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Abstract

Rayleigh–Bénard convection (RBC)—a classical problem in fluid dynamics—plays a significant role in
a large range of phenomena in engineering, geophysics and astrophysics, and has been studied extensively
to gain insights into the development of turbulence. Recent investigations show that steady solutions
share many features with the turbulent RBC from direct numerical simulations and form the state space
skeleton of the turbulent dynamics. This study focuses on the high-wavenumber, steady convection roll
solutions that bifurcate supercritically from the motionless conductive state for two-dimensional RBC
between stress-free boundaries. In order to elucidate the asymptotic behavior of the heat transport
enhancement factor, i.e., the Nusselt number Nu, we compute steady convective rolls with aspect ratios
0.06 ≤ Γ ≤ π/5 over six orders of magnitude in the Rayleigh number 108 ≤ Ra ≤ 1014 for fixed Prandtl
number Pr = 1. Previous work indicates the dependence of Nu on Γ has a maximum at Γ ≈ 1.9 at large
Ra for low and moderate wavenumbers k = 2π/Γ ≤ 10 [7]. Preliminary results of this study, however,
show that there exists a second local maximum in the high-wavernumber regime where the aspect ratio
Γ∗
loc that locally maximizes Nu(Γ) scales as Ra−1/4 and the corresponding Nu and Re scale as Ra0.29

and Ra2/5 respectively as Ra → ∞. Nevertheless, for fixed Γ and as Ra → ∞, our numerical solutions
converge back to the Chini-Cox asymptotic solutions [1] with Nu ∼ Ra1/3 and Re ∼ Pr−1Ra2/3.

1 Introduction

Convection and conduction are both mechanisms of heat transfer in fluids. In convection, heat transfer
is caused by the mass flow of fluid particles, whereas in conduction, it is due to the particles’ vibrational
motion about their equilibrium. Convection can occur in the presence of an unstable density distribution
caused by a negative temperature gradient between its vertical boundaries. For relatively small temperature
differences, heat transfer is dominated by conduction and governed by Fourier’s Law. However, beyond a
critical threshold, convection can no longer be ignored, and heat flux is enhanced.

Determining the enhancing effect of convection has been a central focus in many fields including engineer-
ing, geophysics, and astrophysics. Rayleigh-Bénard convection is a minimalistic mathematical model that
displays buoyancy-driven convection. This model consists of a fluid contained between two isothermal hori-
zontal boundaries separated by a vertical distance H. The temperature gradient between the two boundaries
is negative; the bottom plate is held at a higher temperature than the top in order for convection to occur.
Rayleigh-Bénard convection has been diligently studied experimentally, theoretically, and computationally
as it remains a relatively simple model to describe a wide variety of complex real-world scenarios.

In Rayleigh-Bénard convection, the measurement of convective heat flux is given by the Nusselt number
Nu, defined as the ratio of total heat flux to conductive heat flux. A particular interest in Rayleigh-Bénard
convection is determining Nu as a function of the Rayleigh number Ra the ratio of driving to damping
forces, the Prandtl number Pr the ratio of momentum diffusivity to thermal diffusivity, and the aspect
ratio Γ defined as the domain’s width-to-height ratio. Specifically, we are interested in determining Nu as a
function of these dimensionless numbers in the asymptotic limit of Ra→∞.
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Figure 1: Compensated plot of Nu vs wavenumber k = 2π/Γ on a log-log plot for stress free steady
convection rolls. Smaller wavenumber values, points left of the gray dashed line, were computed by Wen et
al. [7]. Recently discovered local-maximum solutions occurred for high-wavenumbers for fixed Ra and Pr,
similar to the no slip case [6]. These local maximums are denoted by the black points.

Two theories have been proposed, both predicting a power-law scaling in the turbulent regime, Nu ∼
PrγRaβ , however varying in the values of γ and β. Classical theory, proposed independently by Priestly [3]
and Malkus [2], asserts Nu ∼ Ra1/3 in the asymptotic regime. Priestly argued that the heat flux should be
independent of the vertical distance H between the plates in the turbulent regime for large Γ, and Malkus’
maximum dissipation theory also agrees with γ = 0 and β = 1/3. Ultimate theory, proposed by Spiegel [4],
asserts Nu ∼ Pr1/2Ra1/2 for Pr . 1. Spiegel augured that heat will be transferred at the fluid’s free-fall
speed, and thus the heat flux Q will become independent of the kinematic viscosity ν and thermal diffusivity
κ.

Asymptotic scaling of the Nusselt number has been studied via direct numerical simulation (DNS) for
various boundary conditions and geometries. In the case of steady Rayleigh-Bénard convection with no-slip
boundary conditions, the Nusselt number displayed absolute and local maximum features as a function of
the domain size Γ for fixed Ra and Pr; and for the optimal choice of Γ, classical 1/3 scaling was achieved
[6]. In the case of steady Rayleigh-Bénard convection with stress-free boundary conditions, only an absolute
maximum has been observed thus far at Γ ≈ 1.9 for Nusselt as a function of Γ for fixed Ra and Pr [7].
Classical 1/3 scaling was achieved for stress-free boundary conditions Nu = c(k, Pr)Ra1/3 for all fixed
Γ, and the proportionality prefactor c(k, Pr) was found to be independent of Pr, c(k, Pr) → c(k) [1].
Predictions of this prefactor were derived by Chini & Cox using the assumption that the plumb’s width is
negligible compared to the size of the domain. However, we recently discovered that in the case of small
Γ, local maximum behavior occurred in the stress-free case, Figure 1, similar to the no-slip case. For high-
wavenumber, small Γ, the width of the plumb becomes comparable to the size of the domain, and the
assumption made by Chini & Cox is invalid for these domains. Therefore convergence to the Chini & Cox
prefactor c(k) remains an open question for high-wavenumber solutions.

