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Abstract

The spanning tree polynomial T'(T") of an undirected edge-weighted multigraph I' is the sum of the
weights of the spanning trees of I'. For any covering graph I', we give an explicit formula for the ratio
T -
coefficients of %
joined together at one vertex (a flower), and when I' is a spanning tree with some additional edges such
that contracting all non-cyclic edges leaves a flower.

working off of an analogous result from Chepuri et al. [2] for directed graphs. We also prove the

are positive when I' is a tree, contains only one vertex, when I is a collection of cycles

1 Introduction

The object of this paper is to further the investigation into the relationship between the arborescences
of graphs and the arborescences of their covering graphs. The question of this relationship first arose in
Galashin and Pylyavskyy’s [3] study of R-systems. An R-system is a discrete dynamical system on an edge-
weighted directed graph A with a state vector (X,)yea that evolves based on the edges in the graph. In
particular, Galashin and Pylyavskyy showed for a directed graph A and a k-cover A of A that the ratio

of arborescence polynomials ﬁigﬁg is independent of the choice of vertex v in A and corresponding lift ¢ in A.

This invariance of choosing the root of the arborescences was the motivating factor for Chepuri et al. [2]
to derive an explicit formula for the arborescence polynomial ratio in terms of the determinant of a certain
matrix [£(A)]zg)-

Theorem 1.1 (Theorem 1.3 in [2]). Let A be an edge-weighted directed multigraph, and let A be a k-fold
cover of A. Then, for any vertex v of A and lift v of v in A, we have

Az(A) 1

Further, Chepuri et al. [2] conjectured the following.

Conjecture 1.2 (Conjecture 1.7 in [2]). The ratio ﬁﬁgﬁg has positive integer coefficients.

Since considerable effort has been spent on this conjecture to no avail, we will study special cases of an
analogous conjecture which is narrower in scope.

Conjecture 1.3. For an undirected edge-weighted multigraph T and a k-cover T' of T, the ratio of the

spanning tree polynomials % has positive integer coefficients.

While it is clear that Conjecture 1.2 and Conjecture 1.3 are similar, it is not immediately obvious why the
latter is simpler. The reason for this is that directed graphs can be viewed as a special class of unidrected
graphs, therefore studying undirected graphs not only restricts the type of graph we get, but also the types
of covers of that graph. This restriction will become clearer in Section 3 where the relationship between
directed and undirected graphs is discussed at length.

To begin our work on Conjecture 1.3 we derive a formula for undirected graphs using Theorem 1.1.



Theorem 1.4. Let I' be an undirected edge-weighted multigraph and let T be a k-cover. Define matrices
n(k —1) x n(k — 1) matrices A, D, with rows and columns indexed by v, ...,v2, ..., 0¥ ... vk such that for T,

k-cover of undirected graph T = (V, E, wt),

Apboil= Y wt@ - D wt(@)

E‘BéZ{Uf,v;} Eaé:{v;,vil}

D[v},v}] = 6504 - Z wit(e)
écE adjacent to Uf

Let [C(D)]zm = D — A. Then 719 = [£(D)]zg)-

This formula implies that the spanning tree ratio for undirected graphs has integer coeficients since we are
taking a determinant. The main result of this paper proves Conjecture 1.3 for a broad class of undirected
graphs called extended flowers, defined in Section 6.1.

Theorem 1.5. If T is an extended flower with a k-cover T', then % is a polynomial with positive integer
coefficients.

This result is meaningful because it sets a foundation for proving the original conjecture posed by Chepuri et
al. 2], which in turn makes progress towards finding a combinatorial interpretation of the [£(A)]zz matrix.

The rest of this paper will proceed as follows. Section 2 will provide the necessary background and re-
state Chepuri et al’s. [2] formula for fxug In Section 3 we adapt this result for undirected graphs. The
remainder of the paper focuses on proving the positivity conjecture in special cases of undirected graphs. In
Section 4 we prove the conjecture for when the spanning tree polynomial of our graph is a monomial. In
Section 5 we prove the conjecture for flower graphs. In Section 6 we prove our main result, positivity for
extended flowers. Finally, in Section 7, we suggest next steps towards proving Conjecture 1.3. Additionally,
we discuss how our results give some insight into certain cases of Conjecture 1.2 and pose related conjectures
that we find interesting.

