×) Q/Z.
invF

Under this isomorphism, the classes [D] of central simple division algebras of degree
d are obtained as preimages of r

d
where gcd(r, d) = 1.

Corollary. The central simple division algebras D over F are classified up to iso-
morphism by the preimages inv−1F ( r

d
) where gcd(r, d) = 1. The preimage of r

d
is the

degree d division algebra with commutation relation $D[x]$−1D = [xq
r
].

Note that correspondence between r
d
∈ Q/Z and the degree d division algebra

with this commutation relation is well defined precisely because [kD : Fq] = d, so
[xq

r+dn
] = [xq

r
] for all n ∈ Z. Thus, we specify a division algebra by its degree and the

automorphism that conjugation by $D induces on a Teichmuller lift.
For our purposes, we will want to assume p > de + 1. This will mainly arise when

computing (1 +$DOD)p, but will appear in other situations as well. One major reason
is the following proposition.

Proposition. If p > de+ 1 over a p-adic field, then 1 +$DOD has no p-torsion.

Combining this fact with the logarithm map gives the following useful isomorphism.

Corollary. If F is a p-adic field with p > e + 1, then 1 + πFOF ' Z
[F :Qp]
p where

we view the first as a group under multiplication and the second as a group under
coordinate-wise addition.

If F is a local function field, then a similar isomorphism holds: we have 1 + πFOF '
ZN
p . This is a direct product of countably many copies of Zp.

2.3. Smooth representations of D×. If F is a non-Archimedean local field, then
G(F ) is what is known as an `-group for any algebraic group G over SpecF .

Definition. An `-group is a Hausdorff topological group in which the identity has a
basis of neighborhoods which are open compact subgroups.

For such groups, we consider smooth representations. This is a representation (ρ, V )
of the group G(F ) such that StabG(F )(v) is an open subgroup of of G(F ) for each v ∈ V .
The group D× = GL1(D) is such a group. We can realize GLn(D) as an algebraic group.

Lemma. Let D be a degree d division algebra over F . There is an algebraic group
GLn(D) over SpecF whose F points agree with the group GLn(D).

Let us now focus on representations of the `-group D×.

Lemma. The group D× is compact modulo its center F×.

Proof. The subgroup O×D is compact, and the subgroup F×O×D has index d in D×. �

Proposition 1. Let G be an `-group which is compact modulo its center Z, and
further assume that the center modulo any compact open subgroup is finitely generated
as a topological group. Then the smooth irreducible representations with coefficients in
any field L are finite dimensional.

Proof. Let V be a smooth irreducible representation. Then if v is a nonzero vector in V ,
we see 〈G ·v〉 = V by irreducibility. By smoothness of V , we can pick an open subgroup
K which stabilizes v.
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Denote the center of G by Z. Because G/Z is assumed to be compact and K is open,
the image of K in G/Z is of finite index. Then KZ is of finite index in G. We may
replace K by

⋂
g∈G/(KZ) gKg

−1 so that we can assume K is normal, and KZ has finite
index in G. Now since K stabilizes v we have 〈G · v〉 = 〈G/K · v〉. We can then replace
G by G/K and Z by its image in G/K.

We then reduce to the case where G and Z are discrete and G/Z is finite, and V
is some smooth irreducible representation. It is known in this situation that V |Z is
semisimple of finite length. It then suffices to show any irreducible representation of Z
is finite dimensional. These are the simple L[Z]-modules - that is, quotients L[Z]/m
where m is a maximal ideal. It suffices to show this is a finite extension of L. As Z is
finitely generated as an abelian group, we conclude L[Z] is a finitely generated L-algebra
and by Zariski’s lemma the claim follows. �

We note that the center must be finitely generated, which rules out some groups, such
as Q with the discrete topology. However, the assumptions will be satisfied for D× over
a non-Archimedean local field.

Definition. A group G is pro-p if it is profinite and for any open normal subgroup
N the quotient G/N is a p group.

Note that a profinite group is automatically compact; it follows that these open
subgroups are also closed subgroups of finite index, and hence the quotients are discrete.
The following lemma will be useful in classifying irreducible representations of D×,
allowing us to reduce this to classifying representations of a discrete group.

Lemma 2. Let G be a pro-p group. Then any smooth Fp-representation V has V G 6= 0.

Proof. Take v ∈ V , and set K = StabG(v). Then 〈G ·v〉 = 〈G/K ·v〉, and we can replace
V with 〈G/K · v〉. We see G/K is finite because K is a compact open subgroup, and
we may also assume K is normal by replacing it with

⋂
g∈G/K gKg

−1.
Now we see G/K is a finite p-group acting on the finite dimensional vector space

V . Any finite dimensional Fp-representation of a finite group can be reduced to being
over a finite dimensional extension Fq/Fp, as G/K is finite so there are finitely many
coefficients ci in the matrices ρ(g), and we can let Fq = Fp(ci). Now we use that G/K
is a finite p-group, with a representation on Fn

q . Each G-orbit has order pi, and 0 is a
fixed point of the G-action. The orbits partition Fn

q , and hence there are at least p fixed
points. In particular, V G 6= 0. �

Hence, the only smooth irreducible Fp-representation of a pro-p group is the trivial
representation. With these more general results in mind, we turn to understanding
smooth representations of D×. Although D× is not pro-p, the normal subgroup 1 +
$DOD is, which will allow us to make frequent use of the previous lemma. Henceforth,
we will use the shorthand K = 1 +$DOD.

To begin, we would like to understand the characters of D×. There is an exact
sequence

1 D×Nrd=1 D× F× 1,Nrd

where exactness follows immediately from the definitions as we have already shown
that Nrd is surjective. We then claim that D×Nrd=1 = [D×, D×]. Here the notation
[G,G] for a group G denotes the commutator subgroup, the subgroup generated by all
commutators [g, h] = ghg−1h−1 with g, h ∈ G. Once this is established, we will know
that any character D× → F

×
p arises as
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χ : D× F× F
×
p

Nrd κ

because F
×
p is abelian, so any homomorphism into this group must factor through the

abelianization. We can easily classify the characters κ of F× via F× ' πZ
F × k×F ×

(1 + πFOF ), where the final component is pro-p and hence we only need to compute
characters of πZ

F × k×F by the previous lemma. These are both cyclic groups, so the
characters are then determined by where we send the generators of each component.

Thus, to understand characters of D× it suffices to show D×Nrd=1 = [D×, D×]. This is
somewhat tricky in general to prove.

Lemma 3 ([Wan50]). Let D be a division algebra over a non-Archimedean local field
F , and let Nrd : D× → F× be the reduced norm map. Then D×Nrd=1 = [D×, D×].

Proof. Because F× is abelian, we have [D×, D×] ⊂ ker Nrd. We want to show this is
actually an equality.

We claim every norm one element is a product of two commutators. Let Nrd(x) = 1.
Recall that the division algebra D contains a maximal unramified extension E/F of
degree d, where we have the decomposition

D = E ⊕ E$D ⊕ · · · ⊕ E$d−1
D .

Let x have coefficients x0, . . . , xd−1 ∈ E in this representation. Reducing modulo πF ,
we have x0 ≡ ζ (mod πF ) where ζ is a qd− 1th root of unity in E. Modulo πF , we have
Nrd(x) ≡ Nrd(x0) ≡ Nrd(ζ) ≡ 1 (mod πF ). But ζ was a qd − 1th root of unity, so this
congruence means Nrd(ζ) = 1 and it is actually a qd−1

q−1 th root of unity.

Now suppose that ζ is a primitive qd−1
q−1 th root of unity. Then it is not a qi− 1th root

of unity for any i < d, and therefore generates the residue field in its image. It follows
that x also generates the residue field. Consequently, x generates a maximal unramified
(hence cyclic) subfield E ′ in D. Because conjugation by $D can replicate the action
of Gal(E ′/F ) sending ξ 7→ σ(ξ) for ξ ∈ E ′, Hilbert’s theorem 90 says if Nrd(x) = 1

then we have for some ξ that x = σ(ξ)
ξ
. Thus, $Dξ$

−1
D = σ(ξ) = xξ, so x is indeed a

commutator.
Otherwise, if we do not obtain a primitive root of unity, let ζ ∈ E be a primitive

qd−1
q−1 th root of unity. Then by the above reasoning ζ and ζ−1x are both commutators,
so the result follows. �

For the purposes of writing down irreducible representations through inductions, we
define D×a for a|d as F×O×D〈$a

D〉. Let χ : k×D → F
×
p be a character. As O×D = k×D n

(1 + $DOD), we may extend χ trivially to O×D. Because F× is the center of D×, we
may extend trivially to F×O×D as well. Supposing $D has a conjugation action by
σ ∈ Gal(kD/kF ), if χ(x) = χ(σa(x)) then we may extend to D×a by setting χ($a

D) = 1.
We say the character has order a in this case if this a is minimal.

The general characters ofD×a are not too difficult to classify. We have a decomposition

D×a ' $aZ
D n (k×D n (1 +$DOD)),

similar to the decomposition of D×. As 1 + $DOD is a pro-p group, we need only
compute characters of $aZ

D n k×D. Identifying $
aZ
D ' Z, the action of some integer n on

x ∈ k×D is to send x 7→ σna(x).
Any character of $aZ

D n k×D is determined by where it sends generators of each cyclic
group in the semidirect product. Thus, any character χ is of the form ($n

D, x, •) 7→ αnxm

for some α ∈ F
×
p and n,m ∈ Z, where a|n. Here the triple ($n

D, x, •) denotes components
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in the decomposition $aZ
D n (k×D n (1 +$DOD), in the same order. What remains is to

check which m and n actually give well-defined characters.
Let χ : D×a → F

×
p be a character acting as described in the previous paragraph. For

x ∈ k×D, it is necessary that χ([x]) = χ($a
D[x]$−aD ) = χ([σa(x)]), since χ maps into F

×
p ,

which is abelian. This means that when writing χ as (n, x, •) 7→ αnxm we must have
xm = σa(xm), and this must also hold for every element of the subgroup 〈σa〉 generated
by σa. Thus, xm must be a power of

∏
σ′∈〈σa〉 σ

′(x). For fixed α ∈ F
×
p , it can be checked

that
χa,α,m : (n, x, •) 7→ αn

∏
σ′∈〈σa〉

σ′(x)m

is a well-defined character, and thus gives all characters. When a = 1, this also recovers
the fact that χ = κ ◦ Nrd because the product becomes NmkD/kF (x)m. We also obtain
the following corollary.

Corollary 4. Suppose a|a′ are divisors of d. Let χ = χa,α,m, and let kD,a and kD,a′
be the index a and a′ subfields of kD. Then

ResD
×
a

D×
a′
χ = χa′,αa′/a,m′

where m′ is the exponent after applying NmkD,a/kD,a′
.

In particular, we see that we can obtain all characters χa,α,0 from restrictions of
characters χ1,α′,0 = κ◦Nrd of D×. We will now show that all irreducible representations
can be obtained from inductions of characters of D×a .

Theorem 5 ([Ly13]). The smooth irreducible mod p representations V of D× are
given by

V ' IndD
×

D×a

(
χ⊗ ResD

×

D×a
(κ ◦ Nrd)

)
' (IndD

×

D×a
χ)⊗ (κ ◦ Nrd).

Here, κ : F× ' πZ
F × k×F × (1 + πFOF )→ F

×
p is a character and χ is extended from an

order a character k×D → F
×
p . This covers all irreducibles even when we assume κ to be

trivial on the k×F component.

Proof. Let V be an irreducible representation of D× over Fp. Then by Lemma 2, we
know V K is nonzero. For all g ∈ D×, we have g · V K = V gKg−1

= V K because K is
normal, so V K is a subrepresentation. Because V is irreducible, we must have V K = V .
It follows that irreducible representations of D× are in bijection with those of

D×/K ' $Z
D n k×D.

For ease of notation, we denote this by Zn k×D. Because irreducible representations of
D× are finite dimensional, so are irreducible representations of Zn k×D.

As |k×D| is prime to p and the group is abelian, we know that Rep(k×D) is semisim-
ple and all irreducible representations are characters. The irreducible characters X =

Hom(k×D,F
×
p ) form a group, which is acted upon by D×/K via conjugation: s · χ(x) =

χ(s−1xs). We have a subgroup D×a /K ' aZnk×D, generated by the elements in Z which
stabilize the order a characters.

Consider an irreducible representation of aZ, namely a character κ : aZ → F
×
p .

Then upon composition with the projection D×a /K ' aZ n k×D → aZ we may view it
as a character of D×a /K. We may tensor with some character χ of D×a /K of order a
which is extended trivially from a character of k×D. We claim that the a-dimensional
representation Ind

D×/K

D×a /K
(χ ⊗ κ) is an irreducible representation. This follows from the
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Mackey criterion for irreducibility: we may extend the conjugation action ofD×/K on X
to all of Hom(D×a /K,Fp), then check for s ∈ (D×/K)\(D×a /K) that the representations
s · (χ ⊗ κ) and χ ⊗ κ are non-isomorphic. This follows by looking at the restriction to
k×D, as χ has order a but s is not in D×a /K.

Now we show that all irreducible representations V must take the form

V = Ind
D×/K

D×a /K
(χ⊗ κ).

Letting ρ : D×/K → GL(V ) be some irreducible representation of D×/K, we consider
Res

D×/K

k×D
V . As previously mentioned, this is a direct sum of characters, so we have a

decomposition Res
D×/K

k×D
V =

⊕
χ∈X Vχ where Vχ is the eigenspace of χ when we restrict

to k×D. There exists some χ such that Vχ is nonzero. Let a be the order of χ, so
that aZ maps Vχ to itself because ρ(s) · Vχ = Vs·χ. There is then an irreducible aZ-
subrepresentation of Vχ, which must be a character κ of aZ because aZ stabilizes χ
under conjugation. The corresponding representation of D×a /K inside Vχ must then be
χ⊗κ, when both are extended as before. Then Res

D×/K

D×a /K
V contains χ⊗κ at least once.

But then

HomD×a /K
(χ⊗ κ,Res

D×/K

D×a /K
V ) ' HomD×/K(Ind

D×/K

D×a /K
(χ⊗ κ), V )

is nontrivial, and as V and Ind
D×/K

D×a /K
(χ ⊗ κ) are both irreducible, we must have from

Schur’s lemma that
V ' Ind

D×/K

D×a /K
(χ⊗ κ).

Under the correspondence V 7→ V K from Irr(D×) to Irr(D×/K), irreducible representa-
tions we have just classified allow us to write any irreducible representation V of D× as
IndD

×

D×a
(χ⊗χa,α,0), with χ as in the statement of the theorem. The character χa,α,0 can be

written as ResD
×

D×a
(κ◦Nrd) for some κ as in the statement of the theorem by the previous

corollary. Finally, the push-pull formula gives the second desired isomorphism. �

One can show additionally that two irreducibles V in the theorem are isomorphic
precisely when they have the same value of a the characters χ of k×D are in the same
orbit under the action of D×/K.

Our goal will be to understand ExtnD×(ρ, ρ′) for irreducible representations ρ and ρ′.
In general, we will later show that you can reduce this to understanding Extn

D×a
(χ, χ′) '

Extn
D×a

(1, χ′ ⊗ χ∗) where χ and χ′ are characters of D×a , χ∗ denotes the dual character,
and 1 denotes the trivial character. For this problem, group cohomology is useful due
to the following lemma. Note that we use cohomology with continuous cocycles in the
topology of the group - this will be the assumption throughout.

Lemma 6. There is an isomorphism Hn(D×a , χ) ' Extn
D×a

(1, χ), where χ denotes the
D×a -module Fp with the action by the character χ.

Proof. These are computing the same thing, just in different contexts. Let Rep(D×a )
denote the category of smooth representations. The group cohomology functors can
be restricted to Hn(D×a ,−) : Rep(D×a ) → Fp − Vect as any representation is a D×a -
module, since there is an action of D×a and the underlying group of the vector space is
abelian. These can be computed as the derived functors of H0(D×a ,−) = HomD×a

(1,−) :

Rep(D×a )→ Fp−Vect. On the other hand, we define Extn
D×a

(1,−) : Rep(D×a )→ Fp−Vect
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as derived functors of Ext0
D×a

(1,−) = HomD×a
(1,−). These are the same functor at 0,

and so the claim follows. �

We note briefly that these derived functors make sense, since for any `-group G the
category Rep(G) has enough injectives, for example as shown in [Eme10] Proposition
2.1.1. Unlike the complex case, it is not actually true that there are enough projectives.