This paper investigates the properties of the recently discovered local-maximum solution for the stress-free
case and continues the computations done by Wen et al. [7] for higher wavenumbers to test the convergence
of these solutions to classical theory and the Chini-Cox prefactor [1]. We performed computations of steady
coherent states in nonlinear two-dimensional Rayleigh-Bénard convection with stress-free boundaries using
a Newton-GMRES method. Computations were executed over six magnitudes of Ra, 108 ≤ Ra ≤ 1014

for the local-maximum solution and for fixed aspect ratios 0.06 ≤ Γ ≤ π/5. Our data shows that for the
local-maximum solution Nu is proportional to Ra0.29, Re is proportional to Ra2/5, and Γ is proportional to
Ra−1/4. For fixed aspect ratios, our results were consistent with classical theory Nu ∼ Ra1/3 and converged
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to the Chini-Cox prefactor; with convergence taking longer for higher wavenumbers k = 2π/Γ. Finally, we
found that the width of the plumb scales as Ra−1/3 resulting in this width becoming negligible compared to
the size of the domain in the limit of Ra →∞.

The rest of this paper is designed as follows: Section 2 discusses the derivation of the relevant equations used
in Rayleigh-Bénard convection, Section 3 contains our computational results, and Section 4 is a discussion
of these results and future work.

2 Theoretical background

2.1 Derivation of Navier Stokes Equation

The Navier stokes equation remains one of the most rigorously studied equations in all fluid mechanics due
to its wide application to real-world scenarios and its intrinsic mathematical difficulty to solve because of
its nonlinearity. The Navier stokes equation is a set of coupled nonlinear partial differential equations that
govern the motion of all Newtonian fluids. These equations can be derived using the Reynolds transport
theorem,

∂

∂t

∫
V

ρbdV +

∫
S

ρbu · n̂dA =
DB

Dt
, (2.1)

which relates an extensive property B, a properties proportional to mass, to an intensive property b = B/m.
The continuity equation can be derived by setting B = m and recognizing that the right side of the equation
goes to zero from conservation of mass.

∂

∂t

∫
V

ρdV +

∫
S

ρu · n̂dA = 0,

∂

∂t

∫
V

ρdV +

∫
V

∇ · (ρu)dV = 0,

∂ρ

∂t
+∇ · (ρu) = 0. (2.2)

We transformed the surface integral to a volume integral by use of the divergence theorem and took the limit
as V → 0 to get Eq. 2.2, the continuity equation. The conservation of momentum equation can be derive
similarly by setting B = mu and recognizing the right side as the time rate of change of momentum which
by Newton’s second law is equal to the sum of the forces.

∂

∂t

∫
V

ρudV +

∫
S

ρu(u · n̂)dA = −
∫
S

Pn̂dA+

∫
S

µ∇udA+

∫
V

ρgdV,

∂

∂t

∫
V

ρudV +

∫
V

∇ · (ρuu)dV = −
∫
V

∇PdV +

∫
V

µ∇ · ∇udA+

∫
V

ρgdV,

ρ

(
∂u

∂t
+ u · ∇u

)
+ u

(
�������∂ρ

∂t
+∇ · (uρ)

)
= −∇P + µ∇2u + ρg,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + µ∇2u + ρg. (2.3)

We transformed the surface integrals to volume integrals by use of the divergence theorem and took the limit
as V → 0 to get Eq. 2.3, the momentum equation. The ∂ρ

∂t +∇ · (uρ) term cancels out due to Eq. 2.2. The
continuity equation, Eq. 2.2, and the momentum equation, Eq. 2.3, make up the Navier stokes equations

∂ρ

∂t
+∇ · (ρu) = 0, (2.4a)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + µ∇2u + ρg. (2.4b)

Where u, the velocity field, P , the pressure, and ρ, the density, are in general functions of position and time.
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2.2 Application of Navier Stokes to Rayleigh-Bénard convection

Rayleigh-Bénard convection is the natural convection that occurs due to an unstable density distribution
arising from a negative temperature gradient. To describe this phenomenon, we need the Navier Stokes
equations that govern the fluid’s motion, the diffusive equation, which represents how the temperature
evolves, and an equation to measure the density variations. In our problem, we assumed that the density
takes on the following form ρ = ρo(1−α(T −To)) and applied the Boussinesq approximation; the variation in
density is only relevant in the buoyancy gravity term. The relevant equations in dimensionless form become,

∂u

∂t
+ u · ∇u = −∇P + Pr∇2u + PrRaT ẑ, (2.5a)

∇ · u = 0, (2.5b)

∂T

∂t
+ u · ∇T = ∇2T. (2.5c)

The equations have been nondimensionalized in terms of the separation distance between the boundaries H,

the thermal diffusion time H2

κ where κ is the thermal diffusivity, and the temperature drop ∆T between the
bottom and top boundaries. In this paper, we consider the steady solution, so naturally all time derivatives
go to zero and u = ux̂+wẑ the velocity field, P the pressure, and T the temperature are functions of x and
z

The relevant dimensionless numbers in Eq. 2.5 are the Rayleigh number Ra = gα∆TH3

κν where g is
the gravitational acceleration, α is the thermal expansion coefficient, and ν is the kinematic viscosity, the
Prandtl number Pr = ν

κ , and the aspect ratio Γ the width-to-height ratio of the domain in our problem.

