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1. Introduction

We can represent a grey scale image by a function f : Ω = [0, 1]n →
[0, 1]. In 1998 Mumford and Shah introduced a variational model for image
segmentation. The model segments a given image f by minimizing the
functional

MS(u) = λ

∫
Ω

(u− f)2dx+

∫
Ω\Su

|∇u|2dx+ µLength(Su). (1)

Where Su denotes the set of points where u has a jump discontinuity. For
more about the Mumford Shah model see [3].

1.1. The Convex Relaxation. In this section we will follow the argument
in [1]. In order to construct our convex relaxation we start by considering a
vector field

φ = (φx, φt),

where φx : Rd+1 → Rd and φt : Rd+1 → R. In addition, for a given function
u, we also introduce the set

Σu = {(x, t) : x ∈ Rd, t ∈ R, t ≤ u(x)} (2)

and another set Γu denoting the boundary of Σu. Now we will start by
considering the integral ∫

Ω
v∇ · φdx (3)

where v is taken to be the characteristic function of Σu. This allows us to
write ∫

Ω
v∇ · φdx =

∫
Σv

∇ · φdx. (4)

Then we can apply the divergence theorem to the right hand side of the
above equation to get ∫

Ω
v∇ · φdx =

∫
Γv

νΓv · φds,

1
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were νΓu denotes the outward normal to Γu. Now we can decompose this
integral into parts to get∫

Ω
v∇ · φdx =

∫
Ω\Sv

(∇v,−1)√
1 + |∇v|2

· (φx, φt)
√

1 + |∇v|2dx (5)

+

∫
Sv

∫ v+(x)

v−(x)
(νΓv , 0) · (φx, φt)dtds, (6)

were v+ and v− denote the values of u at the top and bottom of the jump
at x.

Now we can expand the dot products to get∫
Ω
v∇ · φdx =

∫
Ω\Sv

(∇v) · (φx)− φtdx+

∫
Sv

∫ v+(x)

v−(x)
νΓu · φxdtds. (7)

We can use the right hand side of the above equation to write down a
saddle point problem that is equivalent to minimizing the original Mumford
Shah. The problem is

inf
v

sup
φ

∫
Ω
v∇ · φdx (8)

subject to the constraints:

(1) v ∈ {0, 1},
(2) φt ≥ 1

4 |φx|
2 − λ(f − t)2,

(3) v is decreasing in the t-direction,

(4)
∣∣∣∫ t2t1 φx(x, s)ds

∣∣∣ ≤ µ,∀t1, t2.
Now in order to make this problem convex we need to relax the constraint

that v ∈ {0, 1}. We do this by replacing it with the constraint that 0 ≤ v ≤
1.

1.2. Proposed Modification. In our proposed modification we think of f
and u as representing the orientations of the grains in a material, instead of
the intensities in a grey scale image.

Our proposed modification is to change the Mumford-Shah by replacing
the term that penalizes the length of the singular set with a term that instead
penalizes a sub-additive function g of the jump height. When we do this the
Mumford-Shah changes into

λ

∫
Ω

(u− f)2dx+

∫
Ω\Su

|∇u|2dx+ µ

∫
Su

g(u+(x)− u−(x))ds.

were u+(x) denotes the value of u at the top of the jump and u−(x) denotes
the value of u at the bottom of the jump at x.

The goal of this proposed modification is to help with the problem of
determining the boundaries of grains in a material. For this reason we will
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consider the function h : [0,∞)→ R given by

h(θ) =

{
θ
θ∗ (1− log( θθ∗ )) θ ≤ θ∗

1 θ ≥ θ∗

where θ∗ is a parameter that is known to be between 10◦ and 30◦. We will
take g to be a periodic extension of h.We can define g by taking g(x) = h(|x|)
on some interval [−L,L] and then extending g periodically to a function
defined on the entire real line.

1.3. Sub-Additivity. In order for a unique minimizer to exist g must be
sub-additive. To prove that g is sub-additive we’ll start by proving that h is
sub-additive. We will do this using several cases. Firstly if θ1, θ2 ≤ θ∗ and
θ1 + θ2 ≤ θ∗, then we have that

h(θ1 + θ2) =
θ1 + θ2

θ∗
(1− log(

θ1 + θ2

θ∗
)) (9)

=
θ1

θ∗
(1− log(

θ1 + θ2

θ
)) +

θ2

θ∗
(1− log(

θ1 + θ2

θ∗
)). (10)

Now since − log(x) is a decreasing function we have that

h(θ1 + θ2) =
θ1

θ∗
(1− log(

θ1 + θ2

θ
)) +

θ2

θ∗
(1− log(

θ1 + θ2

θ∗
)) (11)

≤ θ1

θ∗
(1− log(

θ1

θ
)) +

θ2

θ∗
(1− log(

θ2

θ∗
)) (12)

= h(θ1) + h(θ2). (13)

If θ1 + θ2 ≥ θ∗ but θ1 and θ2 are both less than or equal to θ∗, then we have
that

h(θ1 + θ2) = 1

and

h(θ1) + h(θ2) =
θ1

θ∗
(1− log(

θ1

θ∗
)) +

θ2

θ∗
(1− log(

θ2

θ∗
)).