Consider the case of Lemma 6 where we inspect H1(D×a , χ). In this case, we can write
down Ext1

D×a
(1, χ) and see explicitly how the correspondence goes. For an extension V

fitting in an exact sequence
0 χ V 1 0,

a D×a representation structure extending the two characters is given by a matrix[
χ(g) Ψ(g)

0 1

]
where Ψ(gh) = Ψ(g) + χ(g)Ψ(h). This is a crossed homomorphism Ψ ∈ Z1(D×a ,Fp),
where D× acts by χ(g) on Fp. Two different extensions are isomorphic precisely when
these crossed homomorphisms Ψ,Ψ′ differ by a principal crossed homomorphism (Ψ −
Ψ′)(g) = χ(g)c− c for fixed c ∈ Fp. Thus, H1(D×a , χ) ' Ext1D×(1, χ).

We can now employ all the tools of group cohomology to solve our problem. In
particular, continuing to take K = 1 + $DOD of D×, we have the five term inflation-
restriction sequence obtained from the Hochschild-Serre spectral sequence:

0 H1(D×a /K, χ) Ext1
D×a

(1, χ) (Hom(K,Fp)⊗ χ)D
×
a /K

H2(D×a /K, χ) Ext2
D×a

(1, χ)

inf res

inf

Here we have replaced Hi(D×a , χ) by the extension group in the second and fifth terms
via Lemma 6. We also have K ⊂ kerχ because K is a pro-p group so we may apply
Lemma 2. In the first and fourth terms this means we may consider Hi(D×a /K, χ) rather
than Hi(D×a /K, χ

K). It also implies that in the third term, as a D×/K-module, we have
H1(K,χ) = H1(K,Fp)⊗ χ = Hom(K,Fp)⊗ χ.

Some computation will be required here. Almost all of the nontrivial work needed in
determining Ext1

D×a
(1, χ) is in the computation of Hom(K,Fp), and the D×/K action

on it. We compute the Fp-vector space structure of Hom(K,Fp) in the next section,
and we compute the D×/K representation structure in Proposition 23.

Remark. For a general reductive group G over a local field and a G-representation
V , a pro-p Iwahori subgroup I1 will only allow V I1 to have the structure of a module
over the Hecke algebra HI1 . In the case of D×, we have HK ' Fp[D

×/K]. Thus, our
work computing the D×/K representation structure can be viewed as a special case of
computing these modules over Hecke algebras, as we do in §6 for the group GL2(D).

3. Determining Hom(1 +$DOD,Fp)

Recall that we use K to denote the normal subgroup 1 + $DOD of D×. A key step
in computing all extensions of irreducible representations of D× is to understand the
space H1(K,Fp), which is equal to Hom(K,Fp) because the action of K is trivial. In
this section we compute an explicit basis for this vector space over Fp, which will have
dimension df + ef when F is an extension of Qp and countable dimension when F is
an extension of Fp ((t)). Recall also that we only consider primes p > de+ 1.
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Because the additive group Fp is abelian and every element is p-torsion, any homo-
morphism ϕ : K → Fp will factor through the following diagram:

K Fp

K
[K,K]Kp

ϕ

ϕ′

The homomorphism ϕ′ is unique given ϕ. The subgroup [K,K]Kp / K generated by
commutators and pth powers is called the Frattini subgroup of K.

Hence, we can reduce our problem of computing Hom(K,Fp) to that of computing
Hom(K/[K,K]Kp,Fp). We first compute the subgroup Kp.

Proposition 7. If F is an extension of Qp, then Kp = 1 +$de+1
D OD.

Proof. Let 1 + x ∈ K for x ∈ $DOD. Then we have (1 + x)p =
∑

0≤i≤p
(
p
i

)
xi =

1 + px
∑

1≤i≤p−1
((
p
i

)
/p
)
xi−1 +xp. Recall that $de

D = πeF = pu for some unit u ∈ O×F , so
because $D|x, px is divisible by $de+1

D in OD. Moreover, because p > de + 1, we have
that xp is divisible by $de+1

D , so (1 + x)p is in 1 +$de+1
D OD. Thus, Kp ⊂ 1 +$de+1

D OD.
Conversely, let 1+y ∈ 1+$de+1

D OD for some y ∈ $de+1
D OD. As a formal power series,

we know that (
∞∑
n=0

(
1/p

n

)
yn

)p

= 1 + y,

so to prove that 1 + y ∈ Kp it suffices to show that
∑∞

n=0

(
1/p
n

)
yn converges in K. Note

that it suffices to prove convergence in D: if x ∈ D satisfies xp = 1 + y, then we have
pνD(x) = νD(1 + y) = 0 so x ∈ OD. Writing x = [x0] + O($D) we see that xp0 = 1, so
x0 = 1 because the Frobenius map is an automorphism. Therefore, x ∈ K if it exists.

To show that
∑∞

n=0

(
1/p
n

)
yn converges in D, it suffices to show that νD

((
1/p
n

)
yn
)
→∞

as n→∞. We have the identity(
1/p

n

)
=

(−1)n

n!

∏
0≤i≤n−1

(
ip− 1

p

)
.

Because νD = νF = eνp on Qp, we compute νD

((
1/p
n

)
yn
)

= νD(yn) − (eνp(n!) +

eνp(p
n)) = nνD(y) − e(νp(n!) + n). We also have dνD($D) = νD($d

D) = νF (πF ) = 1,
so because y ∈ $de+1

D OD, we have νD(y) ≥ νD($de+1
D ) = (de + 1)1

d
= e

(
1 + 1

de

)
. By

Legendre’s formula, νp(n!) is bounded above by n
p−1 . Therefore,

νD

((
1/p

n

)
yn
)
≥ ne

(
1 +

1

de

)
− ne

(
1

p− 1
+ 1

)
,

and because p− 1 > de this will approach∞ as n→∞. Thus, the series converges and
Kp ⊃ 1 +$de+1

D OD. �

Corollary 8. If F/Qp, then Kpk = 1 +$kde+1
D OD.

Proof. We can prove this with the exact same method as in Proposition 7. We need
only change to using the identity(

1/pk

n

)
=

(−1)n

n!

∏
0≤i≤n−1

(
ipk − 1

pk

)
,

and from there the analysis is identical. �
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When F is an extension of Fp ((t)), this computation is much simpler: we work in
characteristic p. In particular, we now have

(1 + x)p = 1 + xp,

so we have Kp = 1 + ($DOD)p.
The strategy we will use is to construct a large number of elements of [K,K]Kp to

put an upper bound on dimFp
Hom(K,Fp). Then, by writing down enough linearly

independent maps in Hom(K,Fp), we can determine it completely.
Before constructing the commutators, we will need several preliminary results. The

general idea is to first gain a strong understanding of how many ways the coefficient
of $2

D in a commutator [a, b] ∈ [K,K] can be obtained - this only depends on the
coefficients of $D in a and b. We then use this to inductively approximate a and b
which produce the desired commutator. Throughout, we let σ ∈ Gal(kD/kF ) be such
that $D[x]$−1D = [σ(x)] for any x ∈ kD.

We will use the following lemma in constructing commutators, as it is related to the
expression for the coefficient of $i+1

D in a commutator [a, b] of K for i ≥ 2.

Lemma 9. Let i ≥ 0, and for y ∈ kD let ϕi,y ∈ EndkF (kD) denote the map

ϕi,y : x 7→ σ(x)y − xσi(y).

The image of ϕi,y is the subspace

V = ker(TrkD/kF ) ·
∏

0≤j≤i

σj(y),

which has codimension one for y ∈ k×D.

Proof. Since σ is an automorphism, the kF -linearity of this map follows immediately.
When y = 0, the result is clear, so suppose now that y ∈ k×D.

We first compute the kernel of this map. We have ϕi,y(x) = 0 if and only if σ(x)y =
xσi(y). For x 6= 0, this is equivalent to x/σ(x) = y/σi(y), which is always solvable by
the multiplicative version of Hilbert’s theorem 90 as

NmkD/kF (y/σi(y)) = 1

and σ is a generator of the Galois group. Again since σ is a generator, the solution set is
one-dimensional, being the kF -multiples of a particular solution: Supposing for nonzero
x′ we have x′

σ(x′)
= x

σ(x)
, then σ(x′/x) = x′/x so the ratio lies in k×F . Thus, V = imϕi,y

is a codimension one subspace. Noting that

ϕi,y(x)∏
0≤j≤i σ

j(y)
=

σ(x)∏
0<j≤i σ

j(y)
− x∏

0≤j<i σ
j(y)

,

applying σ to the second term yields the first. Then since TrkD/kF is Galois-invariant,
the subspace V is contained in ker(TrkD/kF ) ·

∏
0≤j≤i σ

j(y). The additive version of
Hilbert’s theorem 90 says ker TrkD/kF = im(σ(x) − x) = imϕi,1, which was shown to
also have codimension one. Hence, we have equality. �

The following lemma is used in Proposition 11, where we reduce to studying the
curve σ(x)y − xσ(y) = α. This curve appears as a formula the coefficient of $2

D in a
commutator [a, b] of K, which is why we study it. One of the main tools we will use is
the fact that the automorphism group of this curve is SL2(kF ) × µq+1(kD), and these
can be extended to GL2(kF ) and k×(q+1)

D to act on the entire family of curves for α ∈ kD.
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Lemma 10. Let d be even, and let α ∈ kD. The curve Xα : σ(x)y − xσ(y) = α is
isomorphic to Yα′ : σ(x)x+σ(y)y = α′ over kD. Here, we choose ζ 6= 0 so that σ(ζ) = −ζ
and set α′ = ζα.

Proof. The isomorphism can be divided into several smaller maps. Namely, we break it
up into the simpler isomorphisms

Xα X̃α′ X̃(ω+σ(ω))α′ Yα′ .
φX φX̃,ω φY

In the above, we let Xα and Yα′ be as in the theorem, and we define intermediate curves
X̃α′ and X̃ω. Set X̃α′ : σ(x)y + xσ(y) = ζ · α = α′ as the first. As d is even there
exists an ω so σ(ω)ω = −1, and for any such root we have ω + σ(ω) ∈ k×F . We then let
X̃(ω+σ(ω))α′ : σ(x)y + xσ(y) = (ω + σ(ω))α′ be the other curve.

Now we construct the isomorphisms. First, we consider φX . There exists a nonzero
element ζ so that σ(ζ) = −ζ. Then sending y 7→ ζy is an isomorphism, such that the
image lies in X̃α′ .

For φY , this sends a point (x, y) ∈ Yα′ to (x + ωy, ωx + y) ∈ X̃(ω+σ(ω))α′ . The result
obtained by making this substitution in σ(x)y + xσ(y) is

(ω + σ(ω))(σ(x)x+ σ(y)y) + (σ(ω)ω + 1)(xσ(y) + yσ(x)) = (ω + σ(ω))α′.

By construction of ω, this equals (ω + σ(ω))α′ as xq+1 + yq+1 = α′ on Yα′ . We then

obtain a point on X̃ω. This is an isomorphism, as det

(
1 ω
ω 1

)
is nonzero.

The map φX̃,ω arises from the GL2(kF ) action on the entire family of curves X̃α :

σ(x)y + xσ(y) = α. This restricts applies the natural action of A ∈ GL2(kF ) on A2
kD

to (x, y) ∈ Xα ⊂ A2
kD

- the result is that we send X̃α to X̃detA·α. Then choosing any
element A ∈ GL2(kF ) so det(A) = (ω+σ(ω))−1 ∈ k×F , the action of A provides the map
φX̃,ω : X̃(ω+σ(ω))α′ → X̃α′ . �

In Proposition 11, we actually obtain a stronger result than is needed by determining
the exact number of preimages in Φ−1(α). However, all we will need for the construction
of commutators is the stated bound.

Proposition 11. The map

Φ : k×D × k
×
D kD

sending (x, y) 7→ σ(x)y − xσ(y) is surjective for [kD : kF ] ≥ 3, and for [kD : kF ] = 2 the
image is ker TrkD/kF . Moreover, |Φ−1(α)| ≥ (q + 1)

√
|kD| for d ≥ 3, with the exception

of d = 4 where this is true for a fraction q
q+1

of nonzero values and for zero.

Proof. When [kD : kF ] = 2, if we fix y the image is determined by Lemma 9. In
particular, it is imϕ1,y = yq+1 ker TrkD/kF . But this is NmkD/kF (y) · ker TrkD/kF =
ker TrkD/kF , so the result follows.

Now let d = [kD : kF ] ≥ 3. The precise kernel of Φ for given y ∈ k×F is c ·kF where c is
a particular solution to x/σ(x) = y/σ(y). These do not overlap, so there are precisely
|k×D| · |k

×
F | solutions to Φ = 0. We now restrict ourselves to looking at nonzero elements

in the image.
Let α ∈ k×D. We can take the affine curve σ(x)y− xσ(y) = α, and take the projective

closure to obtain σ(x)y − xσ(y) = αzσ(z). This will yield additional projective points
over kD corresponding to solutions where z = 0 - as σ generates the Galois group,
these correspond to P1(k

〈σ〉
D ) = P1(kF ) which has q + 1 points. It also immediately
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demonstrates we can partition the image of Φ in k×D into corresponding to cosets of
k×D/k

×(q+1)
D , where elements in the same coset have the same number of solutions. Note

that we may use q+ 1 here since σ sends x 7→ xq
j where gcd(j, d) = 1, so these coincide

with the q + 1th powers.
Let d be odd - then k×D/k

×(q+1)
D = Z/2Z, since gcd(qd − 1, q + 1) = 2. As in Lemma

10, there is a GL2(kF ) action on the family of curves Xα : σ(x)y − xσ(y) = α which
scales α by the determinant. In particular, solutions to α and z · α for z ∈ kF are in
bijection as well. However, there are squares and nonsquares in kF . In particular, we
hit both cosets, so all elements of k×D have the same number of solutions, which will be
precisely

|Φ−1(α)| = |k
×
D|2 − |k

×
D| · |k

×
F |

|k×D|
= qd − q.

Now suppose that d = [kD : kF ] is even - the exact number of solutions in this case
is much more complicated. We now have equivalence classes k×D/k

×(q+1)
D = Z/(q + 1)Z

by the same gcd calculation. With the notation as in Lemma 10, we can instead study
σ(x)x+ σ(y)y = α′. This has several properties which make it possible to compute the
exact number of points.

If α′ = −1, upon taking the projective closure of σ(x)x + σ(y)y = α′ we obtain a
curve birational to the smooth hypersurface C : xq+1 + yq+1 + zq+1 = 0 defined over
Fq2 . This is because x 7→ xq+1 and x 7→ σ(x)x have the same image and number of
preimages, so we can put solutions into bijection this way. It is possible to compute the
explicit Zeta function of this curve. Letting C denote the base change of C to Fq2 , the
action of the q2-Frobenius on H1

c(C;Q`) is by a constant, namely −q. The Zeta function
of C must then take the form

Z(C, t) =
(1 + qt)q(q−1)

(1− t)(1− q2t)

since the genus is q(q−1)
2

by the genus-degree formula. From this, we can read off the
closed form qd+1+(−q)d/2 q−q3

q+1
for the number of projective points, so that the number

affine points is

N = qd + 1 + (−q)d/2 q − q
3

q + 1
− (q + 1).

It is also possible to compute this from [W+49]. See also [SK79] for Zeta functions of
more general Fermat varieties.