2 Background

2.1 Arborescences and Spanning Trees

Let A = (V, E,wt) be a directed, edge-weighted multigraph. That is, (V, E) is a directed multigraph and
there is a weight function wt : E — Ry such that each edge is assigned a positive real number. Likewise,
let T' = (V, E, wt) be an undiredcted edge-weighted multigraph.

Definition 2.1. An arborescence T, of A rooted at v is a subgraph of A such that for each w € V, there is
a unique directed path from w to v. Equivalently, T, is a connected subgraph of A such that the out-degree
of each vertex other than v in T, is one, the outdegree of v is zero.

Definition 2.2. The weight of an arborescence is the product of the weights of the edges in the arborescence.
That is, wt(Ay) = [[.c 4, wt(e) where E, is the set of edges in A,. Further, if A, is the set of all arborescences
rooted at v of A then the arborescence polynomial of A rooted at v is

Ay (A) = D wt(A,).

T, €A,

Example 2.1. Let A be the directed graph in Figure 1. This graph has three arborescences rooted at vy
(pictured in Figure 2). We can compute A,,(A) = abc + bde + bed.



V1 b Vg

U3 d V4

Figure 1: An edge-weighted directed multigraph A.

1 b Vs U1 b Vo U1 b V2
a c Z jc
V3 V4 U3 d Vg V3 d V4

Figure 2: The arborescences of A rooted at vy.

We can define analgous objects for undirected graphs. These will be the primary focus of this paper.

Definition 2.3. A spanning tree S of I" is a subgraph of I" where for any two vertices v,w € V there is a
unique path between v and w in S. Equivalently, S is a connected subgraph of I' with no cycles.

Definition 2.4. The weight of a spanning tree is the product of the weights of the edges in the spanning
tree. That is, wt(S) = [[.cqwt(e). Further, if S is the set of all spanning trees of I' then the spanning tree
polynomial of T is

(L) =Y wt(S).

sSes

Example 2.2. Let I" be the undirected graph in Figure 3. There are eight spanning trees of I' (pictured in
Figure 4). Thus, T(T") = acd + abd + abc + bed + ace + bde + ade + bee.

U1 b V2
a c
V3 d V4

Figure 3: An edge-weighted undirected multigraph I"
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Figure 4: The spanning trees of I’

While finding the spanning tree polynomial of small graphs by hand may seem straightforward, it is difficult
for bigger graphs. As such, we will use the Matrix Tree Theorem as a tool to handle these computations.

Definition 2.5. For a directed graph A with vertices vy, ..., v, the Laplacian matriz L(A) is the difference
of the degree matrix and adjacency matrix of A. That is, L(A) = D — A where

Dlv;,v;] = Z wt(e)

e€E,(vi)
Alv,v5] = Z wt(e)
e=(v;,v;)

Note that this matrix can be constructed similarly for undirected graphs by considering connections rather
than directed connections.

Theorem 2.1 (Matrix Tree Theorem [1]). For a directed graph A, the arborescence polynomial rooted at v;
is equal to the determinant of the i'" minor of L(A). Similarly, the spanning tree polynomial of T' is equal
to the determinant of any minor of L(T').