Now since θ1 and θ2 are both less than or equal to θ∗ we have that− log( θ1θ∗ ) ≥
0 and − log( θ2θ∗ ) ≥ 0. So therefore it follows that

h(θ1) + h(θ2) =
θ1

θ∗
(1− log(

θ1

θ∗
)) +

θ2

θ∗
(1− log(

θ2

θ∗
)) (14)

≥ θ1

θ∗
+
θ2

θ2
. (15)

Therefore since θ1 + θ2 ≥ θ2 we have that h(θ1) + h(θ2) ≥ 1 = h(θ1 + θ2).
Finally if θ1 ≥ θ∗ or θ2 ≥ θ∗ we have that h(θ1 + θ2) = 1, and since one

of θ1 and θ2 is greater than or equal to θ∗ and because h(θ) ≥ 0, we have
h(θ1) + h(θ2) ≥ 1. This is sufficient to show that h is sub-additive.

Now we need to show that g is sub-additive. Without loss of generality
we can consider θ1, θ2 ∈ [−L,L], then we have that

g(θ1 + θ2) ≤ h(|θ1 + θ2|). (16)
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Using the triangle inequality and the fact that h is an increasing function,
we have that

g(θ1 + θ2) ≤ h(|θ1|+ |θ2|). (17)

Finally by sub-additivity of h we have that

g(θ1 + θ2) ≤ h(|θ1|) + h(|θ2|) (18)

= g(θ1) + g(θ2). (19)

So therefore g is sub-additive as desired.

2. Computing the Projection

2.1. The Strategy. We can think of the projecting onto our constraints
as a projection onto an intersection of convex sets. To project onto the
intersection of convex sets we can use the Boyle Dykstra aligorithm. All
that we need know to use this algorithm is how to project onto each of the
convex sets. For a complete description of this algorithm see [3].

2.2. First Constraint for 2D image. The first constraint we will deal
with is the constraint that∣∣∣∣∫ t2

t1

φx(x, s)ds

∣∣∣∣ ≤ µ, ∀t1, t2.
Because we are working on a discretized grid we can represent this problem

by projecting a point

(X1, X2, · · · , Xn, Y1, · · · , Yn) /∈ K1

onto the set

K1 = {(x1, · · · , xn, y1, · · · , yn) : (x1+x2+· · ·+xn)2+(y1+y2+· · · yn)2 ≤ µ}.
We can recast this problem as an optimization problem

min
(x1+x2+···+xn)2+(y1+y2+···+yn)2=µ

n∑
j=1

(xj −Xj)
2 + (yj − Yj)2.

Now using Lagrange multipliers we can write down the system of nonlinear
equations

xj −Xj = λ(x1 + · · ·+ xn) (20)

yj − Yj = λ(y1 + · · ·+ yn) (21)

(x1 + x2 + · · ·+ xn)2 + (y1 + y2 + · · · yn)2 = µ. (22)

Equations (1) and (2) imply that

x1 + x2 + · · ·+ xn −X1 −X2 − · · · −Xn = nλ(x1 + x2 + · · ·+ xn) (23)

y1 + y2 + · · ·+ yn − Y1 − Y2 − · · · − Yn = nλ(y1 + y2 + · · ·+ yn) (24)

This implies that

x1 + x2 + · · ·+ xn = − αµ

nλ− 1
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and

y1 + y2 + · · ·+ yn = − βµ

nλ− 1
.

Now this allows us to rewrite (3) as

α2µ2

(nλ− 1)2
+

β2µ2

(nλ− 1)2
= µ

Then we can solve this equation for λ to get

λ =
±
√
µ(α2 + β2) + 1

n
.

Now if we plug in x1 + x2 + · · ·+ xn and y1 + y2 + · · ·+ yn then we have

xj = − λαµ

nλ− 1
+Xj

yj = − λβµ

nλ− 1
+ Yj .

Now substituting in our expression for λ we get

xj = ∓αµ

(
±
√
µ(α2 + β2) + 1

n

)
1√

µ(α2 + β2)
+Xj (25)

= ∓αµ
n

(
±1 +

1√
µ(α2 + β2)

)
+Xj (26)

yj = ∓βµ
n

(
±1 +

1√
µ(α2 + β2)

)
+ Yj . (27)

Now we can use these expressions for xj and yj to evaluate the energy to
get

µ2(α2 + β2)

n

(
±1 +

1√
µ(α2 + β2)

)2

.