Over kD, recall that the curve σ(x)y−xσ(y) = α will be isomorphic to σ(x)x+σ(y)y =
α′, which by similar reasoning has the same number of points as xq+1 + yq+1 = α′. We
have obtained an explicit formula for the coset where α′ ∈ k×(q+1)

D . By [W+49], we know
the exact number N of affine solutions to any equation of the latter form over kD. This
can be expressed as

N = |kD|+
∑

1≤i,j≤q

χi+j(α′)J (χ, χ)

where χ is a multiplicative character of k×D of order q + 1. The Jacobi sum J (χ, χ) in
every case is a constant, so we only need to inspect

∑
1≤i,j≤q χ

i+j(α′). As the character
has order q + 1, this sum takes two values: one value for α′ in the trivial coset of
k×D/k

×(q+1)
D , and the other for the nontrivial cosets (namely, it becomes 1). By the same

reasoning as the odd case, over k×D the average number of solutions is qd−q. In particular,
for the trivial coset k×D/k

×(q+1)
D , we have the exact formula qd+1+(−q)d/2 q−q3

q+1
− (q+1).
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The remaining cosets all take on the same value, such that the average is qd − q. This
proves the claim, as well as the extra details for the case of d = 4. �

Corollary 12. Let α ∈ im Φ. Then in Φ−1(α) for α ∈ k×D, there exists (x, y) so that
x/y does not lie in any proper subfield of kD. When d = 4, this is true for q

q+1
|k×D|

choices of α ∈ k×D.

Proof. The (q + 1)th roots of unity 〈ζ〉 = µq+1(kD) act on Φ−1(α). In particular, given
(x, y) ∈ Φ−1(α) we have (ζx, ζy) as another solution. If we fix the ratio x/y, then the
system

σ(x)y − xσ(y) = α, x/y = β

gives x = yβ, so we solve yσ(y)σ(β) − yσ(y)β = α. This has |µq+1(kD)| solutions as σ
is a generator of Gal(kD/kF ), unless σ(β) − β = 0. This implies that α = 0, however,
and so we do not consider this case.

Thus, over nonzero values α the number of ratios x/y from (x, y) ∈ Φ−1(α) is precisely
|Φ−1(α)|/|µq+1(kD)|. This exceeds

√
|kD| when d 6= 4, and when d = 4 is true for q

q+1

of the nonzero values by Proposition 11. �

Remark. Unfortunately, Corollary 12 cannot be improved: when d = 4, it actually
is the case that sometimes x/y always lie in the degree 2 subfield of kD. Additionally,
for Φ−1(0), the ratios always lie in kF . Thus, this result is the best possible. It also
indicates that the exact number of solutions, or at least a bound, is necessary since
there are instances where x/y can lie in a subfield.

We need two more lemmas to be able to put together the previous results and con-
struct a large subset of [K,K]Kp.

Lemma 13. Let k2/k1 be a finite extension of finite fields. Suppose that for α ∈ k2 we
have Trk2/k1(x) = 0 if and only if Trk2/k1(αx) = 0. Then α ∈ k×1 .

Proof. Every k1-linear map k2 → k1 is of the form Mα(x) = Trk2/k1(αx) for some
unique α. This follows from the trace pairing being a symmetric non-degenerate bilinear
form. Then simply by counting the linear maps with kernel agreeing with that of the
trace, we are done. Namely, any linear map in Homk1(k2, k1) is of the form x 7→
vTx, and to have kernel precisely ker Trk2/k1 determines v up to a scalar in k×1 because
codimk1 ker Trk2/k1 = 1. This counts |k×1 | maps, which are already given by Trk2/k1(αx)
for α ∈ k1. �

Lemma 14. The preimage of kF = Fq under the map x 7→
∏

0≤j<i σ
j(x) in kD = Fqd

is the subfield Fqgcd(i,d) .

Proof. Let ki = Fqgcd(i,d) , and take some x ∈ ki. Then Nmki/kF (x) ∈ kF . The map∏
0≤j<i σ

j(x) restricts to the i/ gcd(i, d)th power of the norm map, since σ restricts to
a generator of the Galois group of the subfield ki over Fq, so ki is contained in the
preimage of kF .

For the regular norm map Nmki/Fq viewed as a map on kD, the preimage of Fq is
precisely ki - we know the map is surjective, and a gcd calculation counts the exact
number of preimages. When we consider the i/ gcd(i, d)th power of the norm map, we
restrict the image to the (i/ gcd(i, d))th powers in Fq, which has index gcd( i

gcd(i,d)
, q −

1). The number of preimages of each element of Fq, when nonzero, is given by N =

gcd( q
ij−1
qj−1 , q

d − 1) = gcd( i
gcd(i,d)

, q − 1) q
gcd(i,d)−1
q−1 where σ sends x 7→ xq

j . To see this, we
can use gcd(qj − 1, qd − 1) = q − 1 and gcd(qij − 1, qd − 1) = qgcd(i,d) − 1. These are



19

not coprime, however, so we cannot divide them directly to get the result. However, if
we account for common factors of qgcd(i,d)−1

q−1 and q − 1 we can obtain the desired result.
We then see that the number of preimages of Fq is the order of ki. We conclude the
claimed result. �

With these results in mind, we can now compute a large subset of the elements
of [K,K]Kp. Surprisingly, by only producing pure commutators and not products of
commutators we can achieve a large enough portion of the commutator subgroup.

Proposition 15. Let D be a division algebra over F of degree d ≥ 2, and let K =
1 + $DOD. Then the subgroup [K,K]Kp ⊂ K contains products of commutators and
pth powers of the form

{1 +
∑
i≥2

[xi]$
i
D} ·Kp

where the [xi] for i > 2 can be any element of kD when d - i and when d|i can be any
element of some additive coset of V = ker(TrkD/kF ) determined by the xj with j < i.

We specify that [x2] must satisfy x2 ∈ im Φ (this is true for any commutator [a, b] =∑
i≥2[xi]$

i
D), and be an element of im Φ which Corollary 12 applies to. This means

x2 ∈ k×D, and when d = 4 it can only be one of q
q+1
|k×D| nonzero values. For d = 2, recall

from Proposition 11 that im Φ is ker TrkD/kF - otherwise, it is all of k×D.

Proof. The first important observation we need to make is that [x]+[y] = [x+y]+O(p).
This means different things depending on the case we work in. For F/Fp ((t)), it means
[x] + [y] = [x + y]. For F/Qp, it means that in K/Kp we can ignore the error term
because $de

D u = p for u ∈ O×D and Kp = 1 +$de+1
D OD.

In particular, this means to obtain the desired result we can produce commutators
of the form 1 +

∑
i≥2[xi]$

i
D where we ignore the error terms. In the function field case

this is never an issue, and in the p-adic case we can absorb them into Kp.
Let a = 1 +

∑
i≥1[ai]$

i
D, and let b = 1 +

∑
i≥1[bi]$

i
D. We can write a−1 = 1 +∑

i≥1(a− 1)i and similarly for b, which allows us to extract some information about the
coefficient [xi] of $i

D of [a, b] = 1 +
∑

i[xi]$
i
D.

For i > 2, there is no term in the coefficient [xi] of $i
D of [a, b] = 1 +

∑
i[xi]$

i
D

depending on ai or bi (these always cancel). The only term depending on ai−1 and bi−1
is

([σ(bi−1)a1]− [bi−1σ
i−1(a1)])− ([σ(ai−1)b1]− [ai−1σ

i−1(b1)]),

and as discussed above we may assume there are no error terms as they are either 0 or
can be absorbed into Kp. We can compute this by approximating a−1 and b−1 up to
1 + (a − 1) + (a − 1)2 and 1 + (b − 1) + (b − 1)2, since after this point the [ai], [ai−1]
and [bi], [bi−1] coefficients cannot contribute to [xi]. Thus, this term is the same as
ϕi−1,a1(bi−1)− ϕi−1,b1(ai−1) in the notation of Lemma 9.

The method of producing commutators is as follows. First, we observe that the
coefficient [x2] of $2

D in [a, b] is precisely

x2 = Φ(a1, b1) = σ(a1)b1 − a1σ(b1).

If α ∈ k×D and Φ−1(α) is nonempty then according to Corollary 12 for d 6= 4 there exists
(a1, b1) ∈ Φ−1(α) such that a1/b1 does not lie in any proper subfield. When d = 4, we
can do this for q

q+1
|k×D| choices.

Now we fix aj and bj for 2 ≤ j < i − 1, in addition to a1 and b1. In terms of the
coefficient [xi] of $i

D in [a, b], if we ignore the error terms we can achieve the set

[C(aj, bj)j<i−1] + [imϕi−1,a1 + imϕi−1,b1 ] ,
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over (ai−1, bi−1) ∈ k2D as possible coefficients [xi], where [C(aj, bj)j<i−1] is a constant
depending on lower coefficients in a and b we have already fixed. By Lemma 9, these
images are codimension one subspaces. To obtain kD = imϕi−1,a1 + imϕi−1,b1 , we
only need to show these are distinct subspaces - otherwise, we get a comdimension one
subspace.

Set V = ker TrkD/kF . By Lemma 9, we wish to compute whether∏
j<i

σj(a1) · V =
∏
j<i

σj(b1) · V.

By Lemma 13, this requires
∏

j<i σ
j(a1/b1) ∈ kF . By Lemma 14 so long as gcd(i, d) < d

this cannot occur unless a1/b1 lies in a proper subfield of kD. We have already chosen
the pair (a1, b1) specifically so this is not the case. When gcd(i, d) = d, by Lemma 14
we always have

∏
j<i σ

j(a1/b1) ∈ kF .
Let us summarize the results for d 6= 4. In the p-adic case, we can absorb error terms

into Kp so we have produced the desired subset {1 +
∑

i≥2[xi]$
i
D} ·Kp by inductively

approximating a, b ∈ K so [a, b] gives the desired commutator while moving error terms
intoKp. In the local function field case, there are no error terms so we produce explicitly
a commutator of the form [a, b] = 1 +

∑
i≥2[xi]$

i
D through this process. The claim still

holds, as [K,K]Kp is a subgroup and contains Kp.
When d = 4, we achieve almost the same results. Because Corollary 12 only holds

for some values of x2 ∈ im Φ, we must place the additional restriction that it applies to
x2. Because this is still almost all values, this will not present an issue. �

This gives the following corollary.

Corollary 16. Let F/Qp be a p-adic field. Then

dimFp
Hom(K,Fp) ≤ df + ef.

If F/Fp ((t)) is a local function field, then letting K(di+1) = 1 +$di+1
D OD we get

dimFp
Hom(K/K(di+1),Fp) ≤ df +

(
i−
⌊
i

p

⌋)
f.

Proof. We consider the p-adic case first. To place a bound on the dimension, we place a
bound on dimFp K/[K,K]Kp (this is abelian and p-torsion, hence an Fp-vector space).
We have

K

[K,K]Kp
' K/Kp

[K/Kp, K/Kp]

since Kp is normal in K. This is also easily computable, since Kp = 1 +$de+1
D OD. The

commutator construction of Proposition 15 carries over to this quotient by taking the
image of the constructed subset under the quotient map. As K/Kp is finite, we just
need to compute the number of commutators the construction yields. Explicitly, we
may construct at least (

q

q + 1
|k×D|

)
·
(
pfd
)ed−2−e · (pf(d−1))e

commutators when d > 2, where we respectively have the number of choices for the
coefficient of $2

D, the coefficients of the $i
D with i > 2 and d - i, and the coefficients

of $i
D with d | i (when d = 2, these factors are slightly different but we ultimately get
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the same bound). As q
q+1
|kD|× ≈ pdf (and in particular is within a factor of p), we can

simplify our minimum number of commutators to be within a factor of p of(
pdf
)ed · p−df−ef .

As |K/Kp| =
(
pdf
)ed, this gives the desired bound.

In the function field case, the argument is a little different. As there is no error
term when adding Teichmuller lifts in characteristic p, we may construct all elements
of [K,K] of the form 1 +

∑
i≥2[xi]$

i
D with the conditions of Proposition 15. Similar to

before, we wish to bound dimFp K
′/[K ′, K ′]K ′p where K ′ = K/K(di+1). Looking at the

images of the commutators of Proposition 15 in K ′, we get a commutator construction
for K ′ of the same form.

Recall that there exists a degree d unramified extension E/F such that E is contained
in D as E =

{∑
j≥n[xjd]$

jd
D : xjd ∈ kD

}
. Then 1 + πEOE ⊂ K. Within this subgroup,

pth powers will be commutative because E is a field. As E/Fp ((t)), we have (1 +

πEOE)p =
{

1 +
∑

j≥1[xj(pd)]$
j(pd)
D : xj(pd) ∈ kD

}
(there is a pth power in the coefficient,

but this is an automorphism of kD so we may take the coefficients to be arbitrary).
Now we return to K ′. The previous observation implies that in the commutator

construction under
K ′

[K ′, K ′]Kp
' K ′/K ′p

[K ′/K ′p, K ′/K ′p]
,

we may ignore coefficients of $j(pd)
D . With similar reasoning as in the p-adic case, from

the bound
dimFp K

′/[K ′, K ′]K ′p ≤ df + if

we may subtract b i
p
cf due to the coefficients that we ignore. This yields the claimed

bound. �

With this corollary in hand, what remains is to produce enough maps to reach these
upper bounds. This will allow us to construct a basis of Hom(K,Fp).

Theorem 17. Let Vφ be the subspace of Hom(K,Fp) consisting of homomorphisms
factoring through the quotient K → K/(1 +$2

DOD) ' kD, and let Vψ be the subspace
of all homomorphisms factoring through Nrd : K → 1 + πFOF . We then have a
decomposition

H1(K,Fp) = Hom(K,Fp) = Vψ ⊕ Vφ.

Furthermore, we may provide an explicit basis for each. For ηj := (x 7→ xp
j
) ∈

AutFp(kD), define the df homomorphisms φηj : K → Fp by

φηj : 1 + [x1]$D +O($2
D) 7→ ηj(x1).

These form a basis for Vφ.
For η ∈ Hom(1 + πFOF ,Fp), define the homomorphisms ψη : K → Fp by

ψη : x 7→ η ◦ Nrd(x).

Let {ηi|i ∈ I} be a basis of the space of continuous homomorphisms Hom(1+πFOF ,Fp)
as an Fp vector space, where I is an index set that is countably infinite when F is a
local function field and has size ef when F is a p-adic field. The homomorphisms ψηi
form a basis for Vψ.
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Proof. First we check that these maps are well defined. The only important detail to
check is that Nrd(K) ⊂ 1 + πFOF . More generally, by computing the reduction of Nrd
in O×F we can show there is a commutative diagram

O×D k×D

O×F k×F

Nrd Nm

and so Nrd must map the kernel K of the upper map to the kernel 1 + πFOF of the
lower map.

Now we check linear independence. First we show that the φηj are linearly indepen-
dent. Let λ0, . . . , λdf−1 ∈ Fp be such that

∑df−1
0=j λjφ

ηj = 0. Then for all x ∈ kD, we
have

∑df−1
0=j λjφ

ηj(1+[x]$D) =
∑df−1

0=j λjx
pj = 0. This is a polynomial of degree at most

pdf−1 having pdf roots in kD = Fpdf , so all the λj must be equal to 0 and the φηj are
linearly independent. The subspace Vφ ' Hom(kD,Fp) has the same dimension df , and
so the Vφ has the φηj as basis elements.

Similarly, the ψηi are linearly independent for i ∈ I. Recall that there exists a degree
d unramified extension in D defined as E =

{∑
i≥n[xid]$

id
D : xid ∈ kD

}
. The reduced

norm Nrd restricts to NmE/F on E. Because NmE/F : 1 + πEOE → 1 + πFOF is
surjective and 1 + πEOE ⊂ K, we see Nrd : K → 1 + πFOF is a surjection. The maps
ψηi then give a basis of Vψ, since now Vψ ' Hom(1 + πFOF ,Fp) and we defined the ηi
to be a basis of the latter.

We now claim that Vφ and Vψ have trivial intersection, or equivalently that ψη factors
as

ψη : K kD Fp

only if η is the trivial homomorphism. As d ≥ 2, we have 1+πEOE ⊂ 1+$2
DOD and so

Nrd : 1 +$2
DOD → 1 + πFOF is surjective. Therefore, for all η ∈ Hom(1 + πFOF ,Fp),

we have ψη(1+$2
DOD) = η(1+πFOF ) = 0 only if η is trivial, which is what we wanted.

We conclude that Vψ ⊕ Vφ ⊂ Hom(K,Fp) and that as a subspace it has the desired
basis. We will now show this is the entire space using Corollary 16.

In the p-adic case, every map in Hom(1+πFOF ,Fp) is 0 on (1+πFOF )p = 1+πe+1
F OF .

Therefore, Hom(1 + πFOF ,Fp) is isomorphic to F
ef

p , so |I| = ef . We conclude that
we have produced enough homomorphisms to meet the upper bound of Corollary 16.
Therefore, the φηj and ψηi form a basis.