A, (A) = det LE(A)
T(I') = det LI(I")

Example 2.3. We now use the matrix tree theorem to compute polynomials of both A and T, starting with
the directed graph A.

b 0 0 0
|0 e+ec 0 0
D(A) = 0 0 a+d 0
0 0 0 0
0 b 0O
0 0 e ¢
AlA) = a 0 0 d
0 0 0 0
Now, we need to take the determinant of L}(A) to find A, (A), so we can compute Dj(A) — A$(A).
b 0 0 0 b 0 b b 0
Li(A)=10 e+c 0 | —|0 0 e|=|0 e+c —e
0 0 a+d a 0 0 -a 0 a+d



Finally, A,,(A) = det L;(A) = abe + bde + bed which confirms our computation in Example 2.1.
Similarly, for I':

a+b 0 0 0
| 0 b4c+e 0 0
D) = 0 0 a+d+e 0
0 0 0 d+c

0 b a O

b 0 e ¢

A(F)_ae 0 d

0 ¢c d O

We can then compute the determinant of any minor of L(I"). Without loss of generality, we choose L}(T).

b+c+e 0 0

0 e ¢ b+c+e —e —c
Li(T) = 0 a+d+e 0 |—|e 0 d|= —e a+d+e —d
0 0 d+c c d 0 —c —d d+c

Then, T(T') = det L1(T') = acd + abd + abc + bed + ace + bde + ade + bee which confirms the calculation in
Example 2.2.
2.2 Covering Graphs

Definition 2.6. A= (‘7,E~, wt) is a covering graph of a directed graph A provided that there exists a
function 7 : A — A such that

1. m maps vertices to vertices and edges to edges.

[\

rTtw)| = |7 Ye)| =k forall v € V and e € E.
3. For all é € E, wt(¢) = wt(n(€)).
4. For all & € V, |Ey(d)| = |Es(n(9))| and |E4 ()| = |Ey((0))]

Where, following the notation used by Chepuri et al [2], E4(?) denotes the set of edges direced away from
0, and E;(0) the set of edges directed towards ©. Additionally, we can define the covering graph T" of an
undirected graph I' by changing (4) to be |E(0)| = |E(v)| where E(v) is the set of edges adjacent to v.

Example 2.4. Let 8 be the directed graph in Figure 5. Then, B in Figure 6 is a 2-cover of (.

a
V1 Vg
c
b

Figure 6: B, a 2-cover of S.



2.3 Arborescence Ratio

Now that we have defined the relevant terms, we state the formula for the arboresence ratio ﬁugg given by

Chepuri et al. [2]; however, we must first construct the following matrix.

Definition 2.7. For some directed graph I" with vertices {v1,...,v,} and a k-cover [ where each vertex v;

of T is lifted to v}, ...mf of T we define the matrices A and D on the basis v 2 ud Ll ok ok

of [ 1 V2 ey UF
Alv,vf] = Z wt(e) — Z wt(e)

e=(v},v}) e=(v!0})

Dvl,vl] = Z wt(e)

ecE,(vf)

ny e

for 1 < t,r < k. We then define
LMz =D — A

Theorem 1.1 (Theorem 1.3 in [2]). Let A be an edge-weighted directed multigraph, and let A be a k-fold
cover of A. Then, for any vertex v of A and lift v of v in A, we have
Az(A) 1

Example 2.5. With Theorem 1.1, we can compute the ratio 215511?3 for any directed graph A and k-cover

A. In particular, for 8 and B in Example 2.4:

12 22
p— 12 |atc 0
e | 0 b

12 22 12 22

A= 12 |0 0 _ 2 Jc a
22 b 0 22 0 0

Then, ['C(F>]Z[E] =D — A, SO:

3 Explicit Formula for the Ratio of Spanning Tree Polynomials

Let I' = (V, E, wt) be an undirected edge-weighted graph with vertices vy, ...v,, and I be a k-cover of I where
vertex v; of T is lifted to v}, ...,v¥ in T. For T', define the directed graph I" = (V', E',wt') as follows: V'
simply contains a copy of each vertex in I', E' = {(v;, v;), (vj, v;)|{vs,v;} € E}; that is, if {v;,v;} is in E, then
both (v;,v;) and (v;,v;) are in E’. Let wt’ : E' — R such that wt'((v;,v;)) = wt'((vj,v;)) = wt({vi, v;}).

Define (T') similarly for T.
Lemma 3.1. (T') is a k-cover of I".