The dimensionless spatial domain for our problem is (x, z) ∈ [0,Γ]× [0, 1] where the width of one roll is Γ
2 .

At the top and bottom boundaries, the temperature field satisfies isothermal boundary conditions, and the
velocity field satisfies no-penetration and stress-free boundary conditions.

T |z=0 = 1, T |z=1 = 0, w|z=0,1 = 0, ∂zu|z=0,1 = 0. (2.5d)

From the solutions of Eq. 2.5, the Nusselt number Nu = QH
ρcκ∆T , where Q is the total heat flux and c is the

specific heat, and the Reynolds number Re = UrmsH
ν , where Urms is the root-mean-squared velocity, can be

calculated by the following equations.

Nu = 1 + 〈wT 〉, (2.6)

Re = 1 + 〈u2 + w2〉1/2. (2.7)

From classical theory, we expect that as Ra → ∞ , Nu ∼ Ra1/3 and Re ∼ Pr−1Ra2/3 where the constant
of proportionality depends on the choice of Γ.

2.3 Stream function-vorticity formulation

We made use of a vorticity-stream function in order to simplify Eq. 2.5. The stream function Ψ can be
defined for any two-dimensional incompressible flow. The stream function can be used to plot streamlines,
representing the trajectories of particles in a steady flow and inherently satisfy the continuity equation, Eq.
2.5b. In general, we can define the stream function Ψ as

u = ∇×Ψ, (2.8)

but since our velocity is two dimensional in x and z, this simply reduces to

u =
∂Ψ

∂z
x̂− ∂Ψ

∂x
ẑ. (2.9)

On direct substitution it is clear that Eq. 2.9 satisfies the continuity equation,

∇ ·
(
∂Ψ

∂z
x̂− ∂Ψ

∂x
ẑ

)
= 0,
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∂

∂x

(
∂Ψ

∂z

)
− ∂

∂z

(
∂Ψ

∂x

)
= 0.

Interchanging the order of differentiation by the symmetry of the second partial derivative,

�
����∂

∂z

(
∂Ψ

∂x

)
−
�

����∂

∂z

(
∂Ψ

∂x

)
= 0.

Introducing the stream function provides a meaningful simplification since it allows us to deal with one
unknown Ψ rather than two unknowns u and w.

The vorticity field ω describes the rotational motion of the fluid at every position. Mathematically,
vorticity is defined as the curl of the velocity field,

ω = ∇× u. (2.10)

In two-dimensional flow, the vorticity vector field reduces to a scalar field since ω is always perpendicular to
the plane of the flow, the y-direction in our model. For two dimensional flow, the negative vorticity scalar
can be written as,

ω =
∂w

∂x
− ∂u

∂z
. (2.11)

For two-dimensional steady incompressible flow, we can represent the Naiver Stokes equations and the
diffusion equation in terms of the stream function Ψ and the vorticity ω. The motivation for this is that by
introducing Ψ we do not have to solve for individual velocity components, and by introducing ω it allows us
to combine the x and z component of Eq. 2.5a into one, reducing the number of equations that we need to
solve. To maintain Dirichlet boundary conditions, we introduce θ defined as the deviation of the temperature
field T from the conduction profile 1− z. What follows is a derivation of Eq. 2.5 in terms of Ψ, ω, and θ.

Since the stream function naturally satisfies the continuity equation, we need to obtain a third equation
that relates Ψ, ω, and θ. From Eq. 2.10, there is a relationship between ω and the components of the
velocity. However we know that u = ∂Ψ

∂z and w = −∂Ψ
∂x . Upon direct substitution into Eq. 2.10, we obtain

ω = −∇2Ψ. (2.12)

Eq. 2.5a in it x and z components is

u
∂u

∂x
+ w

∂u

∂z
= −∂P

∂x
+ Pr

(
∂2u

∂x2
+
∂2u

∂z2

)
, (2.13a)

u
∂w

∂x
+ w

∂w

∂z
= −∂P

∂z
+ Pr

(
∂2w

∂x2
+
∂2w

∂z2

)
+ PrRa(θ − z + 1). (2.13b)

Take Eq. 2.13a partial derivative with respect to z and take Eq. 2.13b partial derivative with respect to x,

∂u

∂z

∂u

∂x
+ u

∂2u

∂z∂x
+
∂w

∂z

∂u

∂z
+ w

∂2u

∂z2
= − ∂2P

∂z∂x
+ Pr

(
∂2

∂x2

(
∂u

∂z

)
+

∂2

∂z2

(
∂u

∂z

))
, (2.14a)