Next, we consider when F/Fp ((t)). Here Corollary 16 tells us that when we take a
quotient byK(di+1), the dimension of the space of functions is bounded by df+(i−b i

p
c)f .

We will show that we already meet this, since the φηj remain nonzero under this quotient,
but the ψη which remain nonzero are precisely those for which η reduces to a nonzero
map (1 + πFOF )/(1 + πi+1

F OF )→ Fp. Note that the reduced norm Nrd : 1 +$di
DOD →

1 + πiFOF is surjective because the field norm NmE/F : 1 + πiEOE → 1 + πiFOF is
surjective, so showing that we have enough linearly independent maps coming from the
ψη reduces to showing that the dimension of Hom

(
1+πFOF

1+πi+1
F OF

,Fp

)
is at least (i− b i

p
c)f .

We can again quotient out by the pth powers, which are exactly 1 + (πFOF )p. This
allows us to again ignore the coefficients of the πpjF , giving the desired dimension. We
conclude that if there were some additional basis element, it would need to be 0 modulo
K(di+1) for each i. This cannot be the case, since it is then 0 on all of K.
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Thus, in either case we have Hom(K,Fp) = Vφ ⊕ Vψ, and we have computed a basis
for each subspace. �

Remark. In the local function field case, we have shown that

Vψ ' Hom(1 + πFOF ,Fp) ' Hom(ZN
p ,Fp) '

⊕
i∈N

Hom(Zp,Fp),

which is the decomposition given by the basis ψηi . So as a space of homomorphisms,
this is a direct sum and not a direct product.

Lemma 18. We have a decomposition

K = (1 + πFOF )×KNrd=1,

where KNrd=1 is the kernel of the reduced norm restricted to K. That is, every k ∈ K
can be written uniquely as k = k1k2 for some central element k1 ∈ 1 + πFOF and
Nrd(k2) = 1.

Proof. We know Nrd |1+πFOF
is the map x 7→ xd, so the kernel is the group of dth roots

of unity in 1 + πFOF . Recall that we have the isomorphisms 1 + πFOF ' Z
[F :Qp]
p in the

p-adic case and 1 + πFOF ' ZN
p in the local function field case. Because p > de + 1

we know d is coprime to p, so we see that multiplication by d is invertible under this
isomorphism. We conclude that every element of 1+πFOF is a dth power, and moreover
is a dth power in a unique way. It follows that K = (1 + πFOF ) · KNrd=1 and also
that the intersection is trivial. As KNrd=1 is normal, we obtain a semidirect product
K = (1 + πFOF ) nKNrd=1. This is a direct product since 1 + πFOF is central, and so
its conjugation action is trivial. �

In either case, this decomposition of H1(K,Fp) as Vφ⊕Vψ also arises as the Kunneth
formula applied to the product decomposition of Lemma 18. With this theorem in
hand, we are now able to explicitly compute the extensions Ext1D×(ρ, ρ′) of irreducible
representations ρ and ρ′. This decomposition is similar in spirit to the computation of H1

for pro-p Iwahori subgroups of connected split reductive groups over F done in Corollary
5.4 of [Koz17]. In particular, 1+πFOF corresponds to the component Hom(T1,Fp), and
the homomorphisms arising from KNrd=1 in Vφ roughly correspond to those coming from
root subgroups. As D× is a twist of GLn which is anisotropic modulo its center, we can
only loosely interpret the results this way since the relative root system of D× is not
very interesting.

We note that dimFp H1(K,Fp) corresponds to a minimal set of topological generators
(see [Ser13a]). We can easily construct these as well, as duals to our basis of homo-
morphisms. Namely, we can take topological generators for 1 + πFOF as well as norm
1 elements which reduce to an Fp-basis of K/(1 + $2

DOD) ' kD under the quotient
map. We could reprove Corollary 16 by simply showing that this set of generators does
topologically generate, although this might seem slightly unmotivated. However, Propo-
sition 15 actually gives us a great deal more than its corollary allowing us to show that
Theorem 17 describes all homomorphisms: it gives an explicit method of constructing
almost all elements of [K,K]Kp as a product of a commutator and pth power (which
can even be carried out in practice), and gives us a very good picture of how to construct
elements of [K,K]Kp. We may determine this subgroup abstractly as well, as seen by
the following corollary.

Corollary 19. We have [K,K]Kp = KNrd=1K
p ∩ (1 +$2

DOD).
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Proof. We consider the p-adic case first. By Theorem 17, we know [K : [K,K]Kp] =
pef+df . The same is true for KNrd=1K

p ∩ (1 + $2
DOD). Furthermore, any x ∈ [K,K] is

sent to 0 by Nrd, and is additionally sent to 0 by reduction modulo 1 +$2
DOD. Hence,

[K,K]Kp ⊂ KNrd=1K
p ∩ (1 + $2

DOD). But these both have the same index in K by
Lemma 18 and are therefore equal.

For F/Fp ((t)), we can make the same argument but we need to consider the quotient
by K(di+1). �

4. Computing Ext1D×(ρ, ρ′)

4.1. Reduction to extensions of characters. We will begin with explaining how to
reduce the computation of ExtnD×(ρ, ρ′) to extensions between characters. There are
two main facts used in this reduction: first, that ρ and ρ′ are induced from characters.
Secondly, the inductions are from finite index subgroups, which means that Frobenius
reciprocity becomes a two-sided adjunction.

Lemma. For a group G, let H ≤ G be such that [G : H] < ∞, and let V and W be
representations of the groups H and G respectively. Then we have

ExtnG(IndGH V,W ) ' ExtnH(V,ResGHW ).

This also holds in the other direction.

Proof. This is a well-known fact from category theory, but we will elaborate here on
why it holds. As the index [G : H] is finite, the functors Ind and Res between Rep(G)
and Rep(H) are both left and right adjoint to each other: this is because the induction
functor IndGH agrees with the compact induction functor c−IndGH . Because there is a two
sided adjunction, both Ind and Res become exact. In particular, an injective resolution

0 V I0 I1 . . .

in Rep(H) will then be sent to an injective resolution

0 IndGH V IndGH I
0 IndGH I

1 . . .

in Rep(G) because induction will now be exact and we can check using the adjunction
that it also sends injective objects in Rep(H) to injective objects in Rep(G). Then
applying HomH and HomG to these resolutions, when we compute derived functors and
use the adjunction for Hom we see that the resulting chain complexes we compute ExtnH
and ExtnG from are actually isomorphic. Hence, the adjunction will extend to Extn. �

Now we can use this to reduce our problem to computing extensions of characters.
Consider, in the notation of Proposition 5, irreducible representations ρ = (IndD

×

D×a
χ)⊗

(κ ◦ Nrd) and ρ′ = (IndD
×

D×
a′
χ′) ⊗ (κ′ ◦ Nrd). We would like to compute the dimension

of ExtnD×(ρ, ρ′). Tensoring ρ and ρ′ with (κ ◦ Nrd)∗, we can assume ρ = IndD
×

D×a
χ and

replace κ′ ◦ Nrd with (κ′ ◦ Nrd)⊗ (κ ◦ Nrd)∗. Using the push-pull formula, we know

ρ′ = (IndD
×

D×
a′
χ′)⊗ (κ′ ◦ Nrd) ' IndD

×

D×
a′

(χ′ ⊗ ResD
×

D×a
(κ′ ◦ Nrd)).

Thus, we have reduced to the case of computing Extn
D×a

(ρ, ρ′) with ρ = IndD
×

D×a
χ and

ρ′ = IndD
×

D×
a′
χ′, where χ is extended trivially from a character of k×D but χ′ can be any

character of D×a′ .
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Theorem 20. Let χ, χ′, ρ and ρ′ be as given above. Then

ExtnD×(ρ, ρ′) '
⊕

s∈D×a \D×/D×a′

Extn
D×

lcm(a,a′)
(1, (Res

D×
a′

D×
lcm(a,a′)

χ′)⊗ (χs)∗),

where s are coset representatives of the double coset s. The characters χs on D×lcm(a,a′)

are defined as χs(x) = χ(s−1xs), and so are conjugated restrictions of χ.

Proof. We first apply Frobenius reciprocity, the first time on the right induced repre-
sentation. By the previous lemma, we may apply it for Extn as the subgroups D×a and
D×a′ have finite index in D×. We have

ExtnD×(ρ, ρ′) = ExtnD×(IndD
×

D×a
χ, IndD

×

D×
a′
χ′) ' Extn

D×
a′

(ResD
×

D×
a′

IndD
×

D×a
χ, χ′).

What we need to find is the decomposition of this restriction. The Mackey formula will
allow this. In particular, we have

ResD
×

D×
a′

IndD
×

D×a
χ '

⊕
s∈D×a \D×/D×a′

Ind
D×

a′

sD×a s−1∩D×
a′
χs,

where s is a representative of the double coset s. Additionally, both subgroups are
normal in D× so we can ignore the conjugation by s - the subgroup we induct from is
simply D×a ∩D×a′ = D×lcm(a,a′). Note that this is still a subgroup we have studied above,
as these are both divisors of d.

We now apply Frobenius reciprocity on the other side. We then obtain⊕
s∈D×a \D×/D×a′

Extn
D×

a′
(Ind

D×
a′

D×
lcm(a,a′)

χs, χ′) '
⊕

s∈D×a \D×/D×a′

Extn
D×

lcm(a,a′)
(χs,Res

D×
a′

D×
lcm(a,a′)

χ′).

These are now extensions of characters which have been computed, as lcm(a, a′)|d. The
result then follows after tensoring with (χs)∗ on each individual extension group. �

Therefore, it suffices to compute Extn
D×a

(1, χ) for all characters χ of D×a . We can do
this explicitly for n = 1.

4.2. Determining Ext1
D×a

(1, χ). We now want to compute Ext1
D×a

(1, χ) for an arbitrary
character χ. As explained in §2.3, there is a five term exact sequence

0 H1(D×a /K, χ) Ext1
D×a

(1, χ) (Hom(K,Fp)⊗ χ)D
×
a /K

H2(D×a /K, χ) Ext2
D×a

(1, χ)

inf res

inf

We are now equipped with the tools to compute all terms surrounding the Ext1 group,
since we have computed Hom(K,Fp).

Proposition 21. We have Hi(D×a /K, χ) = 0 unless the action by χ : D×a → F
×
p is

trivial, in which case H1(D×a /K, χ) ' Fp and Hi(D×a /K, χ) = 0 for i > 1.

Proof. Because we have a semidirect product D×a /K ' $aZ
D n k×D, we have a normal

subgroup k×D and a quotient $aZ
D making an exact sequence

0 k×D D×a /K $aZ
D 0.

Then we can again apply the inflation restriction sequence to make our problem easier,
namely computing the groups in the exact sequence
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0 H1($aZ
D , χk

×
D) H1($aZ

D n k×D, χ) H1(k×D, χ)$
aZ
D

inf res

We first note that Hi(k×D, χ) = 0 for any χ and i - we can use Tate cohomology to
show this. The norm map N̂k×D

: χk×D
→ χk

×
D sends x 7→

∑
g∈k×D

χ(g)x. When χ is trivial,
this is an isomorphism. When χ is nontrivial the domain and codomain are also zero. In
either case, it is then an isomorphism. It follows that Ĥ0(k×D, χ) and Ĥ0(k

×
D, χ) are both

0 as these are the cokernel and kernel of this map. By Tate periodicity, these suffice
to show that the Tate cohomology is trivial for all i, and in particular so is the regular
cohomology.

Thus, we have H1($aZ
D , χk

×
D) ' H1($aZ

D n k×D, χ), where H1($aZ
D , χk

×
D) ' H1(Z, χk

×
D).

Supposing χ is trivial, this last group becomes Hom(Z,Fp) ' Fp. If instead χ acts
nontrivially on k×D, then χk

×
D is trivial so this group is 0. Likewise, if χ acts nontriv-

ially on Z we may compute explicitly that H1(Z, χ) = 0 by showing that all crossed
homomorphisms are principal.

Because Hi(k×D, χ) = 0 are all trivial, we are now in a special case where we have an
exact sequence

0 Hi($aZ
D , χk

×
D) Hi($aZ

D n k×D, χ) Hi(k×D, χ)$
aZ
D .inf res

The cohomological dimension of Z with any action is 1. Thus, the leftmost group is 0
regardless of the action since i ≥ 2 now. The rightmost group has already been shown
to be 0. We conclude by exactness that Hi($aZ

D n k×D, χ) = 0 for i ≥ 2. �

We will also need to understand the D×a /K representation structure on the space
Hom(K,Fp). The action sends a map f(x) to f(g−1xg) for g ∈ D×a - this is the action
which occurs in the inflation-restriction sequence on H1(K,Fp)⊗ χ.

Note that the reason we have a D×a /K action is because K acts trivially by this
conjugation action: k · f(x) = f(k−1xk) = f(k−1) + f(x) + f(k) = f(x) for all k ∈ K.
Because D×a /K ' $aZ

D n k×D, in order to understand the D×a /K action it suffices to
understand the action of $a

D and a generator g of k×D. We compute this now.

Lemma 22. As in Theorem 17, let Vφ denote the span of the φηj , and let Vψ denote
the span of the ψηi so that Hom(K,Fp) = Vφ⊕ Vψ. The action is different on these two
subspaces:

· On Vψ, all elements are fixed by the D×a /K action.

· On Vφ, we have $D · φηj = φηj−rf and [g] · φηj =
(
σ(g)
g

)pj
φηj for a generator g ∈ k×D,

where r is an integer such that σ(x) = xp
rf .

Proof. Every element of Vψ is of the form η ◦ Nrd. Since Nrd maps to F×, which is
abelian, this implies that the conjugation action has no effect.

Next, we consider Vφ. The value of φηj on x = 1 +
∑

i≥1[xi]$
i
D in K is xp

j

1 ∈ Fp.
We then obtain the claimed result by computing $−1D x$D, as well as [g]−1x[g] and
extracting the coefficient of $D. Explicitly, we have

$−1D x$D = 1 +
∑
i≥1

[σ−1(xi)]$
i
D = 1 +

∑
i≥1

[xp
−rf

i ]$i
D
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so $D · φηj(x) =
(
xp
−rf

1

)pj
= φηj−rf (x). We also have

[g]−1x[g] = 1 +
∑
i≥1

[g−1xiσ
i(g)]$i

D

so [g] · φηj(x) = (g−1x1σ(g))p
j

=
(
σ(g)
g

)pj
φηj(x). �

For the case of a = 1, so that D×a = D×, we now compute the representation structure
of H1(K,Fp).

Proposition 23. Let Vψ be as in Theorem 17. As a representation of D×/K via the
conjugation action, we have

H1(K,Fp) ' Vψ ⊕
⊕

j∈Z/fZ

IndD
×

F×O×D
χηj

where the action on Vψ is trivial and χηj is extended trivially from a character k×D → F
×
p

given by x 7→
(
σ(x)
x

)pj
. The choice of a coset representative of j does not matter.

Proof. By Lemma 22, Vψ and Vφ are both invariant under the action of D×/K '
$Z
D n k×D. Thus, we have H1(K,Fp) = Vψ ⊕ Vφ as D×/K representations, where the

subspace Vψ will be the trivial representation.
Thus, we need only compute the D×/K-module structure on Vφ. For j ∈ Z/fZ, let

Vj be the subspace of Vφ spanned by the φηi with i ≡ j (mod f). Then from Lemma
22, we see that each of the Vj are D×/K invariant, so we have a decomposition

H1(K,Fp) ' Vψ ⊕
⊕

j∈Z/fZ

Vj.

We now show that all the Vj are irreducible, so we can use the classification of
irreducible representations to understand them. We recall again that D×/K ' $Z

D n
k×D ' Z n k×D, so it suffices to show that Vj has no proper subspaces which are both Z
invariant and k×D invariant.

The action of $D on Vj is by a cyclic shift. As a matrix over Vj, we then have
det(I − λ$D) = λd − 1. Because p > de + 1, this has distinct roots over Fp, so we
conclude that $D|Vj is diagonalizable and has d distinct eigenvalues. Each Vj then
splits into 1-dimensional Z representations, each spanned by

∑
n∈Z/dZ ζ

nφηj−nrf where
ζ is the corresponding eigenvalue which is a dth root of unity.