Proof. Since T is a k—cover of T, there exists a map 7 : I -»T satisfying Definition 2.6. Let 7’ : () —» 1
be the map such that for vertices v € IV, 7/(v) = m(v) and for edges e € IV, 7’'(e = (v2,v%)) = (7(v}), 7(vY)).
Since 7’ acts on the same vertices as m, condition 2 is satisfied for vertices. Since [ contains k copies
of each e = (v,,v.) and only lifts of e get mapped to e, indeed |7'~1(e)| = k, satisfying condition 2 for edges.



The weights of the edges (v, vk, (vl v?) in the cover are the same as the corresponding weights {v?, vt} in

I, and likewise the weights of edges {v,w} in T', and so we have satisfied condition 3.

Each vertex v‘ in (~) has the same incoming and outgoing degree as the corresponding v; in I': We
first note that the incoming and outgoing degree of each vertex in I and (T')’ are the same as the degree of
the corresponding vertex in T’ and T respectively. By construction each vertex in T' has the same degree as
its corresponding vertex in I'. Then since each vertex in I' has the same degree as the corresponding vertex
in IV, each vertex v] in (F) has the same incoming and outgoing degree as the corresponding v; in IV. Hence
7 is a local homeomorphlsm and we have satisfied condition 4.

Hence, we can conclude that (T') is by definition a k-cover of T". O

/

Lemma 3.2. The Laplacian matrices of T' and T are the same as those of I and (f‘) respectively.

Proof. The definition of I is equivalent to simply creating the Laplacian matrix for I', and then reading it
as if it were the Laplacian matrix of an directed graph. This directed graph is exactly I"”. O

()

We can now use this result to derive a formula for the ratio ()

Theorem 1.4. Let I' be an undirected edge-weighted multigraph and let T bea k-cover Define matrices
n(k —1) x n(k — 1) matrices A, D, with rows and columns indeved by v?,...,v2, ... 0¥ .. such that for T,
k-cover of undirected graph T = (V, E, wt),

Aot vj] = Z wt(é) — Z wt(€)

Esé={v},v7} Esé={v}v;}

Doy, v}] = 8ij0r - Z wt(e)

E€E adjacent to v}

7n7

Let [£()|z) = D — A. Then 13 = [£(T)]z()-

Proof. Since the Laplacian matrices of T’ and T are the same as those of T” and ZI‘)’

mas 3.1 and 3.2, the ratio % is equal to AA’(EE? ) Rewriting [£(I")]z[g) in terms of the edges from I' rather

respectively by Lem-

than I, we obtain our result. 0

4 Positivity for Simple Cases

To begin our investigation of positivity, we first look at a simple case. In particular we study graphs with
spanning tree polynomials that have only one term. The purpose of this is twofold. First, it is illustrative of
an argument style used throughout the paper; namely, showing that the spanning tree polynomial of I' can
be factored out of the spanning tree polynomial of I'. Second, two important special cases follow directly in
Corollarly 4.2 and Corollary 4.3.

Lemma 4.1. Let T' = (V, E,wt) be a graph whose spanning tree polynomial is a monomial. Then, for any

k-cover T of T, the spanning tree ratio T(F; has positive integer coefficients.

Proof. We first note that T'(T") divides T(T) by our Theorem 1.4. Further, since T(T) is a monomial, it
divides each term of T'(I'). In particular, the coefficient of T'(I') divides each coefficient of T'(I"). Since
the coefficients of T'(I') and T(T') are positive integers by construction, we can then conclude the ratio of

spanning tree polynomials ;8:; has positive integer coefficients. O]

In particular, we get the following corollaries.

Corollary 4.2. IfT is a graph with exactly one vertex, then for any k-cover r of T, % has positive integer
coefficients.

Corollary 4.3. IfT is a spanning tree, then for any k-cover T of T, % has positive integer coefficients.



5 Positivity For Flowers

Definition 5.1. A flower is a graph which is a union of cycles centered at one vertex, and a petal is a simple
cycle in a flower.