∂u

∂x

∂w

∂x
+ u

∂2w

∂x2
+
∂w

∂x

∂w

∂z
+ w

∂2w

∂x∂z
= − ∂2P

∂x∂z
+ Pr

(
∂2

∂x2

(
∂w

∂x

)
+

∂2

∂z2

(
∂w

∂x

))
+ PrRa

∂θ

∂x
. (2.14b)

Now take Eq. 2.14b and subtract Eq. 2.14a along with using the definition of Ψ and ω to obtain

∂Ψ

∂z

∂ω

∂x
− ∂Ψ

∂x

∂ω

∂z
= Pr∇2ω + PrRa

∂θ

∂x
. (2.15)

Eq. 2.5c in terms of Ψ, ω, and θ is simply

∂Ψ

∂z

∂θ

∂x
− ∂Ψ

∂x

∂θ

∂z
= −∂Ψ

∂x
+∇2θ. (2.16)
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So the governing equations for our problem become

∂Ψ

∂z

∂ω

∂x
− ∂Ψ

∂x

∂ω

∂z
= Pr∇2ω + PrRa

∂θ

∂x
, (2.17a)

∇2Ψ = −ω, (2.17b)

∂Ψ

∂z

∂θ

∂x
− ∂Ψ

∂x

∂θ

∂z
= −∂Ψ

∂x
+∇2θ. (2.17c)

Satisfying Dirichlet boundary conditions,

Ψ|z=0,1 = 0, ω|z=0,1 = 0, θ|z=0,1 = 0. (2.17d)

2.4 Numerical Method

Eq. 2.17 cannot be solved analytically, so we need to take advantage of computational methods to solve this
system of partial differential equations. The method used in our paper was a Newton–GMRES (generalized
minimal residual) iterative scheme. The residuals of Eq. 2.17 are

Fωres = Pr∇2ω + PrRa
∂θ

∂x
− ∂Ψ

∂z

∂ω

∂x
+
∂Ψ

∂x

∂ω

∂z
, (2.18a)

FΨ
res = ∇2Ψ + ω, (2.18b)

F θres = ∇2θ − ∂Ψ

∂z

∂θ

∂x
+
∂Ψ

∂x

∂θ

∂z
− ∂Ψ

∂x
. (2.18c)

To minimize the residuals, we start by choosing an initial guess for Ψ, ω, and θ denoted (Ψ0, ω0, θ0).
Corrections are made to (Ψ0, ω0, θ0) until we obtain a solution to Eq. 2.17. To acquire the ith correction,
(∆Ψi ,∆ωi ,∆θi), we solve the following Jacobian matrix problem:(

Pr∇2 − ∂Ψ

∂z

∂

∂x
+
∂Ψ

∂x

∂

∂z

)i
∆ωi +

(
−∂ω
∂x

∂

∂z
+
∂ω

∂z

∂

∂x

)i
∆Ψi +RaPr

∂

∂x
∆θi = −Fωresi, (2.19a)

∆ωi +∇2∆Ψi = −FΨ
res

i, (2.19b)(
− ∂

∂x
+
∂θ

∂z

∂

∂x
− ∂θ

∂x

∂

∂z

)i
∆Ψi +

(
∇2 − ∂Ψ

∂z

∂

∂x
+
∂Ψ

∂x

∂

∂z

)i
∆θi = −F θresi, (2.19c)

for each ith Newton iteration. The ith corrections are defined as

∆Ψi = Ψi+1 −Ψi, ∆ωi = ωi+1 − ωi, ∆θi = θi+1 − θi. (2.20)

Newton iterations are continued until proper convergence has occurred and no more meaningful corrections
can be made to (Ψ0, ω0, θ0); corresponding to the magnitude of the residuals approaching zero. At this point,
when FΨ,ω,θ

res → 0, we have obtained a solution to Eq. 2.17. Since Eq. 2.19b is linear, we simply solve it by
setting FΨ

res
i = 0 resulting in the following Poisson Equation, ∇2∆Ψi = −∆ωi , which can be solved directly

for ∆Ψi for a given ∆ωi . At this point Eq. 2.19a and Eq. 2.19c can be solved simultaneously for ∆ωi and
∆θi

For each Newton iteration, Eq. 2.19 is solved for ∆ωi and ∆θi using the GMRES method with the partial
derivatives computed by the spectral method. The spatial discretization is spectral, using a Fourier series
in x and a Chebyshev collocation method in z [5]. We simplify computations by solving the problem on
one-quarter of the domain as the solutions have centro-reflection symmetry.

[ω,Ψ, θ](x, z) = [ω,Ψ,−θ](Γ/2− x, 1− z), [ω,Ψ, θ](x, z) = [−ω,−Ψ, θ](Γ− x, z). (2.21)

GMRES iterations are continued until the relative residual error is less than 10−2 and Newton iteration are
continued until |Fres| < 10−10. Solutions were first computed for smaller Ra, and for larger Ra, results from
smaller Ra were used as the initial guess.
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3 Results

We computed steady rolls solutions for moderate to large Ra values ranging from 108 ≤ Ra ≤1014. Solutions
were calculated for the newfound Γ∗loc, the value which locally maximize Nu when Ra and Pr are fixed, and
for fixed aspect ratio Γ = 0.06, 0.08, 0.1, 0.2, 0.4, 0.5, π/5 continuing where Wen et al. [7] left off. Our results
are divided into two sections; local maximum properties and results for fixed Γ.