Since we are trying to minimize the energy this suggests that we should use
the minus branch. So we have that

λ =
1−

√
µ(α2 + β2)

n
.

2.3. First Constraint for 1D image. In the case of a 1 dimensional image
we can also pose the problem of projecting a given point (X1, X2, · · · , Xn)
onto our constrait as an optimization problem. However in this case our
optimization problem takes the simplier form

min
x1+x2+···+xn=

√
µ

n∑
j=1

(xj −Xj)
2.
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Now we can write our the Lagrange multipliers for this problem as

2(xj −Xj) = λ (28)

x1 + x2 + · · ·+ xn = ±√µ. (29)

Now if we add the constraints together and then apply our constraint we
end up with

√
µ−X1 −X2 − · · · −Xn =

nλ

2
.

So we have that

λ =
2

n
(±√µ− α)

where α = X1 +X2 + · · ·+Xn. Now this allows us to solve for xj to get

xj =
1

n
(±√µ− α) +Xj .

If we put this into our formula for the energy we get

1

n
(±√µ− α)2

we see the energy is minimized when we choose ±√µ to have the opposite
sign as α.

2.4. Second Constraint. We also need to project onto the constraint

φt ≥ 1

4
|φx|2 − λ(f − t)2.

Since in practice we work with a discrete grid projecting onto this constraint
is equivalent to projecting each of our discrete points onto a parabola.

Now to project onto the second constraint we need to project onto a
parabola in the case of a one dimensional image or a quadratic cone in
the case of a two dimensional image. In particular the 1-dimensional case
reduces to the problem of projecting a point (X,T ) onto the curve

t =
1

4
x2 − λ(f − s)2. (30)

Now the normal to our parabola at a point (x, t) is

N = (
1

2
x,−1)

Then we can express our problem of finding the projection in a geometric
way as the equation

(x,
1

4
x2 − λ(f − s)2) + κ(

1

2
x,−1) = (X,T ).

Now this gives us the system

x+
1

2
κx = X (31)

1

4
x2 − λ(f − s)2 − κ = T. (32)
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Now we can solve the second equation for κ and then plug this into the
first equation to get

x+
1

2
x(

1

4
x2 − λ(f − s)2)− T ) = X.

This simplifies to the depressed cubic

x3 − 4(λ(f − s)2 + T )x− 8X = 0. (33)

3. Modified Mumford Shah constraints

If we instead want to minimize our modified version of Mumford Shah
only one constraint changes.∫

Sθ

(

∫ θ+(s)

θ−(s)
(vΓθ , 0) · (φx, φt)dt)ds (34)

= µ

∫
Sθ

g(θ+(s)− θ−(s))ds (35)

⇒ |
∫ t2

t1

φx(x, s)ds| ≤ µg(t2 − t1), ∀t1, t2. (36)

Now we need to show that this constraint is convex. Suppose φx1 , φ
x
2 satisfy

the constraint, and let κ ∈ [0, 1]∣∣∣∣∫ t2

t1

κφx1(x, s) + (1− κ)φx2(x, s)ds

∣∣∣∣ ≤ µg(t2 − t1) (37)

We have that ∀t1, t2∣∣∣∣∫ t2

t1

κφx1(x, s) + (1− κ)φx2(x, s)ds

∣∣∣∣ (38)

≤ |1− κ|
∣∣∣∣∫ t2

t1

φx2(x, s)ds

∣∣∣∣+ |κ|
∣∣∣∣∫ t2

t1

φx1(x, s)ds

∣∣∣∣ (39)

≤ (1− κ)µg(t2 − t1) + κg(t2 − t1) (40)

= µg(t2 − t1). (41)

4. Conclusion

In conclusion we can find a solution to our modified version of Mumford
Shah by solving the saddle point problem

inf
v

sup
φ

∫
Ω
v∇ · φdx (42)

subject to the constraints:

(1) 0 ≤ v ≤ 1,
(2) φt ≥ 1

4 |φ
x| − λ(f − t)2,

(3) v is decreasing in the t-direction,

(4)
∣∣∣∫ t2t1 φx(x, s)ds

∣∣∣ ≤ µg(t2 − t1), ∀t1, t2.
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In practical terms this means using a scheme that iteratively updates
a discretized version of v and φ by performing a gradient descent for v,
projecting v onto the constraints, preforming a gradient ascent for φ then
projecting φ onto the relevant constraints. Projecting onto the various con-
straints can be accomplished using the Boyle and Dykstra algorithm. For a
description of this algorithm see [2]. For information about algorithms for
minimizing the Mumford-Shah functional also see [5] and [4].

So far we have written code to find a minimizer for Mumford Shah. In
future research we would like to modify our code to find a minimizer for our
modified version of Mumford Shah. Doing this should be possible with only
a slight modification to the code we currently have.
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