Example 5.1. Consider the graph in Figure 7. This is a flower with two petals adjoined at vy, both of
which are 2-cycles.

a C
‘Uli :'U2i :03
b d

Figure 7: A flower I' composed of two 2-cycles with central vertex vy .

Definition 5.2. For a flower I’ with central vertex v, and a k-cover T’ of T, a quasi-cycle of T is a subgraph
constructed by starting at a lift of v and traversing adjacent vertices until a, possibly different, lift of v is
reached. A quasi-cycle ) always projects down to a petal of I', and each quasi cycle contains the same
number of edges as the petal it is lifted from.

Example 5.2. The graph T in Figure 8 is a 2-cover of I' in Figure 7. Observe that I" has four quasi-cycles,
two that correspond to each petal of I'. In particular, note that the edges of one of these quasi-cycles are
highlighted in red.

Figure 8: T, a 2-cover of the flower T

Lemma 5.1. Let T be a flower. For any petal C of ' and any spanning tree T of T, there exists a quasi-cycle
lifted from C' that is missing eaxtly one edge in T. Further, no quasi-cycles can be missing more than one
edge in T.

Proof. Suppose for contradiction that for some spanning tree 7' of I and some cycle C of I' there exists no
quasi-cycle lifted from C' which is missing an edge. Then, since these quasi-cycles together contain all lifts
of the vertices and edges in C', they themselves form a cycle or a collection of cycles, so our spanning tree
has T has some cycle, which is a contradiction. Therefore some quasi-cycle lifted from C' must be missing
at least one edge.

Now suppose for contradiction that a quasi-cycle @ with vertices vy, ..., v, and edges e; = {v1,v2},...ep_1 =
{vn-1,v,} was missing at least edges e;,e; in a spanning tree of 7. Then since v, ...v;41 each had degree
two in 7', this segment is now isolated, and so we do not have a spanning tree, which is a contradiction.

Therefore there must exist a quasi-cycle in T lifted from C which is missing exactly one edge, and no
quasi-cycles in 7' missing more than one edge. O



Lemma 5.2. If we have an edge missing in a spanning tree T' of T, we can swap it any edge in the same
quasi-cycle and still have spanning tree of T'.

Proof. Let e = {u,w} be the missing edge of the quasi cycle. If e is not the only edge in the quasi cycle,
then at least one of u, w is not a lift of the central vertex v. Suppose w is not a lift of v, then the degree of
w is 1, since it was 2 in I' but we removed an edge adjacent to w in producing T'.

Now consider the other edge out of w, ¢/ = {w,z} (it may be that x = v, but clearly w # v). Since
the degree of w is 1, the degree of z in T must be greater than 1, else ¢’ would be isolated and we would
not have a spanning tree. Therefore, we can remove e’ without leaving x isolated, and replace with e’ with
e such that w is not isolated. Since we have no isolated vertices and the appropriate number of edges, we
must still have a spanning tree. Repeating this process, we may swap any two edges in the quasi cycle and
still have a spanning tree. O

Theorem 5.3. Let T be a flower and T be a k-cover, then the ratio % has positive coeffecients.

Proof. Let T be a flower with P petals denoted C4, ..., C;, ...Cp each of length n; with edges {e;1,....€in;}
where e; 1 and e; ,,, adjoin to the central vertex v. Let I' be a k-cover of I'. Let Q; be the set of quasi-cycles
which are lifts of C; and let Q; € Q; be the quasi cycle containing the 5t 1ift of €i1-

For every spanning tree of I, there exists a Q; € Q; which is missing an edge by Lemma 5.1. Thus for
each 7 we can partition the spanning trees of of I' into sets Fé- where j is minimal for which Q; € Q; is
missing an edge