3.1 Local-maximum solution

The local-maximum solution displayed the following scaling of the Nusselt number, Reynolds number, and
the wavenumber as functions of the Rayleigh number in the asymptotic regime.

Nu ∼ Ra0.29, Re ∼ Ra2/5, and k ∼ Ra1/4 as Ra→∞ (3.1)

These findings are consistent with the no-slip case Wen et al. [6].
Figure 2 shows the dimensionless temperature, stream function, and vorticity fields from left to right.

These fields have an aspect ratio of Γ = Γ∗loc ≈ 0.0063 and were calculate for Ra = 1013 and Pr = 1. All
of these fields have centro-reflection symmetries (see Eq. 2.21), and the interior has an analytical solution;
however, not satisfying the boundary conditions,

T = −A
√
Pr/Rak3 cos kx+ 1/2(k4/Ra+ 1)− k4/Raz, (3.2a)

Ψ = A
√
PrRa sin kx, (3.2b)

ω = Ak2
√
PrRa sin kx. (3.2c)

The panel to the left shows the dimensionless temperature field T where redder regions represent hotter
temperatures. This panel clear exhibits a negative temperature gradient in the z-direction and the x-direction
about the line x = Γ/2. The temperature at the boundaries is given by the isothermal boundary conditions
T |z=0 = 1 and T |z=1 = 0 resulting in a rapid change of the field there. What is of particular interest is the
similarity of the inner contour lines to a sinusoidal function. This is expected from the analytical solution valid
for the interior since we can rearrange Eq. 3.2a for a fixed temperature To and obtain A′ cos kx+C(To) = z
where C(To) and A′ are simply constants. This approximation for the contour lines is valid for medial values
of the temperature, 0.47 ≤ To ≤ 0.53. Beyond these values of To a sinusoidal fit is impractical as can be
seen by the contour lines in the upper corners and bottom middle. The middle panel depicts the stream
function with larger positive quantities associated with redder regions. The stream function is maximized at
two values (Γ/4, 2/33) and (Γ/4, 31/33) and is minimized at (3Γ/4, 2/33) and (3Γ/4, 31/33). The vertical
boundaries satisfy Dirichlet boundary conditions, so Ψ|z=0,1 = 0 resulting in a dramatic change of Ψ near
the boundaries. In the horizontal direction, the field gradually changes between values, and there are three
lines where Ψ is zero, Ψx=0,Γ/2,Γ = 0. The bulk of the interior satisfies a z-independent sinusoidal function
relating x and T given by Eq. 3.2b. This analytical solution is valid for most z-values, 0.2 ≤ z ≤ 0.8. Beyond
these values, especially near the vertical boundaries, the stream function no longer exhibits z-independence,
which is easily seen near the extreme values of Ψ. The vorticity function is illustrated on the right panel
with larger positive quantities associated with redder regions. The vorticity function also exhibits multi-
extremum features similar to the stream function however with the x-values of each maximum and each
minimum deviating slightly. The vorticity function takes on its maximum value at two points, (15Γ/64,
15/16) and (17Γ/64, 1/16) and obtains its minimum values at (47Γ/64, 1/16) and (49Γ/64, 15/16). The
vertical boundaries are fixed at a value of zero ω|z=0,1 = 0 causing a sudden change in the vorticity field there.
As in the stream function, the field gradually changes along the horizontal direction, and there are three
lines where ω is zero, ωx=0,Γ/2,Γ = 0. A z-independent sinusoidal function similar to the stream function,
with an additional factor of k2, is valid for the interior of the vorticity function. Eq. 3.2c is accurate for
most of the interior, specifically for 0.2 ≤ z ≤ 0.8; However, the analytical solution breaks down for z-values
beyond this range as a result of satisfying the boundary conditions.
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Figure 2: Contours of temperature, stream function, and vorticity fields, from left to right, for Ra = 1013,
Pr = 1, and Γ = Γ∗loc. Color represents the values of the dimensionless variables T , Ψ and ω; smaller values
are associated with the color blue, neutral values with green, and larger values with red. The aspect ratio
of these images is intentionally much larger than the aspect ratio of the problem, Γ∗loc ≈ 0.0063, in order to
magnify the finer details of these scalar fields. Locations that appear black represent a rapid change of the
field. Notable these rapid changes occur at the vertical boundaries.

The Ra-dependence of the Nusselt number for Γ∗loc is illustrated in the left panel of Figure 3 for Pr = 1.
Data fitting over the last decade of Rayleigh numbers 1013 ≤ Ra ≤ 1014 to a power-law relationship of the
form Nu = CRaβn yielded a constant of proportionality of C = 0.1962 and an exponent value of βn = 0.2902.
This 0.29 Ra-scaling of the Nusselt number is consistent with the properties of the local-maximum solution

in 2D steady RBC with no-slip boundary conditions [6]. The values of the local exponent βn = d log(Nu)
d log(Ra) as

a function of Ra is shown in the right panel of Figure 3. Convergence to 0.29 occurred from below, and the
value of the local exponent slightly surpasses 0.29 when Ra ≥ 1027/2.