On the other hand, the action of a generator g ∈ k×D on any φηi ∈ Vj is simply scaling

by
(
σ(g)
g

)pi
. Thus, Vj splits into 1-dimensional k×D representations spanned by each of

the φηi . Every nontrivial subrepresentation W of Vj must be both Z-invariant and k×D
invariant. The Z-invariance forces W to contain sums of the form

∑
n∈Z/dZ ζ

nφηj−nrf

involving non-zero multiples of all the φηi ∈ Vj. On the other hand, the restriction
Res

D×/K

k×D
W is a direct sum of 1-dimensional representations spanned by the φηi since

Rep(k×D) is semisimple (|k×D| is prime to p). Thus, we must haveW = Vj if it is nontrivial.
Hence, each Vj is irreducible.

Note that the Vj have trivial central character because the D×/K action is by con-
jugation. Also, the Vj have dimension d. Therefore, by the classification of irreducible
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representations of D× in Theorem 5, we conclude that Vj ' IndD
×

F×O×D
χj for some char-

acter χj extended trivially from a character k×D → F
×
p . We can compute this character

from ResD
×

F×O×D
Vj, which decomposes into the same 1-dimensional subspaces that it does

as a k×D-representation as F× and K act trivially under conjugation. In particular, we
obtain a similar decomposition

ResD
×

F×O×D
Vj '

⊕
j′

χηj′

where the characters are extended trivially from χηj′ : k×D → F
×
p sending x 7→

(
σ(x)
x

)pj′
,

over all j′ ∈ Z/(df)Z which reduce to j modulo f . If we choose any two inductions
of these characters, say IndD

×

F×O×D
χηj′ and IndD

×

F×O×D
χηj′′ , then after applying Frobenius

reciprocity and Schur’s lemma we obtain

dim Hom(IndD
×

F×O×D
χηj′ , IndD

×

F×O×D
χηj′′ ) = 1,

and hence the inductions of χηj′ and χηj′′ are isomorphic. Thus, the induction of any of
these characters χηj′ gives Vj and we recover that

H1(K,Fp) ' Vψ ⊕
⊕

j∈Z/fZ

IndD
×

F×O×D
χηj

where χηj is extended trivially from the character x 7→
(
σ(x)
x

)pj
and the action on Vψ is

trivial. �

For any character χ of D×, this immediately gives us

H1(K,Fp)⊗ χ ' (Vψ ⊗ χ)⊕
⊕

j∈Z/fZ

IndD
×

F×O×D
(χηj ⊗ ResD

×

F×O×D
χ).

We have already determined how to compute the restriction of a character of D× in
general in Corollary 4. We will also want to know the D×a -module structure. This is

ResD
×

D×a
H1(K,Fp) ' Vψ ⊕

⊕
j∈Z/fZ

ResD
×

D×a
IndD

×

F×O×D
χηj .

The Mackey formula decomposes each term in the direct sum as⊕
s∈D×d \D×/D

×
a

IndD
×
a

D×d
χsηj .

We can similarly compute the tensor product with a character.

Remark. Because the action of K is trivial as it is a pro-p group, we can also conclude
H1(K, ρ) ' H1(K,Fp)⊗ ρ as D×a -modules for any irreducible representation ρ.

We are now ready to compute Ext1
D×a

(1, χ).

Theorem 24. Let D be a degree d division algebra over F . Let χ be a character of
D×a where a|d. There are two cases where the extensions Ext1

D×a
(1, χ) can be nontrivial:

· When χ is trivial, there is an exact sequence

0 Fp Ext1
D×a

(1, χ) Vψ 0

where Vψ ' Hom(K,Fp)
D×a /K is as in Theorem 17.
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· When a = d, and χ is extended trivially from a character x 7→
(

x
σ(x)

)pi
of k×D for any

i, we have dimFp
Ext1

D×a
(1, χ) = 1.

Otherwise, the dimension is 0.

Proof. Suppose first that χ is trivial. Due to Proposition 21, in the inflation-restriction
sequence for D×a with the normal subgroup K we obtain

0 H1(D×a /K, χ) Ext1
D×a

(1, χ) Hom(K,Fp)
D×a /K 0.inf res

From the trivial character case of Proposition 23, we see that Hom(K,Fp)
D×a /K ' Vψ

since this is the trivial component of the representation. Additionally, Proposition 21
tells us H1(D×a /K,Fp) ' Fp. We then recover the first case of the theorem statement.

When χ is nontrivial, H1(D×a /K, χ) = 0 so we have Ext1
D×a

(1, χ) ' (Hom(K,Fp) ⊗
χ)D

×
a /K via the restriction map. We know this space as a D×a /K-module, so we just

need to compute the trivial component of the representation.
Recall that as a D×a /K-module, we have already shown

H1(K,χ) ' (Vψ ⊗ χ)⊕
⊕

j∈Z/fZ

(ResD
×

D×a
IndD

×

F×O×D
χηj)⊗ χ.

As Vψ is trivial and χ is nontrivial, we know the (Vψ ⊗ χ) component is nontrivial. By
the Mackey formula, the remaining component before tensoring with χ is⊕

j∈Z/fZ

ResD
×

D×a
IndD

×

F×O×D
χηj '

⊕
j∈Z/fZ

⊕
s∈F×O×D\D×/D

×
a

IndD
×
a

F×O×D
χsηj .

When we tensor with χ, we can further pull this into the induction via the push-pull
formula to obtain a direct sum of inductions of the form

IndD
×
a

F×O×D
(χsηj ⊗ ResD

×
a

F×O×D
χ) =: IndD

×
a

F×O×D
χ′.

We want to know when IndD
×
a

F×O×D
χ′ could possibly contain a copy of the trivial rep-

resentation. By Frobenius reciprocity,

HomD×a
(1, IndD

×
a

F×O×D
χ′) ' HomF×O×D

(1, χ′).

As χ′ is irreducible and we induct from a finite index subgroup, the induced represen-
tation IndD

×
a

F×O×D
χ′ is semisimple. By Schur’s lemma, we conclude there is a copy of the

trivial representation precisely when χ′ itself is trivial, in which case we have exactly
one copy.

Thus, we consider when we can have ResD
×
a

F×O×D
χ = (χsηj)

∗. Supposing χ satisfies this
equality for some choice of a, ηj, and s, we see that the restriction of χ to F×O×D must
be extended trivially from a character of k×D because χsηj is. We now show that we must
also have a = d. Choose coset representatives 1, $2

D, . . . , $
a−1
D for the double coset

F×O×D \D×/D×a . Then the characters χsηj restricted to k×D are given by

χsηj : x 7→ σ−n
(
σ(x)

x

)pj
when s = $n

D so that conjugation by s−1 acts by σ−n. The characters of F×O×D, also
denoted χsηj , are extended trivially from these. Note that the character x 7→ σ(x)

x
of k×D
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has order d. This follows because σ generates the Galois group Gal(kD/kF ), so a = d is
the smallest divisor of d such that σ(σa(x))

σa(x)
= σ(x)

x
for all x. Applying an automorphism

does not change the order, so χsηj also has order d, and the same must be true for χ

restricted to F×O×D because they are dual. Hence, we can only have (χsηj)
∗ = ResD

×
a

F×O×D
χ

for a = d, or equivalently for D×a = F×O×D.
Therefore, the only case where we get a copy of the trivial representation is when χ is

a character of F×O×D extended trivially from a character of k×D such that χ is the dual of

some χsηj . Here, the χ
s
ηj

are simply the characters extended from x 7→
(
σ(x)
x

)pi
over all

i in Z/(df)Z (with i depending on both j and s), so they are clearly distinct. Thus, we
can get exactly one induction containing a copy of the trivial representation by choosing
χ to be dual to one of these characters. This shows that the dimension of the extension
group is 1 in this case. Otherwise, we get no copies of the trivial representation so the
dimension of the extension group is 0. �

By applying the result of Theorem 24 in Theorem 20, we have determined the di-
mension of Ext1D×(ρ, ρ′) for arbitrary irreducible representations ρ and ρ′. This gives a
way to compute any particular extension group. Below, we illustrate what happens for
d = 2.

Example 25. Suppose that D is a quaternion algebra over F , that is, D has degree
d = 2. Then let ρ = IndD

×

D×a
χ and ρ′ = IndD

×

D×
a′
χ′ for a, a′ ∈ {1, 2} and characters χ and

χ′ of D×a and D×a′ . Recall that we can apply a tensor product to assume without loss of
generality that χ is extended trivially from a character of k×D. Then by Theorem 20 we
have

(1) dim Ext1D×(ρ, ρ′) =
∑

s∈D×a \D×/D×a′

dim Ext1
D×

lcm(a,a′)
(1,Res

D×
a′

D×
lcm(a,a′)

χ′ ⊗ (χs)∗).

Assume first that we have a = a′ = 1. Then D×a = D×a′ = D×, so equation 1 reduces to

dim Ext1D×(ρ, ρ′) = dim Ext1D×(1, χ′ ⊗ χ∗),
where we can apply Theorem 24 to calculate this last dimension. Because χ′ ⊗ χ∗ is a
character of D×1 with 1 6= d, the only case where we can get a non-zero dimension is
when χ′ ⊗ χ∗ = 1, in which case we have an exact sequence

0 Fp Ext1
D×a

(1, χ′ ⊗ χ∗) Vψ 0.

Here, as always, Vψ has dimension ef if F is a p-adic field and countable dimension if F
is a local function field. We therefore recover in the p-adic case that dim Ext1D×(ρ, ρ′) =
ef + 1 if χ′ = χ, and otherwise we get a dimension of 0.

Now suppose that a = 1 and a′ = 2, so that D×a = D× and D×a′ = F×O×D. Then
equation 1 gives

dim Ext1D×(ρ, ρ′) = dim Ext1
F×O×D

(1, χ′ ⊗ ResD
×

F×O×D
χ∗).

If the restriction of χ to F×O×D is equal to χ′, then we again have the exact sequence
yielding a dimension of ef + 1 in the p-adic case. Moreover, because we are computing
an extension of characters of D×2 where 2 = d, we can also have the second outcome
of Theorem 24. Namely, if χ′ ⊗ ResD

×

F×O×D
χ∗ is extended trivially from a character of

k×D of the form x 7→
(

x
σ(x)

)pi
, then dim Ext1D×(ρ, ρ′) = 1. Using Corollary 4, we have
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ResD
×

F×O×D
χ1,α,m = χ2,α2,(q+1)m, so one can produce an explicit formula. Otherwise we get

a dimension of 0.
Finally, suppose that a = a′ = 2, so D×a = D×a′ = F×O×D. Then equation 1 becomes

dim Ext1D×(ρ, ρ′) = dim Ext1
F×O×D

(1, χ′ ⊗ χ∗) + dim Ext1
F×O×D

(1, χ′ ⊗ (χ$D)∗),

where χ$D |k×D = χ|k×D ◦ σ
−1 and is extended trivially from a character of k×D. We can

compute these two terms separately just as we did in the previous case. This gives
possible dimensions of 0, , 1, 2, ef + 1, ef + 2, or 2ef + 2 in the p-adic case.

5. Higher extensions

5.1. Degree two extensions. In the first part of this section, we turn our attention to
computing information Ext2D×(ρ, ρ′). By Theorem 20, we may again reduce this to com-
puting extensions of characters overD×a . Combining this with Lemma 6, we equivalently
compute Ext2

D×a
(1, χ) ' H2(D×a , χ) for a|d and an arbitrary character χ. However, the

five-term exact sequence arising from the Hochschild-Serre spectral sequence now only
gives us a map into H2(D×a , χ). Because this is a first quadrant spectral sequence, there
is also a seven term exact sequence of low degree terms. Using some of our previous
results, this will give

0 ker(Ext2
D×a

(1, χ)→ H2(K,χ)) H1(D×a /K,H
1(K,χ))

ker(H3(D×a /K, χ
K)→ H3(D×a , χ))

but the best information we could get out of this is that we have an injection.
Thus, to better understand this cohomology group we will want to use the spec-

tral sequence itself. The spectral sequence is an instance of the Grothendieck spec-
tral sequence. Because K is normal in D×a , we can factorize the fixed points functor
H0(D×a ,−) = (−)D

×
a as

D×a −Mod Fp − Vect

D×a /K −Mod

(−)D
×
a

(−)K (−)D
×
a /K

and then use the Grothendieck spectral sequence to analyze the derived functors. This
yields a spectral sequence

Ep,q
2 = Hp(D×a /K,H

q(K,χ)) =⇒ Hp+q(D×a , χ).

However, many of the terms on the E2 page are already zero. This is why we can expect
to get more out of the spectral sequence than what the exact sequence of low degree
terms can give us.

Proposition 26. For any character χ of D×a , there is an exact sequence

0 H1(D×a /K,H
1(K,χ)) Ext2

D×a
(1, χ) H2(K,χ)D

×
a /K 0

arising from the Hochschild-Serre spectral sequence. In particular, the E2 page has
E≥2,•2 = 0 so the spectral sequence collapses at the E2 page.
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Proof. On the E2 page of the spectral sequence, we have

2 H2(K,χ)D
×
a /K H1(D×a /K,H

2(K,χ)) H2(D×a /K,H
2(K,χ))

1 H1(K,χ)D
×
a /K H1(D×a /K,H

1(K,χ)) H2(D×a /K,H
1(K,χ))

0 χD
×
a H1(D×a /K, χ

K) H2(D×a /K, χ
K)

0 1 2

First, we show that E≥2,•2 = 0, so this is a two column spectral sequence. In Proposition
21, we shown that E≥2,12 = 0 for any character χ. This fact extends to arbitrary
representations V . Recall we have an exact sequence

0 k×D D×a /K $aZ
D 0.

so we may apply the very same spectral sequence. We note that Hi(k×D, V ) is trivial for
any mod p representation V and any i: the k×D-module structure on V makes it decom-
pose as V =

⊕
i χi, since Rep(k×D) is semisimple (|k×D| is prime to p) and all irreducible

representations are 1-dimensional because k×D is abelian. Since we know already that
Hi(k×D, χ) = 0 for any character χ of k×D, it follows that Hi(k×D, V ) = 0 for any representa-
tion V of k×D. This allows us to use the higher inflation-restriction sequence as in Propo-
sition 21, and in particular we obtain an isomorphism Hi($aZ

D , V k×D) ' Hi(D×a /K, V ).
But the cohomological dimension of Z is 1, so for i ≥ 2 we have Hi(D×a /K, V ) = 0 for
any V (and in particular for V = Hj(K,χ)). We then have E≥2,•2 = 0.

Because we have a two column spectral sequence on the E2 page, we conclude that
Ext2

D×a
(1, χ) ' H2(D×a , χ) has a filtration 0 = F0 ⊂ F1 ⊂ F2 = H2(D×a , χ) where

F1 = H1(D×a /K,H
1(K,χ)) and F2/F1 = H2(K,χ)D

×
a /K by looking at the E∞ page.

Applying Lemma 6 gives the exact sequence. �

Now we turn to H1(D×a /K,H
1(K,χ)). From Proposition 23, we know as a D×a -module

we have
H1(K,χ) ' (Vψ ⊗ χ)⊕

⊕
j∈Z/fZ

(ResD
×

D×a
IndD

×

F×O×D
χηj)⊗ χ.

For any V , we have already shown H1($aZ
D , V k×D) ' H1(D×a /K, V ). However, there is a

chance that this group is nontrivial when V = H1(K,χ).

Lemma 27. We have H1(D×a /K,H
1(K,χ)) ' Vψ if χ is trivial. It can also be nonzero

if a = d and χ is extended trivially from a character x 7→
(

x
σ(x)

)pi
of k×D, in which case

it is Fp. It is 0 otherwise.

Proof. Let V = H1(K,χ) with the D×a -module structure as given above, so that

H1($aZ
D , V k×D) ' H1(D×a /K, V ).

Thus, our first task is to describe V k×D as a $aZ
D -module. As a representation of k×D, it

again splits into a direct sum characters by semisimplicity of Rep(k×D). The subrepre-
sentation V k×D is simply a collection of all of the trivial characters.