We define a function g; (e, .. ¢, ,} : 1:‘3 — fé such that g; (e, e, (T € f‘;) acts on T' by replacing e; 4
and removing e; ; or visa versa when 7' is missing a lift of e; , or e; s, and gj,{ei,ayei,b}(T) = T otherwise.
By Lemma 5.2, g; e, . e, ,} (T) will always be a spanning tree, and clearly if T' € 1:‘37 then g; re, ...} (T) € f‘;

Assume T is not missing a lift of e; , or e;p, then g; . . . ) (T) = gi(ei.meivb)(T) = T . Now, without
loss of generality, assume 7" is missing a lift of e; , in @Q;, and let gj,{ei,a,ei,b}(T) =T'. Then T and T" differ
only in that the lift e;; is missing from 7" but the lift of e; , is not. We see then that g; (¢, . e, ,}(T) =T,
since gj (e, ..e;,} replaces the lift of e;;, and removes e; ,. Therefore g; (¢, , ¢, ,} 18 an involution. It follows
that g; (e, , e} 18 bijective.

For each 1:‘; of 1:‘7 we have
> wt(T) =Y wh(gjes e, (T)) (1)
Tef“;: Tef“;‘.
SINCe gj (e, ,.e;} 18 @ bijection. For ease of reading we will refer to g; (e, , e, ,} Simply as g. We can then say
f; = f;/ei,a U f; Jein U f;*v where f;-/ei@ (resp. f;-/ei,b) contains spanning trees in f‘; for which @Q; does
not contain a lift of e; o (resp. ;) and T+ contains spanning trees in T'% for which Q; contains lifts of both
€i,q and e; . Therefore we may rewrite Equation 1 as

S wtD+ Y wtM)+ > wt(T) = > wtg)+ > wt(g(T)+ Y wt(g(T)) (2)

T€f§/ei,a TEf‘;/ei,b TEf‘;'.* Tef‘;/ei,a Tef;/ei,b Tef“;*

But since g(T) = T for T € f‘;*, we may cancel out our third terms. Looking at the left hand side, we

may write Y pepi e, WHT) a8 [[iepni oy WH€i) Doreri e, , wH(T — Q;), where T — Q; denotes deleting all
j i,a i - j i,a

edges in (); from the spanning tree 7. Each tree in F;/ei’a contains the same copy of Q); — €; 4, S0 we are

simply factoring this out.

Looking at the right hand side of the equation, we note that for T € f‘; /€ia, g just swaps in e; , and removed
eip and does not affect edges outside of @, so for the same reasoning we may write > pcri /., wt(g(T))
J 1,a



as [[iepn o1 wt(€in) Yoperi e, , WHT — Q;). Doing similarly for the second terms on each side of the equal
; i/eia
sign and cancelling out the third term, we obtain the following equation.

I wte) D wt(T-Q)+ [ wien) D, wt(T-Qy)

1efn\ {o} Teft e, lelna\{b} Tel Jeo 5
= [ wten D, wi@-Qn+ [ wilen) D, wiT-Q))
tefm\(b) Telt e tefni]\{a} Tel e,

From Equation 3 we may conclude that

Yo owt(T-Q)= > whT-Q)) (4)

Tef;/ei,a TGf‘;/ei,b

Equation 4 is saying that spanning trees of I’ in fz missing a lift of e; , are in bijection with those missing
a lift of e; ;. Since a and b were arbitrary, the spanning trees of I in f‘; missing a lift of e; , are in bijection
with those missing a lift of e;, for any x and y. We will denote the terms of Equation 4 as a constant 04;.

Now we see
SwtT) =Y > wtT

Tef‘; l€[n;) Tef"i./ei '
= Z H 6z l Z wt(T — Qj) (5)
len;] l€[n:]\ {1} Tel /ei,

ay > I wiein)

le[n;] l€[ns]\ {1}

Now, fixing i, we have from Equation 5 that

2D wil) =) af > [ wilen)

jelk] Telt Jelk]  le[ni]le[na\{I}

| (6)
(Z T (3 o)

le[ni] le[n ]\ {1} Jelk]