The left panel of Figure 4 shows the relationship between the Reynolds number and the Rayleigh number
for Γ∗loc and Pr = 1. Data fitting over the last decade of Rayleigh numbers 1013 ≤ Ra ≤ 1014 to a function
of the form Re = CRaβr gave values of C = 0.736 and βr = 0.3971. This value of the exponent βr ≈ 2/5 is
consistent with the findings for the local-maximum solution in no-slip steady 2D RBC where 2/5 Ra-scaling

of the Reynolds number occurred [6]. The right panel of Figure 4 shows the local exponent βr = d log(Re)
d log(Ra)

for moderate to high Ra-values. Our data is concentrated around βr = 2/5 with a minimal decreasing trend
for 1042/4 ≤ Ra ≤ 1055/4 and a slight increase when Ra = 1014.
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Figure 3: Left: Nu dependence on Ra for steady rolls on a log-log plot for local-maximum solutions with
Pr = 1. The dashed line is the asymptotic power law relationship between Nu and Ra fitted to the
last decade of data, Nu = 0.1962Ra0.2902. Right: Finite difference approximation of the local exponent
βn = log(Nui+1/Nui)/ log(Rai+1/Rai) vs. Ra on a semi-log plot for steady rolls with Pr = 1 and Γ = Γ∗loc.
A local exponent of 0.29 is denoted by the black dashed line.
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Figure 4: Left: Re dependence on Ra for steady rolls on a log-log plot for local-maximum solutions with
Pr = 1. The dashed line is the asymptotic power law relationship between Nu and Ra fitted to the
last decade of data, Nu = 0.736Ra0.3971. Right: Finite difference approximation of the local exponent
βr = log(Rei+1/Rei)/ log(Rai+1/Rai) vs. Ra on a semi-log plot for steady rolls with Pr = 1 and Γ = Γ∗loc.
A local exponent of 2/5 is denoted by the black dashed line.

The wavenumber-Rayleigh relationship is plotted in the left panel of Figure 5 for Γ∗loc and Pr = 1. A
power-law relationship between k and Ra of the form k = CRaβk was calculated over the last decade
of the Rayleigh number, 1013 ≤ Ra ≤ 1014 producing values C = 0.5902 and βk = 0.2485. The value
of the exponent in the stress-free case βk ≈ 1/4 is consistent with 1/4 Ra-scaling of the local maximum

wavenumber demonstrated in no-slip steady 2D RBC [6]. Convergence of the local exponent βk = d log(k)
d log(Ra)

to 1/4 is illustrated in the right panel of Figure 5. The local exponent βk approaches 1/4 from below reaching
its peak value of βk ≈ 0.2485 at Ra = 1055/4. The increasing trend of our data suggests that βk will continue
to asymptotically increases towards 1/4 for sufficiently large Ra-values.
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Figure 5: Left: kloc dependence on Ra for steady rolls on a log-log plot for local-maximum solutions
with Pr = 1. The dashed line is the asymptotic power law relationship between kloc and Ra fit-
ted to the data, kloc = 0.5902Ra0.2485. Right: Finite difference approximation of the local exponent
βk = log(ki+1/ki)/ log(Rai+1/Rai) vs. Ra on a semi-log plot for steady rolls with Pr = 1 and Γ = Γ∗loc. A
local exponent of 1/4 is denoted by the black dashed line.
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3.2 Fixed-Γ solutions

For sufficiently large Ra, our data for fixed high-wavenumber k = 2π/Γ agreed with classical theory,

Nu = cn(k)Ra1/3 and Re = cr(k)Pr−1Ra2/3 as Ra→∞ (3.3)

Both of these scalings are consistent with the asymptotic behavior predicted by Chini & Cox [1]. Asymptotic
approximations of the stream function and vorticity function provided an expressions for cn(k) and cr(k),
derived in terms of cn(k), Wen et al. [7].

Figure 6 shows the dimensionless temperature, stream function, and vorticity fields from left to right.
These fields have an aspect ratio of Γ = 0.1 and were calculate for Ra = 1013 and Pr = 1. All of these fields
have centro-reflection symmetries (see Eq. 2.21). The left panel illustrates the temperature field with hotter
temperatures represented by the color red. As we can see, the temperature field develops an isothermal core
with a value of 0.5 for nearly all values besides points on or extremely close to the vertical and horizontal
boundaries. This is quite different than the local maximum case in which the interior is not a constant. At
the vertical boundaries, the temperature is determined by the boundary conditions T |z=0 = 1 and T |z=1 = 0
resulting in a rapid change of the temperature there. At the left and right boundaries, where x = 0 and x = Γ,
the temperature is lower than the isothermal core, and when x = Γ/2, the temperature is larger. This is as
expected by the counter-rotating steady convective rolls we are studying. The middle panel represents the
stream function with larger positive quantities associated with redder regions. Unlike the local maximum’s
stream function, this field does not exhibit multi-extremum features and has a maximum at (Γ/4, 1/2) and
a minimum at (3Γ/4, 1/2). The values of Ψ at the vertical boundaries are identically zero given by the
boundary conditions Ψ|z=0,1 = 0 and transition to these boundary conditions occur very quickly. In the
horizontal direction, we see no abrupt transition between values and Ψx=0,Γ/2,Γ = 0. The right panel shows
the vorticity field with larger values associated with redder regions. As illustrated in this panel, nearly all
values left of Γ/2, except points near the perimeter, take on a constant positive value ΨL ≈ 67.36. Similarly,
all values right of Γ/2, except points near the perimeter, take on a constant negative value of the same
magnitude ΨR ≈ −67.36. This is very different than the vorticity of the local maximum where there was a
gradual transition in the horizontal direction. The boundary conditions ω|z=0,1 = 0 result in a aggressive
change of the vorticity field near these values. Similarly, along the left, middle, and right boundaries, the
vorticity suddenly collapses to zero, that is ω|x=0,Γ/2,Γ = 0.