Consider χ|k×D . If this is trivial, then V
k×D = Vψ. The only other case in which it can

be nontrivial is if χ|k×D is the dual of one of the characters x 7→
(
σ(x)
x

)pi
appearing in

Vφ, in which case we get precisely one copy of the trivial k×D-representation.
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In the first case where χ|k×D is trivial, V k×D = Vψ ⊗ χ is simply a direct sum of copies
of χ. Then for an index set I as in Theorem 17 we obtain

H1($aZ
D , V k×D) '

⊕
i∈I

H1($aZ
D , χk

×
D).

As each H1 group vanishes for any nontrivial action, this is 0 unless χ = 1 in which case
it is isomorphic to Vψ as a vector space.

In the second case, χ|k×D is the dual of one of the characters x 7→
(
σ(x)
x

)pi
appearing

in Vφ. This means a = d, and so the $dZ
D -module structure on V k×D is trivial. Then

H1(D×d /K,H
1(K,χ)) ' H1($dZ

D ,Fp) ' Fp. �

The most difficult component to understand in the exact sequence of Proposition
26 is H2(K,χ)D

×
a /K . As with H1(K,χ), the action of K is trivial so we equivalently

compute H2(K,Fp) ⊗ χ, and then extract the multiplicity of the trivial representation
when regarded as a representation of D×/K via the conjugation action. This then
determines H2(K,χ)D

×/K .
Although we will be unable to produce a complete description of H2(K,Fp), we can

use the Kunneth formula to decompose this space into simpler spaces that we can extract
information from using various methods.

Lemma 28. Let Vφ and Vψ be as in Theorem 17. The homomorphisms in H1(1 +
πFOF ,Fp) are the restrictions to 1 + πFOF of the homomorphisms in Vψ. The homo-
morphisms in H1(KNrd=1,Fp) are the restrictions to KNrd=1 of the homomorphisms in
Vφ. Both of these restrictions have trivial kernel.

Proof. From the decomposition in Lemma 18 we have
H1(K,Fp) ' H1(1 + πFOF ,Fp)⊕ H1(KNrd=1,Fp).

Any homomorphism ϕ ∈ H1(1 + πFOF ,Fp) can thus be extended trivially to KNrd=1,
giving a homomorphism ϕ on all of K. Writing ϕ = φ+ψ for some φ ∈ Vφ and ψ ∈ Vψ,
we can restrict back to 1 + πFOF to get ϕ = ψ|1+πFOF

because φ restricts to 0 on
1 + πFOF . The restriction ψ|1+πFOF

is 0 if and only if ψ = 0 because the Nrd1+πFOF

still surjects onto 1 + πFOF . The argument for H1(KNrd=1,Fp) is identical because
every element of Vψ restricts to 0 in KNrd=1 and the only map in Vφ that restricts to 0
in KNrd=1 is 0. �

Using Lemma 18, the Kunneth formula for profinite groups with coefficients in a field
and a trivial action then gives

H2(K,Fp) '
⊕
i+j=2

Hi(1 + πFOF ,Fp)⊗ Hj(KNrd=1,Fp).

We note that KNrd=1 is profinite because it is a closed normal subgroup of a profinite
group. Additionally, as KNrd=1 = ker Nrd∩K and 1 + πFOF is central, both subgroups
are normal in D× - this means each cohomology group appearing in the decomposition
is a D×a /K representation.

We first make some computations of the (i, j) = (0, 2) term H0(1 + πFOF ,Fp) ⊗
H2(KNrd=1,Fp) using the Bockstein homomorphism. The Bockstein map will only pro-
vide enough information to put a lower bound on the dimension of this term.

This will require us to make some observations about the elements of H1(K,Fp)
and H1(K,Z/p2Z) with the trivial action that are analogous to our computations of
H1(K,Fp) in §3.
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Lemma 29. We have a decomposition

H1(K,Fp) ' V ′ψ ⊕ V ′φ,
where these subspaces are defined in the same way as Vψ and Vφ in Theorem 17 except
as homomorphisms to Fp.
· The space V ′φ is isomorphic to Hom(kD,Fp), which has dimension df and a basis given
by any dual basis to a basis of kD over Fp.

· A basis of V ′ψ are the maps ψηi = ηi◦Nrd where the ηi are a basis of Hom(1+πFOF ,Fp)
and the i are in some index set I with size ef when F is a p-adic field and I = N
when F is a local function field.

Proof. This is entirely analogous to the proof of Theorem 17. In particular, we get the
same upper bound in the dimension that we had in Corollary 16 by factoring homomor-
phisms through the quotient by [K,K]Kp. The only part of the proof that is different
is showing that a basis of ηj of Hom(kD,Fp) gives a basis φηj by precomposing with the
quotient map K → K/(1 + $2

DOD). This follows from the surjectivity of this quotient
map. �

Lemma 30. We have a decomposition

H1(K,Z/p2Z) ' V ′′ψ ⊕ V ′′φ
where the subspaces are defined analogously to the subspaces in Lemma 29 except that
they now map into Z/p2Z.
· The space V ′′φ is isomorphic to Hom(kD,Z/p

2Z) ' (pZ/p2Z)df ' (Z/pZ)df .
· The space V ′′ψ is isomorphic to Hom(1 +πFOF ,Z/p2Z) '

⊕
i∈I(Z/p

2Z), where I is an
index set of order ef when F is a p-adic field, and I = N when F is a local function
field.

Proof. By Corollary 8, we can compute that Kp2 = 1 + $2de+1
D OD in the p-adic case,

while in the local function field case we have Kp2 = 1 + ($DOD)p
2 . Any map to Z/p2Z

factors through the quotient K

[K,K]Kp2
. Using Proposition 15, we obtain an analogous

version of Corollary 16 to bound the number of homomorphisms overall or those which
are nontrivial on K/K(di+1) in the local function field case. Then entirely analogously
to Theorem 17, we can show that the subspaces V ′′ψ and V ′′φ meet this upper bound and
have the desired descriptions. The only significant change is that we need to modify
our computation of V ′′ψ and V ′′φ somewhat.

For V ′′φ , we again recover that this is isomorphic to Hom(kD,Z/p
2Z). As a group, kD

consists of all p-torsion elements, so this is (pZ/p2Z)df . As for V ′′ψ , in the p-adic case
because there is no p-torsion in K we have

1 + πFOF ' Z[F :Qp]
p

as a topological group and hence we have an isomorphism Hom(1 + πFOF ,Z/p2Z) '⊕
1≤i≤ef Zp/p

2Zp which is the same as the claim. In the local function field case, 1 +

πFOF ' ZN
p and similar reasoning gives the claim. �

Proposition 31. With Vφ as in Theorem 17, we have H1(KNrd=1,Fp) ' Vφ and there
is a D×a /K-equivariant Bockstein homomorphism βp so that the composition

H1(KNrd=1,Fp) H2(KNrd=1,Fp) H0(1 + πFOF ,Fp)⊗ H2(KNrd=1,Fp)
βp '

is an injection.



35

Proof. The isomorphism H1(KNrd=1,Fp) ' Vφ follows from Lemma 28. We can re-
peat the same argument with homomorphisms into Z/p2Z and Fp to conclude that
H1(KNrd=1,Z/p

2Z) ' V ′′φ (as in Lemma 30) and H1(KNrd=1,Fp) ' V ′φ (as in Lemma
29). Because we have the isomorphisms V ′′φ ' (Z/pZ)df ' V ′φ, the reduction map
H1(KNrd=1,Z/p

2Z)→ H1(KNrd=1,Fp) in the long exact sequence arising from the short
exact sequence

0 Fp Z/p2Z Fp 0

is the 0 map. By exactness, we see that the Bockstein map βp : H1(KNrd=1,Fp) →
H2(KNrd=1,Fp) is an injection. The map βp is also D×a /K-equivariant because is arises
from a long exact sequence of D×a /K representations. Upon tensoring with Fp to change
to the desired coefficient field, we get the injective Bockstein map described in the
proposition. To get the map that we compose with βp, note that H0(1+πFOF ,Fp) ' Fp,
so the cup product H0(1 + πFOF ,Fp)⊗ H2(KNrd=1,Fp) → H2(KNrd=1,Fp) is a D×a /K-
equivariant isomorphism. �

We now compute the term H1(1+πFOF ,Fp)⊗H1(KNrd=1,Fp) in the Kunneth formula.
Lemma 28 essentially gives this term because it tells us both of these cohomology groups,
but we still need to compute the action of D×a /K.

Proposition 32. As D×a /K representations, we have

H1(1 + πFOF ,Fp)⊗ H1(KNrd=1,Fp) ' Vψ ⊗ Vφ.

Proof. The map in the Kunneth formula embedding the product H1(1 + πFOF ,Fp) ⊗
H1(KNrd=1,Fp) into H2(K,Fp) as a D×a /K module is given by computing the cup prod-
uct α⊗ β 7→ p∗1(α) ^ p∗2(β), where pi are the projection maps from K onto KNrd=1 and
1 + πFOF . Because the cup product respects the action of D×, namely

d · (α ^ β) = (d · α) ^ (d · β),

the map respects the D×a /K representation structure on the tensor product H1(1 +
πFOF ,Fp) ⊗ H1(KNrd=1,Fp). By Lemma 28, these may be identified with Vψ and Vφ
respectively; since the identification is via restriction from H1(K,Fp) the D×a /K module
structure is preserved. �

Remark. We may also verify explicitly that these cup products are nontrivial. In the
notation of Theorem 17, consider ψηi0 ^ φηj0 . Suppose that this is trivial in H2(K,Fp),
or that

ψηi0 (k)φηj0 (k′) = h(kk′)− h(k)− h(k′)

for some function h : K → Fp. Because K = KNrd=1 × (1 + πFOF ), we can write any
k ∈ K uniquely as k = k1k2 for k1 ∈ 1 + πFOF and k2 ∈ KNrd=1. As φηj0 (k1)ψ

ηi0 (k2) =
0 · 0 = 0, we then obtain

h(k) = h(k1k2) = h(k1) + h(k2) =
∑
i

αiψ
ηi(k1) +

∑
j

βjφ
ηj(k2)

for αi, βj ∈ Fp. This follows because the restriction of h to 1 + πFOF or KNrd=1

must be a homomorphism, so we can apply Lemma 28. But this function is actually a
homomorphism on K, because writing k′ = k′1k

′
2 for the same decomposition we have

h(kk′) = h((k1k
′
1)(k2k

′
2)) as 1 + πFOF is central. Then applying the above formula

and using that ψηi and φηj are homomorphisms, we see h(kk′) = h(k) + h(k′). As
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ψηi0 (k)φηj0 (k′) is not identically 0 but h(kk′)− h(k)− h(k′) is, we have a contradiction
and the claim follows.

We now tackle the final component of the Kunneth decomposition of H2(K,Fp).

Proposition 33. We have H2(1 + πFOF ,Fp)⊗ H0(KNrd=1,Fp) ' F
(ef

2 )
p when F is a

p-adic field and of countable dimension where F is a local function field. The represen-
tation is trivial in either case.

Proof. Because the action of KNrd=1 is trivial, we have H0(KNrd=1,Fp) ' Fp with a
trivial D×a /K action. As for H2(1 + πFOF ,Fp), the action is trivial because 1 + πFOF
is central and D×a /K acts by conjugation.

The dimension itself follows from the Kunneth formula. We have 1 + πFOF ' Zefp in
the p-adic case, from which the Kunneth formula gives

H2(1 + πFOF ,Fp) '
⊕

∑
i xi=2

⊗
1≤i≤ef

Hxi(Zp,Fp).

As the cohomological dimension of Zp is one, we get a copy of Fp for each pair of
generators. Similarly, in the local function field case from 1 + πFOF ' ZN

p we see the
result has countable dimension, as the set of pairs of elements in N is countable. �

Now we may summarize these results.

Theorem 34. For any character χ ofD×a , by Proposition 26 we have an exact sequence

0 H1(D×a /K,H
1(K,χ)) Ext2

D×a
(1, χ) H2(K,χ)D

×
a /K 0.

The leftmost term is computed by Lemma 27. The rightmost term is the multiplicity
of the trivial representation in H2(K,Fp)⊗ χ, where

H2(K,Fp) '
⊕
i+j=2

Hi(1 + πFOF ,Fp)⊗ Hj(KNrd=1,Fp)

as D×a /K-representations. Among these:

· The component H0(1 + πFOF ,Fp)⊗H2(KNrd=1,Fp) contains a subrepresentation iso-
morphic to Vφ by Proposition 31.

· The component H1(1 + πFOF ,Fp) ⊗ H1(KNrd=1,Fp) is isomorphic to Vψ ⊗ Vφ as a
representation by Proposition 32.

· The component H2(1+πFOF ,Fp)⊗H0(KNrd=1,Fp) is isomorphic to F(ef
2 )

p with a trivial
D×a /K representation structure by Proposition 33.

Here, Vψ ⊕ Vφ is the D×a /K module obtained by restricting the result of Proposition
23. Entirely analogously to Theorem 24, we know the multiplicity of the trivial rep-
resentation in each component we know after tensoring with χ. Namely, Vψ gives no
contribution unless χ is trivial, and Vφ gives no contribution unless a = d and χ is a

character of F×O×D extended trivially from x 7→
(

x
σ(x)

)pi
on k×D.

This is not a complete answer because in Proposition 31 we only have an injection.
The Bockstein homomorphism may only give partial information, so there could be
additional copies of the trivial representation that do not get counted. In at least one
case, however, this theorem fully answers the question:
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Example 35. Let D be a quaternion algebra over Qp. As we will see in the following
section, K is a Poincaré duality group and in this case we have a non-degenerate bilinear
form Hi(K,Fp) × H4−i(K,Fp) → H4(K,Fp). The Euler characteristic of K will be 0
using the main result of [Tot99], so we can deduce that H2(K,Fp) = 4. Then Theorem 34
gives all of H2(K,Fp): the Bockstein map gives 2 dimensions, as does the cup product.

We cannot generalize this, because this exploits the fact that d2ef = 4. In any other
case, it will be large enough that this no longer bounds the dimension of H2(K,Fp).
On the other hand, we can always combine the results of Theorem 20, Proposition 26,
Lemma 27, and Theorem 34 to place a lower bound on the dimension of Ext2D×(ρ, ρ′)
for any irreducible representations ρ and ρ′. Below we demonstrate this for the d = 2
case with a p-adic field.

Example 36. Suppose that F is a p-adic field and D is a quaternion algebra over F .
As in Example 25, let ρ = Ind×

D×a
χ and ρ′ = Ind×

D×
a′
χ′, so that Theorem 20 gives a sum

for the dimension of the extension group. Just as in Example 25, we have three different
cases to consider to evaluate this sum. When a = a′ = 1, we have

dim Ext2D×(ρ, ρ′) = dim Ext2D×(1, χ′ ⊗ χ∗).

Recalling from Example 25 that ResD
×

F×O×D
χ1,n,m = χ2,n2,(q+1)m, when a = 1 and a′ = 2

we have
dim Ext2D×(ρ, ρ′) = dim Ext2

F×O×D
(1, χ′ ⊗ ResD

×

F×O×D
χ∗).

Finally, when a = a′ = 2, we have

dim Ext2D×(ρ, ρ′) = dim Ext2
F×O×D

(1, χ′ ⊗ χ∗) + dim Ext2
F×O×D

(1, χ′ ⊗ (χ$D)∗).

So to compute the dimension of Ext2D×(ρ, ρ′) we must compute at most two dimensions
of the form dim Ext2

D×a
(1, χ̃) for a = 1, 2 and characters χ̃ of D×a . By Proposition 26,

dim Ext2
D×a

(1, χ̃) = dim H1(D×a /K,H
1(K, χ̃)) + dim H2(K, χ̃)D

×
a /K . By Lemma 27, the

first term in this sum is either 1, 0, or dimVψ = ef .
For the dim H2(K, χ̃)D

×
a /K term, we consider the decomposition given in Theorem 34

as a D×a /K representation and count the number of copies of the trivial representation.
As described at the end of Theorem 34 we have the following cases:

· When χ̃ is trivial, we get F(ef
2 )

p from H2(1 + πFOF ,Fp)⊗ H2(KNrd=1,Fp).
· When a = 2 and χ̃ is extended trivially from x 7→

(
x
xq

)pi on k×D we get dimVφ = ef
copies of a trivial representation from Vφ ⊗ Vψ and a single copy from Vφ via the
Bockstein.

When F = Qp, by Example 35 this will give the dimension exactly. Otherwise, it will
give a lower bound.