Since every spanning tree of I’ must be missing some edge from some Q; € Q; for each ¢ € [P], all spanning

trees exist in some f‘; for fixed 4, so we may factor out 3=, 1 [y oy wtein) from T'(I'), the spanning

tree polynomial of I'. Doing so for each i € [P] results in factoring out

II> Il wiew (7)

i€[P]l€[n;] l€[n:\{1}

which is precisely the spanning tree polynomial of I, T'(T'). Since we are essentially factoring out positive
monomials from individual terms of T(l:‘) which themselves are positive monomials, we will be left with
positive coefficients. Then in the ratio %, we will cancel out T'(T") and be left with positive coefficients. [

6 Extended Flowers

While the case of flower graphs may seem narrow, we can expand this result significantly with only slight
modification to our argument. This modification allows us to prove the main theorem of the paper in
Theorem 1.5.

Definition 6.1. An extended flower is an undirected graph that is a flower when all edges that are not in
any cycles are contracted.

10
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Figure 9: An extended flower I" with trees highlighted in red.

Example 6.1. Notice that I' in Figure 9 becomes the flower in Figure 7 when you contract the trees
highlighted in red.

Lemma 6.1. Let I" be an undirected graph. Then all edges in I" that are not in any cycles must be in every
spanning tree of .

Proof. Let e = {v,w} be an edge not in any cycle of I" and let S be a spanning tree of I" not including e.
However, this would imply that v and w are disconnected in S which is a contradiction. O

Corollary 6.2. If e is an edge in T’ that is not in any cycles, then in a cover T' of T, all lifts of e are in

each spanning tree of T.

Proof. Let & be a lift of e. Note that if ¢ is in a cycle of T, it would project to a cycle in I' containing e
under 7. Thus € is not in any cycle of I'. By Lemma 6.1, € is in every spanning tree of I. O

Corollary 6.2 almost immediately lets us apply Theorem 5.3 to conclude our desired result.

Theorem 1.5. IfT" is an extended flower with a k-cover I‘ then ng is a polynomial with positive integer

coefficients.

Proof. Let M = [[,cp, wt(e) where Ey, is the set of all edges not in cycles in I, If E,, is the set of all lifts
of edges in Ey,, then [[.c5 wt(e) = M*. Let Tt be T with all edges in E,, contracted. Likewise, let T'f

be I with all edges in E,, contracted. By definition, we note that I'y is a flower graph, and further that r ¥

is a k-cover of I'y. We can then appeal to Theorem 5.3 to say TEFf g is a polynomial with positive integer

coefficients. Finally, since T(T') = MT(T';) and T(T') = M*T(T's) we can conclude that ;gp) has positive

integer coefficients, as desired. O

7 Future Directions

We conclude the paper by presenting next steps for generalizing the positivity conjecture, as well as some
alternative lines of inquiry that could yield interesting results.

7.1 Generalizing the Undirected Case

The natural next step is to prove the positivity conjecture for chains.

Definition 7.1. A chain is a graph which are a collection of simple cycles adjoined at possibly different
vertices.

11



We did not make this step because our proof technique for flowers did not generalize; without a central
vertex, we would need to redefine quasi-cycles to proceed. That being said, we expect similar techniques
to work if the definition of a quasi-cycle was tweaked to not be defined in terms of the central vertex, but
rather as a minimum set of edges that project to a certain cycle in I'.

U1 V2 U3 Vg

Figure 10: An example of a chain

After that, the final step is to consider graphs which contain edges that are in multiple cycles. We found
investigations on this final step to be difficult as our approach was to find an explicit combinatorial formula
for the spanning tree polynomial of such a graph. It is possible that a weaker approach, such as an argument
similar to that of Section 5 will be more fruitful.

7.2 Implications for Directed Graphs

Note that by Lemma 3.2, we can view undirected graphs as a special type of directed graphs. Namely,
an undirected graph I' is equivalent to a directed graph IV with mutually connected vertices; that is, the
existence of directed edge {v,w} in I' implies the existence of edges (v,w), (w,v) in I (see Section 3 for
more detail). Since the [L]zy matrices of I' and I are the same, the positivity conjecture will hold true
for the directed analogues of the cases we have proved. Additionally, the proof technique used in Section 5
should suffice to show the positivity conjecture holds for directed graphs which are simple cycles sharing one
common vertex.