Figure 6: Contours of temperature, stream function, and vorticity fields, from left to right, for Ra = 1013,
Pr = 1, and Γ = 0.1. Color represents the values of the dimensionless variables T , Ψ and ω; smaller values
are associated with the color blue, neutral values with green, and larger values with red. The aspect ratio of
these images is intentionally much larger than the aspect ratio of the problem, Γ = 0.1, in order to magnify
the finer details of these scalar fields. Locations that appear black represent a rapid change of the field.
Notable these rapid changes occur at the vertical and horizontal boundaries and at the horizontal mid-line

Figure 7 shows the compensated Nusselt number Nu/Ra1/3 and the local exponent βn as functions of
the Rayleigh number over a variety of aspect ratios with Pr = 1. In the graph of Nu/Ra1/3 vs Ra,
the compensated Nusselt number approaches a different horizontal line depending on the choice of aspect
ratio/wavenumber. This suggests that as Ra → ∞, Nu = cn(k)Ra1/3 where cn(k) is the wavenumber
dependent Chini-Cox prefactor [1]. It becomes more apparent that our calculations are consistent with
classical 1/3 scaling of the Nusselt number when considering the right panel of Figure 7. This panel shows
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the local exponent βn = d log(Nu)
d log(Ra) as a function of Ra. For all values of Γ, βn eventually converges to 1/3

for sufficiently large Ra-values. Over the considered range of Rayleigh numbers and data points collected,
convergence occurred monotonically for Γ ≥ 0.2. Convergence to the Chini-Cox prefactor occurred from
below the final asymptotic value cn(k) whereas the local exponent converged to 1/3 from above for all values
of Γ. Overall, convergence to classical theory and the Chini-Cox prefactor is slower when the wavenumber
k = 2π/Γ is larger, requiring larger Ra-values for these solutions to exhibit asymptotic behavior.

10
8

10
9

10
10

10
11

10
12

10
13

10
14

0.1

0.2

10
8

10
9

10
10

10
11

10
12

10
13

10
14

0

0.3

0.6

0.9

1.2

Figure 7: Left: Compensated plot of Nu vs. Ra for steady rolls on a semi-log plot with Pr = 1 over a
variety of Γ. The horizontal trend for large Ra-values implies convergence to the Chini-Cox prefactor cn(k).
Right: Finite difference approximation of the local exponent βn = log(Nui+1/Nui)/ log(Rai+1/Rai) vs. Ra
on a semi-log plot for steady rolls with Pr = 1 over a variety of Γ. A local exponent of 1/3 is denoted by
the dashed black line

The compensated Renolds number RePr/Ra2/3 and the local exponent βr as functions of Ra are given in
Figure 8. Calculations for this figure were performed over the same range of Γ and Pr as Figure 7. The left
panel of Figure 8 shows the relationship between RePr/Ra2/3 and Ra. Our data shows the convergence of
RePr/Ra2/3 to different constants depending on the value of the aspect ratio/wavenumber. The convergence
of this quantity implies Re = cr(k)Pr−1Ra2/3 where cr(k) is the wavenumber dependent prefactor derived
by Wen et al. [7]. The 2/3 Ra-dependence of Re in the asymptotic regime is displayed more clearly in

the right panel of Figure 8. This panel shows βr = d log(Re)
d log(Ra) as a function of Ra. The local exponent βr

eventually approaches 2/3 for all values of Γ as Ra → ∞. Over the considered range of Rayleigh numbers
and data points collected, convergence to cn(k) and βr occurred monotonically for Γ ≥ 0.08. Convergence
to cr(k) occurred from below the final asymptotic value whereas the local exponent converged to 2/3 from
above for all values of Γ. The fluctuations in the value of the prefactor cr(k) for each Γ were much less severe
compared to cn(k) over the same range of Ra. This implies that Re reaches its asymptotic scaling much
sooner than Nu does. Overall, convergence of Re to Pr−1Ra2/3-scaling is slower when the wavenumber
k = 2π/Γ is larger, requiring larger Ra-values for these solutions to exhibit asymptotic behavior.
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Figure 8: Left: Compensated plot of Re vs. Ra for steady rolls on a semi-log plot with Pr = 1 over a variety
of Γ. The horizontal trend for large Ra-values implies convergence to the Chini-Cox prefactor cr(k). Right:
Finite difference approximation of the local exponent βr = log(Rei+1/Rei)/ log(Rai+1/Rai) vs. Ra on a
semi-log plot for steady rolls with Pr = 1 over a variety of Γ. A local exponent of 2/3 is denoted by the
black line.
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Figure 9: Left: Compensated vertical boundary layer thickness vs. Ra for steady rolls on a semi-log plot
with Pr = 1 over a variety of Γ. Right: Compensated horizontal boundary layer thickness vs. Ra for steady
rolls on a semi-log plot with Pr = 1 over the same range of Γ. The compensated vertical and horizontal
boundary layers approach a constant for sufficiently large Ra-values as indicated by the dashed lines.