5.2. Poincaré duality. In [Laz65], many fundamental results about p-adic analytic
pro-p groups are shown which will be helpful in understand the structure of the higher
cohomology groups in the case where F is a p-adic field. Here, by a p-adic analytic
group we mean a group with the structure of an open subgroup of an analytic manifold
over Qp such that the group multiplication and inversion operations are analytic.

Theorem ([Laz65] §2.5.8). Let G be a p-adic analytic pro-p group and with no p-
torsion, and let r = dimQp G. Then G is a Poincaré duality group of dimension r over
Fp. That is,
· Hn(G,Fp) is finite dimensional for all n ∈ N.
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· dimFp Hr(G,Fp) = 1.
· The cup product

Hn(G,Fp)× Hr−n(G,Fp)→ Hr(G,Fp)

is a non-degenerate bilinear form.
Here, all cohomology taken is continuous.

We will be interested in the case of K = G, and we will also want to understand how
the bilinear form interacts with the D×a /K-representation structure on the cohomology
group. We note that K is a p-adic analytic group as it is an open subgroup of D×, and
since p > de + 1 it has no p-torsion. Thus, K is a Poincaré duality group. The the
most difficult part of the following result is that the D×/K-module structure on the
top cohomology is trivial. This is shown in [Koz20] via Proposition 4.16 (see §5.1) for
connected reductive groups. Using the general method of Theorem 7.2 in [Koz17], we
can show this by finding a uniform pro-p subgroup and computing explicitly the action
on its first cohomology.

Proposition 37. As D×a /K-modules, we have Hn(K,Fp)
∗ ' Hr−n(G,Fp). Here, V ∗

denotes the dual representation.

Proof. By virtue of being a Poincaré duality group, the cup product

Hn(K,Fp)× Hr−n(K,Fp)→ Hr(K,Fp) ' Fp

is a non-degenerate bilinear form. However, the cup product also behaves well with
respect to the D×a /K-action. Let d be an element of D×a /K. Then we have for α ∈
Hn(K,Fp) and β ∈ Hr−n(K,Fp) that

d · (α ^ β) = (d · α) ^ (d · β),

which can be easily seen from the definition of the cup product using cocycles. We
will show the D×a /K-module structure on Hr(K,Fp) is trivial. Consider the subgroup
K(de+1) := 1 +$de+1

D OD. Since this is an open subgroup of K, the corestriction map

CorKK(de+1) : Hr(K(de+1),Fp)→ Hr(K,Fp)

is an isomorphism by the proof of Proposition 30 in [Ser13a]. However, one may also
check that K(de+1) is a uniform pro-p group - it is clearly pro-p, so we will check that
it is uniform. Its Frattini subgroup is in fact K(2de+1), by computing pth powers (which
equal this) and observing that [K(de+1), K(de+1)] ⊂ K(2de+1). This latter observation is
known as being uniformly powerful. As p > de+ 1, this is torsion-free and the group is
finitely generated since dimFp H1(K(de+1),Fp) = dimFp K

(de+1)/K(2de+1) = d2ef is finite
and by [Ser13a] §4.2 this dimension equals the number of topological generators. Then
by Theorem 4.5 of [DDSMS03], we conclude that this is a uniform pro-p group.

It then follows from results of [Laz65], which are also shown in Theorem 5.1.5 of
[SW00], that Hr(K(de+1),Fp) '

∧r H1(K(de+1),Fp), as the cohomology ring of a uniform
pro-p group is an exterior algebra. It then suffices to compute the conjugation action
of on this cohomology group. We wish to show that the action has determinant one
- because the Frattini subgroup is K(2de+1), we equivalently compute the determinant
on the Fp vector space K(de+1)/K(2de+1). This computation can be done explicitly, as
the space of homomorphisms is isomorphic to V ⊕deφ as a D×a /K-module - a calculation
shows k×D and $a

D both act with determinant one.
From the non-degeneracy of the bilinear form the claim follows for Fp coefficients.

We have
d · α ^ β = dd−1 · α ^ d−1 · β = α ^ d−1 · β
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since acting by d−1 on both arguments does nothing, since this is the same as acting
by d−1 on Hr(K,Fp) which has a trivial action. By definition, the representation is
the dual representation since the cup product is a non-degenerate bilinear form. This
extends to Fp coefficients once we tensor with Fp, and we note that there is no Tor
obstruction. �

We will now again use the spectral sequence
Ep,q

2 = Hp(D×a /K,H
q(K,χ)) =⇒ Hp+q(D×a , χ) ' Extp+q

D×a
(1, χ).

The main work has already been done in Proposition 26 and the previous proposition.

Lemma 38. Let r = d2ef and let χ be an arbitrary character of D×a . There is an exact
sequence

0→ H1(D×a /K,H
r−i+1(K,χ)∗)→ Exti

D×a
(1, χ∗)→ (Hr−i(K,χ)∗)D

×
a /K → 0.

Proof. This follows from Proposition 26 combined with the previous proposition. �

For i = r+ 1, we get Extr+1

D×a
(1, χ) ' H1(D×a /K, (χ)∗), which is trivial unless χ = 1 in

which case we get Fp. After r + 1, the extensions are all trivial.
We can make use of this lemma when i = r and i = r − 1 as well, since we have

results about the surrounding terms in the exact sequence. When i = r, we get

0 H1(D×a /K,H
1(K,χ)∗) Extr

D×a
(1, χ∗) (χ∗)D

×
a /K 0.

By the same methods Lemma 27, we may determine the first group. Just as in Lemma
27, the dimension is the multiplicity of the trivial representation - we take a dual, and
so this multiplicity is preserved as 1∗ = 1.

When i = r − 1, we have

0→ H1(D×a /K,H
2(K,χ)∗)→ Extr−1

D×a
(1, χ∗)→ (H1(K,χ)∗)D

×
a /K → 0.

For the rightmost term, above we have already shown that its dimension matches those
computed in Theorem 24. Namely, for χ = 1 it has dimension ef as a vector space over

Fp, and for a = d and χ extended trivially from some character x 7→
(

x
σ(x)

)pi
of k×D it

is Fp. As for the leftmost term, we have partial information given by Theorem 34.

6. Cohomology for GL2(D)

We now shift our attention from the group D× = GL1(D), and instead consider
analogous computations for the group GL2(D). Just as we computed the D×/K-
representation structure H1(K,Fp) = Hom(K,Fp) in the GL1 case, where K was the
pro-p Iwahori subgroup 1 + $DOD of D×, in GL2 we will compute the HI1-module
structure of H1(I1,Fp) = Hom(I1,Fp), where I1 is a certain pro-p Iwahori subgroup.

We will first define the Bruhat-Tits tree of GL2(D).

Definition. The Bruhat-Tits tree X of GL2(D) is a 1-dimensional simplicial complex.
The vertices are given by homethety classes of OD-lattices in D2. Two lattices Λ,Λ′ are
neighboring if

$DΛ ( Λ′ ( Λ.

The edges of the Bruhat-Tits tree are given by connecting neighboring lattices.

The Bruhat-Tits tree of GL2(D) gives us a great deal of geometric information about
the group. The stabilizer of an edge is the stabilizer of a lattice chain of neighboring
lattices - these give Iwahori subgroups.
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Proposition. The Bruhat-Tits tree X of GL2(D) is a |P1(kD)|-regular tree.

Within GL2(D), we will make a choice of an Iwahori subgroup I which corresponds
to the lattice chain OD ⊕$DOD ⊂ OD ⊕OD. For our results in this section, the choice
of such a subgroup does not matter as the corresponding pro-p Iwahori subgroups will
be conjugate and hence isomorphic. Just as we had the filtration O×D . 1 +$DOD . 1 +
$2
DOD . · · · in the GL1 case, we have a Moy-Prasad filtration I . I1 . I2 . I3 . · · · of

normal subgroups that will aid in our computations. Explicitly, I and these subgroups
are given by

I =

(
O×D OD

$DOD O×D

)
, In =

(
1 +$

b(n+1)/2c
D OD $

bn/2c
D OD

$
1+bn/2c
D OD 1 +$

b(n+1)/2c
D OD

)
where at each step n ≥ 1 we alternate between raising the powers of $D on the diagonal
and off-diagonal entries. Similarly to the filtration of K, these subgroups have easy to
understand quotients.

Lemma 39. We have In/In+1 ' k2D. The quotient is identified with
(
kD

kD

)
if n is

even, and
(

kD
kD

)
if n is odd.

It is the subgroup

I1 =

(
1 +$DOD OD
$DOD 1 +$DOD

)
whose degree-1 cohomology we are interested in computing. This is the pro-p Sylow
subgroup of I. Note that, unlike K which is normal in D×, we do not have that I1 is
normal in GL2(D).

As in §3, we first compute an upper bound on the dimension of Hom(I1,Fp) by
looking at commutators. Then we will explicitly construct enough linearly independent
homomorphisms to meet this upper bound, hence concluding that they must form a
basis.

With T , U+, and U− we denote the subgroups of diagonal, upper unipotent, and
lower unipotent matrices in I1. Then we have the following decomposition of I1, known
as the Iwahori decomposition.

Lemma 40. The subgroup I1 can be written as U+ · T · U−.

Proof. Given any
(
w x
y z

)
∈ I1, we can write(

w x
y z

)
=

(
1 xz−1

0 1

)(
w − xz−1y 0

0 z

)(
1 0

z−1y 1

)
,

where all three of these matrices lie in I1 because
(
w x
y z

)
does. �

This decomposition also descends to the filtration In, so that each In has a decompo-
sition (U+ ∩ In) · (T ∩ In) · (U− ∩ In). The formula to prove this is the same.

One important homomorphism that we will need to compute Hom(I1,Fp) is the
Dieudonné determinant. For a central simple division algebra D over F , it is shown in
[Die43] that there is a group homomorphism of the form

α : GLn(D)ab → D×/[D×, D×] ' F×.



41

Composing with the quotient q onto the abelianization, we obtain a map

det := α ◦ q : GLn(D)→ F×.

Explicitly, for GL2(D) we have the expression

det

(
w x
y z

)
=

{
−yx if w = 0

wz − wyw−1x if w 6= 0
,

where a denotes the image of a ∈ D× in D×/[D×, D×] ' F×.
By using facts about the Moy-Prasad filtration, the Iwahori decomposition, the

Dieudonné determinant, and our computations for [K,K]Kp in D× in §3, we now com-
pute a large subset of the Frattini subgroup [I1, I1]I

p
1 . Later we will show that this

subset is actually equal to the entire Frattini subgroup.

Proposition 41. We have

[I1, I1]I
p
1 ⊃ (U+ ∩ I2) · Tdet=1 · T p · (U− ∩ I2).

Proof. We observe that [I1, I1] ⊂ I2. The Iwahori decomposition restricts to I2, simply
by replacing each component with the intersection with I2. We first show how to produce
U+ ∩ I2 and U− ∩ I2 as commutators. Let x ∈ 1 +$DOD. We can compute that[(

1 −1
0 1

)
,

(
1 0
0 x−1

)]
=

(
1 x− 1
0 1

)
,

and [(
1 0
−$D 1

)(
1 0
0 x

)]
=

(
1 0

(x− 1)$D 1

)
.

As x ∈ 1 +$DOD, we get U+ ∩ I2 and U− ∩ I2 in [I1, I1].
What remains is to determine the elements of T ∩ I2 = T that lie in [I1, I1]I

p
1 . We

will show that these include every element of Tdet=1 · T p by constructing a sufficiently
large subset of Tdet=1 as commutators to generate every element.

By Lemma 18, we can write Tdet=1 as

(2) Tdet=1 =

{(
1 + xπF 0

0 (1 + xπF )−1

)
: x ∈ OF

}(
KNrd=1 0

0 KNrd=1

)
.

Thus, we have a component with entries in 1 + πFOF to produce, and a component
with reduced norm one entries. Note that KNrd=1 ⊂ [D×, D×], which is why the second
component always has determinant one. On 1 + πFOF , the reduction modulo [D×, D×]
map is injective, which is why the diagonal entries on the first component must be
inverses.

To produce this first component, we compute a commutator of the form[(
1 x
0 1

)
,

(
1 0
πF 1

)]
=

(
1 + xπF + x2π2

F −x2πF
xπ2

F 1− xπF

)
where x ∈ OF , so this is now a commutator calculation in a pro-p Iwahori subgroup of
GL2(F ). Extracting the element of T from the Iwahori decomposition of this commu-
tator by multiplying on the left and right by the inverses of the U+ ∩ I2 and U− ∩ I2
components (which we have already shown to be commutators), we obtain(

(1− xπF )−1 0
0 1− xπF

)
∈ [I1, I1],
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where the bottom right entry follows from by the explicit form of the Iwahori decom-
position in Lemma 40. The top left entry follows from the fact that the determinant of
this matrix must be one because it is a product of unipotent matrices. Thus, we can
obtain diag(x, x−1) ∈ [I1, I1], where x ∈ 1 + πFOF is arbitrary.

We now turn to producing the elements of T in the second component of the decom-
position given by equation 2. We have, for x, y ∈ OD,[(

1 x
0 1

)
,

(
1 0

y$D 1

)]
=

(
(1 + xy$D)2 − xy$D −xy$Dx

(y$D)x(y$D) 1− y$Dx

)
.

We can again compute the T component of this commutator in the Iwahori decompo-
sition. Taking entries on the diagonal modulo 1 + $2

DOD, the formula in Lemma 40

yields
(

1 + xy$D 0
0 1− y$Dx

)
. This becomes

(
xy 0
0 −yσ(x)

)
when we apply the iso-

morphism I2/I3 ' k2D, where x is the image of x ∈ OD in the reside field. By choosing
x = 1 and y = [a], we can thus produce the elements of T (mod I3) isomorphic to
diag(a,−a) for all a ∈ kD. By choosing x = [a] and y = [b], the sum of the diagonal en-
tries of the isomorphic matrix is (a−σ(a))b. Because σ is non-trivial, there exists some
a ∈ kD such that a− σ(a) 6= 0. Hence, we can obtain any diagonal sum since b can be
arbitrary. The set of all diag(a,−a) for a ∈ kD, together with a set of diagonal matrices
with entries summing to any element of kD, generates all of k2D, so we are producing
representatives of every element of T (mod I3) from products of commutators.

We have now produced determinant one elements in [I1, I1] which when reduced yield
all representatives for T (mod I3). Using equation 2, we may factor out the central
component of these. This does not affect the residue modulo 1+$2

DOD of the remaining
factor because d ≥ 2. As we have shown that the central component lies in [I1, I1], we
have as the remaining factor representatives of T (mod I3) in [I1, I1] which also lie in(
KNrd=1 0

0 KNrd=1

)
.

By looking at commutators in [T, T ]T p ⊂ [I1, I1]I
p
1 , Corollary 19 implies that we also

have elements in [I1, I1]I
p
1∩T where the diagonal entries are arbitrary inKNrd=1K

p∩(1+

$2
DOD). Thus, we may generate all of

(
KNrd=1 0

0 KNrd=1

)
using elements of [I1, I1]I

p
1 ,

where we use the representatives of T (mod I3) from the previous paragraph to fix the
coefficients on $D in each entry and the elements of [T, T ]T p to give all remaining
coefficients. Thus, we can use equation 2 to conclude that we have all of Tdet=1 in
[I1, I1]I

p
1 , and since T p ⊂ [I1, I1]I

p
1 the claim follows. �

Corollary 42. If F is a p-adic field, then Hom(I1,Fp) is an Fp vector space of
dimension at most 2df + ef .

If F is a local function field, then

dimFp
Hom(I1/I2di+1,Fp) ≤ 2df +

(
i−
⌊
i

p

⌋)
f.

Proof. We start with the p-adic case. We have

Hom(I1,Fp) = Hom(I1/[I1, I1]I
p
1 ,Fp),

where I1/[I1, I1]I
p
1 is an abelian group in which every element is p-torsion. Thus,

I1/[I1, I1]I
p
1 ' (Z/pZ)n for some n which is exactly the dimension of Hom(I1,Fp).
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Because the Iwahori decomposition of every element of I1 is unique, the previous propo-
sition implies that

[I1 : [I1, I1]I
p
1 ] ≤ [U+ : U+ ∩ I2] · [T : Tdet=1 · T p] · [U− : U− ∩ I2].