7.3 Alternate Approach to the Directed Case

In addition to the more direct approaches for proving this conjecture, we present an alternative approach
based on a conjecture posed by Chepuri et al. in [2].

Conjecture 7.1 (Based on Conjecture 5.6. in [2]). Let ' = (V, E) be an undirected graph. LetT be a random
k-cover of ', assuming uniform distribution. Then the expected value of the spanning tree polynomial ratio

18
k-1

= % H Z wt()

veV \a€E(v)

T(T)
T(r)

Chepuri et al. [2] note that finding an expected value for this ratio as in Corollary 7.1 will possibly give
way to a ‘pigeon-hole’ like argument for positivity. That is, assuming for contradiction that the spanning
tree ratio has negative coefficients may cause the expected value to be smaller than what would match
Conjecture 7.1.

7.4 Other Statistics on Graphs

Another natural direction is to ask whether there are other statistics on graphs for which there is a nice
relationship between a graphs and their covers, such as the Tutte polynomial.

Definition 7.2. Define to be abridge of graph G if the graph G — e has strictly more connected components
than G. Define the Tutte polynomial Tg(x,y) for a graph G recursively by Tg(z,y) = 1 if G has no edges,
and otherwise if e is an edge of G, then

2Tg—e(z,y) if e is a bridge
Ta(e,y) = 4 yTo—(2,y) if s a loop
Ta—c(x,y) +Tg/e(z,y) if e is neither a loop nor a bridge

Here T —(w,y) and Tg/.(x,y) are graphs obtained by deleting edge e and contracting along e respectively.
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When z = y = 1, the Tutte polynomial counts spanning trees, and so for graph G and cover G, Ta(1,1)
divides Tj5(1,1). Further, Verma [4] shows that if G is a flower and G is a 2-cover of G, then T (x, 1) divides
T¢(x,1). However, it is still an open question to find exactly what conditions  and y result in Tg(z,y)
dividing T (z,y) in general.

Another line of investigation is to ask whether the permanent, the unsigned determinant, of the Lapla-
cian matrices of a graph G divides that of the cover G, and if so what the quotient is. Rather than counting
spanning trees, the determinant counts the vertexr covers of a graph.

8 Acknowledgements

This research was conducted during the 2021 University of Michigan Math REU program, with the support
of NSF grants F057224 and F053989. We would like to thank David Speyer and the rest of the University of
Michigan math department for running the REU. We also would like to thank Sunita Chepuri for providing
us with a conjecture to study, and for her guidance and mentorship throughout the program.

References

[1] Seth Chaiken, A combinatorial proof of the all minors matriz tree theorem, SIAM Journal on Algebraic
Discrete Methods 3 (1982), no. 3, 319-329.

[2] Sunita Chepuri, CJ Dowd, Andy Hardt, Gregory Michel, Sylvester W Zhang, and Valerie Zhang, Ar-
borescences of covering graphs, arXiv preprint arXiv:1912.01060 (2019).

[3] Pavel Galashin and Pavlo Pylyavskyy, R-systems, Selecta Mathematica (2019).

[4] Kaustubh Verma, Double covers of flower graphs and tutte polynomials, Minnesota Journal of Under-
graduate Mathematics 6 (2021), no. 1.

13



	Introduction
	Background
	Arborescences and Spanning Trees
	Covering Graphs
	Arborescence Ratio

	Explicit Formula for the Ratio of Spanning Tree Polynomials
	Positivity for Simple Cases
	Positivity For Flowers
	Extended Flowers
	Future Directions
	Generalizing the Undirected Case
	Implications for Directed Graphs
	Alternate Approach to the Directed Case
	Other Statistics on Graphs

	Acknowledgements