The left panel of Figure 9 represents the relationship between the thickness of the temperature’s horizontal
boundary layer and the Rayleigh number. The horizontal boundary layer thickness δx, defined as the width
between the x-coordinate associated with the peak and the perimeter, was calculated by a cubic spline
interpolation method. Our data suggest that as Ra → ∞, δx ∼ Ra−1/3 for all aspect ratios. This is
illustrated by the convergence of Ra1/3δx/Γ to different constants in the asymptotic regime of Ra. The
constant of proportionality Cδx relating δx/Γ and Ra−1/3 is aspect-ratio-dependent, and data fitting to the
last point of each set revealed the following relationship,

Ra1/3δx/Γ = 7.4798Γ−1.511 = Cδx(Γ) as Ra→∞. (3.4)

These values, calculated by Eq. 3.4, are denoted by the dashed lines. The right panel of Figure 9 shows
a similar relationship as the left panel but this time in the vertical direction. The vertical boundary layer
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thickness δz is defined similarly as δx; the difference between the z-coordinate associated with the peak and
the perimeter. The horizontal trend of the data for large Ra-values suggest that δz ∼ Ra−1/3 as Ra→∞ for
all considered Γ; however, δz takes much longer to converge to its asymptotic scaling than δx for all aspect
ratios. As in the x-direction, the constant of proportionality between δz/Γ and Ra−1/3, is aspect ratio
dependent, and data fitting to the last point of each set revealed the following prediction of the asymptotic
constant Cδz(Γ) denoted by the dashed lines

Ra1/3δz/Γ = 5.9879Γ−1.463 = Cδz(Γ) as Ra→∞. (3.5)

Interestingly, Eq. 3.4 and Eq. 3.5 follow similar but not identical Γ-scaling. A potential reason for this is
that the x-direction reaches asymptotic scaling much sooner than the z-direction. Our data suggests that
when δx/Γ . 0.02 the value of Ra1/3δx/Γ will be within 1% of Cδx(Γ); however, to be within 1% of Cδz(Γ),
δz/Γ . 0.01. The difference in the ratios indicates that larger Ra-values are required to obtain asymptotic
scaling in the vertical direction than in the horizontal direction leaving convergence to a singular exponent
a possibility for larger Ra-values.

4 Conclusions

Steady Rayleigh-Bénard convection between stress-free boundaries was studied via direct numerical simu-
lation to calculate the local-maximum solution’s properties and provide evidence for classical asymptotic
scaling of the Nusselt and Reynolds number for fixed high-wavenumber. Properties of the aspect ratio that
locally maximizes Nu, Γ∗loc and fixed aspect ratios ranging from 0.06 ≤ Γ ≤ π/5 were studied over moderate
to large values of the Rayleigh number 108 ≤ Ra ≤ 1014 with fixed Prandtl number Pr = 1. Our results
for Γ∗loc, for the stress-free case, share many features with the no-slip case [6]. As in the no-slip case, our
data suggest Nuloc = O(Ra0.29), Reloc = O(Ra2/5), and kloc = O(Ra1/4) as Ra → ∞. The interior of the
temperature, stream function, and vorticity fields have an analytical solution given by Eq. 3.2 and have
different properties than the fixed aspect ratio case, Γ = 0.1. Mainly, for Γ = 0.1, the temperature field
develops an isothermal core, the stream function does not have multi-extremum properties, and the vorticity
takes on a constant value of ΨL ≈ 67.36 or ΨR ≈ −67.36 for nearly all values left or right of Γ/2 respectively.
For fixed aspect ratios 0.06 ≤ Γ ≤ π/5 our data agrees with classical 1/3 Ra-scaling of the Nusselt number
Nu = O(Ra1/3) [2] [3] and 2/3 Ra-scaling of the Reynolds number Re = O(Pr−1Ra2/3) as Ra → ∞.
For each choice of aspect ratio, the quantities Nu/Ra1/3 and RePr/Ra2/3 approach a different constant
suggesting a wavenumber/aspect ratio proportionality prefactor cn(k) [1] and cr(k) [7]. Convergence of Nu
and Re to these asymptotic scalings takes longer for higher wavenumbers, and Re reaches its asymptotic
scaling much sooner than Nu for all values of Γ. The slower convergence of higher wavenumber solutions
makes sense in the context of the temperature boundary layer. We found that the thickness of the boundary
layers δx and δz, defined as the distance between the peak value and the boundary, goes as Ra−1/3, that is
δx = O(Ra−1/3) and δz = O(Ra−1/3). Since classical scaling occurs when the width of the boundary layer is
negligible compared to the size of the domain [1], larger Ra values are required for δ/Γ to become negligible
when Γ is smaller. Potential future work includes improving Eq. 3.4 and Eq. 3.5 by constructing a more
accurate upper-bound and obtaining data for new aspect ratios and higher Ra-number solutions for Γ ≤ 0.1.
Additionally, further investigating is needed to determine the Pr-dependence of high-wavenumber solutions.
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