From the natural isomorphisms U+ ' OD ' U−, we have [U+ : U+ ∩ I2] = [U− :
U− ∩ I2] = [OD : $DOD] = pdf . From equation 2 in the proof of Proposition 41, we
have [T : Tdet=1 · T p] = pef , as we can identify the representatives with elements of
(1 + πFOF )/(1 + πFOF )p via the determinant.

For the local function field case, the argument is nearly identical, but we cut off after
a certain power of $D in each entry. More explicitly, the subgroup we quotient by is

I2di+1 =

(
1 +$di+1

D OD $di
DOD

$di+1
D 1 +$di+1

D OD

)
.

When computing the order of the quotient of I1/I2di+1 by its Frattini subgroup, the
upper bound of p2df coming from the U+ and U− components of the commutators still
holds, however we must now also compute [T (mod I2di+1) : (Tdet=1 · T p) (mod I2di+1)].
Here we identify representatives with elements of

1 + πFOF (mod 1 + πi+1
F OF )

(1 + πFOF ) ∩ (1 + ($DOD)p) (mod 1 + πi+1
F OF )

because we are in characteristic p, so (1 + $DOD)p = 1 + ($DOD)p. This gives the
desired bound by the same reasoning as in the proof of Corollary 16. �

We now show that these upper bounds actually give equality by breaking H1(I1,Fp)
into components which we can easily compute.

Theorem 43. LetWφ denote the space of homomorphisms I1 → Fp factoring through
the quotient by I2, and let Wψ denote the space of homomorphisms factoring through
the Dieudonné determinant det : I1 → 1 + πFOF . We have a decomposition

H1(I1,Fp) = Wφ ⊕Wψ.

Additionally, we have isomorphisms

Wφ ' Hom(I1/I2,Fp) ' Hom(k2D,Fp) ' F
2df

p

as a vector space and Wψ ' Hom(1 + πFOF ,Fp). As an immediate corollary, the
inclusion in Proposition 41 is an equality.

Proof. As I1/I2 ' k2D, it has dimension 2df as an Fp-vector space, so Wφ ' F
2df

p .
Because det surjects onto 1 +πFOF , we have Wψ ' Hom(1 +πFOF ,Fp), a space whose
dimension we computed in the proof of Theorem 17. As det |I2 surjects onto 1 + πFOF
as well, if any element ψη = η ◦ det ∈ Wψ is 0 on I2 it must be 0 everywhere. Hence,
Wφ ∩Wψ is trivial, and we conclude that Wφ⊕Wψ ⊂ H1(I1,Fp). All that remains is to
show that this containment is equality.

By Corollary 42, we may conclude in the p-adic case that we have produced enough
homomorphisms to meet the upper bound. In the local function field case, taking a
quotient by I2di+1 we similarly have the right number of homomorphisms to meet the
upper bound for all i. Because any homomorphism not included in Wφ ⊕Wψ would
have to be equal to zero on the quotient by every I2di+1, it would have to be the zero
map. We conclude that H1(I1,Fp) = Wφ⊕Wψ, and can also immediately conclude that
in Proposition 41 the inclusion is an equality. �

Corollary 44. We can compute bases of Wφ and Wψ:
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· We have a decomposition Wφ = Wφ,U+ ⊕Wφ,U− . These spaces each have dimension
df .
– The space Wφ,U+ consists of maps corresponding to topological generators of U+.

The basis elements are φηjU+ , where for A =

(
1 + w$D x
y$D 1 + z$D

)
with w, x, y, z ∈

OD we let
φ
ηj
U+ : A 7→ ηj(x).

Here, ηj ∈ Hom(kD,Fp) sends a 7→ ap
j . The bar denotes reduction modulo $DOD.

– The space Wφ,U− has basis of maps

φ
ηj
U− : A 7→ ηj(y)

where the notation is the same.
· A basis of Wψ consists of the maps ψηi = ηi ◦ det where the ηi form a basis of

Hom(1 + πFOF ,Fp). As p > de+ 1, there is no p-torsion, so this is isomorphic to F
ef

p

in the p-adic case or
⊕

i∈NFp in the local function field case.

Proof. The maps ψηi are homomorphisms because they are compositions of homo-
morphisms. To see why the φηjU+ and φ

ηj
U+ are homomorphisms, note that for Ai =(

1 + wi$D xi
yi$D 1 + zi$D

)
we have

A1A2 =

(
1 +O($D) (x1 + x2) +O($D)

(y1 + y2)$D +O($2
D) 1 +O($D)

)
,

so we get homomorphisms when we apply the reduction modulo$DOD in the definitions
of these maps.

All that remains is to show that these maps form bases. This follows from the previous
theorem, and dimension counting to make sure we actually have a basis. In the case of
Wψ elements are linearly independent by definition, and in the case of Wφ the proof of
linear independence is very similar to that of the φηj in Theorem 17. �

Using this explicit basis, we will compute the structure of H1(I1,Fp) in terms of
the Hecke algebra HI1 := EndGL2(D)(c − Ind

GL2(D)
I1

Fp). This can also be viewed as
the algebra of locally constant compactly supported functions on GL2(D) which are
bi-I1-invariant.

Proposition 45 ([Ly13]). We have a double coset decomposition

GL2(D) =
⊔

α,β∈k×D
m,n∈Z

I1

(
[α] 0
0 [β]

)(
$n
D 0

0 $m
D

)
I1 t

⊔
α,β∈k×D
m,n∈Z

I1

(
[α] 0
0 [β]

)(
0 $n

D

$m
D 0

)
I1.

A basis for the algebraHI1 as a vector space will consist of the characteristic functions
on these cosets.

Definition 46. For g ∈ GL2(D), we use [I1gI1] to denote the characteristic function
on the coset I1gI1 in HI1 .

The element [I1gI1] acts on the right on H1(I1,Fp). In particular,

H1(I1,Fp) · [I1gI1] := CorI1I1∩g−1I1g
◦ g−1∗ ◦ ResI1I1∩gI1g−1H

1(I1,Fp),

where g−1∗ is the conjugation map x 7→ g−1xg. When g normalizes I1, this reduces to
the conjugation action on homomorphisms. The following corollary allows us to reduce
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the problem of computing the action of [I1gI1] in general to computing the action of a
few finite families of generators.

Corollary 47 ([Ly13], Lemma 1.4.4). The Hecke algebra HI1 is generated as an
algebra by the elements[

I1

(
[α] 0
0 [β]

)
I1

]
,

[
I1

(
0 1
$D 0

)
I1

]
,

[
I1

(
0 $−1D
1 0

)
I1

]
, and

[
I1

(
0 1
−1 0

)
I1

]
,

where α, β ∈ k×D.

All but the last element normalize I1, so the action is by conjugation. However,(
0 1
−1 0

)
does not normalize I1, so the action is more difficult to compute.

Lemma 48. Let g0 =

(
0 1
−1 0

)
. Then the double coset I1g0I1 decomposes into left

cosets as

I1g0I1 =
⊔
a∈kD

I1ga :=
⊔
a∈kD

I1

(
0 1
−1 [a]

)
.

Proof. We first compute which matrices A ∈ I1 remain in I1 after being conjugated by

g0. Writing A =

(
w x
y z

)
, we have

g0Ag
−1
0 =

(
0 1
−1 0

)(
w x
y z

)(
0 −1
1 0

)
=

(
z −y
−x w

)
.

Because w, z ∈ 1 + $DOD, x ∈ OD, and y ∈ $DOD, g0Ag−10 is in I1 if and only if $D

divides x in OD.
Now we can determine the conditions on A1, A2 ∈ I1 for which I1g0A1 = I1g0A2. This

is true if and only if g0A1A
−1
2 g−10 ∈ I1, which holds if and only if $D divides the top right

entry of A1A
−1
2 by the previous paragraph. Writing Ai =

(
wi xi
yi zi

)
, we reduce modulo

$DOD to obtain Ai =

(
1 xi
0 1

)
, so A1A

−1
2 =

(
1 x1 − x2
0 1

)
. Hence, I1g0A1 = I1g0A2 if

and only if x1 = x2.
Therefore, I1g0I1 consists of a disjoint union of |kD| = pdf left cosets I1gA where each

coset corresponds to a different choice of the reduction of the top right entry of A in

the residue field. Choosing representatives of the form Aa =

(
1 [−a]
0 1

)
for each a ∈ kD

gives the cosets I1g0Aa = I1

(
0 1
−1 0

)(
1 [−a]
0 1

)
= I1

(
0 1
−1 [a]

)
= I1ga as desired. �

Proposition 49. For A =

(
w x
y z

)
∈ I1 and a ∈ kD, define

ξa(A) := gaAg
−1
a−x =

(
y[a− x] + z −y

(−w + [a]y)[a− x]− x+ [a]z w − [a]y

)
.

Then ξa(A) ∈ I1 and for all ϕ ∈ Hom(I1,Fp) we have

(ϕ · [I1g0I1])(A) =
∑
a∈kD

ϕ(ξa(A)).
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Proof. Because A ∈ I1, the previous lemma implies that⊔
a∈kD

I1gaA = I1g0I1A = I1g0I1 =
⊔
a′∈kD

I1ga′ ,

so for each a ∈ kD there exists some unique a′ ∈ kD such that gaAg−1a′ ∈ I1. Direct
computation gives

gaAg
−1
a′ =

(
0 1
−1 [a]

)(
w x
y z

)(
[a′] −1
1 0

)
=

(
y[a′] + z −y

(−w + [a]y)[a′]− x+ [a]z w − [a]y

)
,

and reducing modulo $DOD yields
(

1 0
−a′ − x+ a 1

)
. Therefore, gaAg−1a′ ∈ I1 if and

only if a′ = a− x. Hence, ξa(A) ∈ I1.
By definition, we have

(ϕ · [I1g0I1])(A) = (CorI1
I1∩g−1

0 I1g0
◦ g−10∗ ◦ ResI1

I1∩g0I1g−1
0

ϕ)(A).

Applying the explicit form of the corestriction map gives the formula. �

With this explicit formula, we can compute how [I1g0I1] acts on any ϕ ∈ Hom(I1,Fp).
Fortunately, the action simplifies considerably in every case. We first recall a basic fact
of finite fields.

Lemma 50. If k is a finite field, then
∑

a∈k a
n = 0 for all n > 0 with |k×| - n.

Proof. Let α generate k×. Then αn 6= 1, and αn
∑

a∈k a
n =

∑
a∈k(αa)n =

∑
a∈k a

n

because multiplication by α is an automorphism of k× fixing 0. Hence,
∑

a∈k a
n = 0. �

Corollary 51. For all ϕ ∈ Hom(I1,Fp), we have ϕ · [I1g0I1] = 0.

Proof. We will use the formula in Proposition 49 to show that [I1g0I1] sends every

element of our basis from Corollary 44 to zero. Throughout, let A =

(
w x
y z

)
∈ I1.

For any basis vector ψηi in Wψ, we have that (ψηi · [Ig0I])(A) is equal to∑
a∈kD

ψηi(ξa(A)) =
∑
a∈kD

ηi(det(gaAg
−1
a−x)) =

∑
a∈kD

ψηi(A) + ηi(det(gag
−1
a−x))

because det maps into an abelian group. The matrix gag−1a−x =

(
1 0

[a]− [a− x] 1

)
has

determinant 1, so we have

(ψηi · [Ig0I])(A) =
∑
a∈kD

ψηi(A) = |kD|ψηi(A) = 0

because |kD| = pdf and we are in characteristic p.
For φηjU+ ∈ Wφ,U+ , we have

(φ
ηj
U+ · [Ig0I])(A) =

∑
a∈kD

φ
ηj
U+(ξa(A)) =

∑
a∈kD

ηj(−y) = 0

because y ∈ $DOD.
Finally, consider a map φηjU− ∈ Wφ,U− . If we write

A =

(
1 + [w1]$D +O($2

D) [x0] + [x1]$D +O($2
D)

[y1]$D +O($2
D) 1 + [z1]$D +O($2

D)

)
,



47

then we have

(φ
ηj
U− · [Ig0I])(A) =

∑
a∈kD

φ
ηj
U−(ξa(A)) =

∑
a∈kD

ηj(((−w + [a]y)[a− x0]− x+ [a]z)$−1D )

= ηj

(∑
a∈kD

(−w1 + ay1)(a− x0)− x1 + az1

)

= ηj

(
y1
∑
a∈kD

a2 + (−w1 − y1x0 + z1)
∑
a∈kD

a+ (w1x0 − x1)|kD|

)
= 0

by Lemma 50. Note that in the second line we use the fact that d ≥ 2 to ensure that
any error term coming from −[a− x0]− [x0] + [a] = 0 +O(p) does not affect the value
once we multiply by $−1D and pass to the residue field. We also use d ≥ 2 to ensure that
|k×D| - 2 so we can apply Lemma 50 to sum over the squares of elements of kD.

Hence, [I1gI1] sends all three types of basis vectors to 0. �

Computing how the remaining generators from Corollary 47 act is relatively straight-
forward.

Corollary 52. The action of the remaining generators of HI1 is given as follows:
· On Wψ, the remaining generators act as the identity.

· For φηjU+ , φ
ηj′

U− ∈ Wφ, we have for g =

(
[α] 0
0 [β]

)
that

φ
ηj
U+ · [I1gI1] =

α

β
φ
ηj
U+ , and φ

ηj′

U− · [I1gI1] =
β

σ(α)
φ
ηj′

U− .

· For φηjU+ , φ
ηj′

U− ∈ Wφ, we have for g =

(
0 1
$D 0

)
that

φ
ηj
U+ · [I1gI1] = φ

ηj
U− , and φ

ηj′

U− · [I1gI1] = σ(φ
ηj′

U+) = φ
ηj′+rf

U+ ,

where r is an integer such that σ(x) = xp
rf . The inverse g−1 =

(
0 $−1D
1 0

)
must then

act by

φ
ηj
U+ · [I1g−1I1] = σ−1(φ

ηj
U−) = φ

ηj−rf

U− , and φ
ηj′

U− · [I1g
−1I1] = φ

ηj′

U+ .

Proof. Because the remaining generators g normalize I1, the action of [I1gI1] sends a
homomorphism ϕ(x) 7→ ϕ(gxg−1).

On Wψ, the determinant is invariant under conjugation, so the action is trivial.
Now we turn to φ ∈ Wφ. Since φ factors through I2, we need only compute the action

on I1/I2 ' k2D. For x1, x2 ∈ kD, we have(
[α] 0
0 [β]

)(
1 [x1]

[x2]$D 1

)(
[α−1] 0

0 [β−1]

)
=

(
1 [αx1β

−1]
[βx2]$D[α−1] 1

)
.

Applying the commutation relation for $D, the claim follows by looking at the upper
right and bottom left entries. Similarly, we have(

0 1
$D 0

)(
1 [x1]

[x2]$D 1

)(
0 $−1D
1 0

)
=

(
1 [x2]

[σ(x1)]$D 1

)
.

Thus, we can read off the action of g =

(
0 1
$D 0

)
. �



48

Together with the previous corollary, this determines the HI1-module structure of
H1(I1,Fp). We use 1 to denote the trivial character of HI1 , which is the HI1-module Fp

with all of the generators from Corollary 47 acting trivially except for [I1g0I1], which
sends everything to 0.

Theorem 53. As an HI1 module, we have

H1(I1,Fp) = Wψ ⊕
⊕

j∈Z/fZ

Wj,

where the Wj are the submodules of Wφ spanned by all φηiU+ and φηiU− with i ≡ j
(mod f). Moreover, Wψ is a direct sum of copies of 1 and all of the Wj are simple.

Proof. Corollaries 51 and 52 immediately imply that the decomposition H1(I1,Fp) =
Wφ⊕Wψ is a decomposition of HI1 modules, and that Wψ is a direct sum of copies of 1.
Moreover, the decomposition Wφ =

⊕
j∈Z/fZWj follows directly from the Corollary 52

because the φηiU+ and φηiU− are eigenvectors of the
(

[α] 0
0 [β]

)
actions, while

(
0 1
$D 0

)
acts by cycling through all φηiU+ and φηiU− in each Wj. These two actions are analogous
to how k×D and $Z

D respectively act on the Vj in the proof of Proposition 23, and the
proof that theWj are simple modules is the same as the proof that the Vj are irreducible
representations. �
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