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Abstract. An information inequality is a linear inequality involving the entropies
H(X) of (sets of) random variables. As shown by Zhang and Yeung [2], not all informa-
tion inequalities are �Shannon-type� inequalities, ones that can be derived by repeatedly
applying a basic result called Shannon's inequality. Dougherty, Freiling, and Zeger [1]
used a technique called the �copy lemma� to generate a list of 214 non-Shannon-type
information inequalities, all of a particular special form. In this semi-expository paper,
we introduce the relevant concepts to the study of information inequalities, and make
some observations about Doughtery, Freiling, and Zeger's work that may explain the
occurrence of this special form.

1. Preliminaries

We �rst recall some basic de�nitions.

De�nition 1.1. Let X be a random variable taking values in a �nite set X , and let
p(x) := Pr[X = x] for x ∈ X . The entropy of X is de�ned by

H(X) :=
∑
x

−p(x) log p(x).

(We may assume that p(x) > 0 for all x ∈ X ; otherwise we may shrink the set X .)

The entropy of a random variable X measures, in some sense, its �uncertainty�: how
di�cult it is for one to �guess� the value of a given sample of X.
Some important notions related to entropy are as follows:

De�nition 1.2. The mutual information of two random variables A and B is given by

I(A;B) := H(A) +H(B)−H(AB),

and the conditional mutual information of A and B given a random variable C is

I(A;B|C) := H(AC) +H(BC)−H(ABC)−H(C).

(For convenience, we will often use concatenation to denote subsets in this paper.
For example, H(AB) in the above means H(A,B), where A,B is considered as a joint
random variable.)
The mutual information I(A;B) is often interpreted as �how much A knows about

B,� or vice versa. For example, if B is a function of A, then H(AB) = H(A); thus,
I(A;B) = H(A) +H(B)−H(AB) = H(B). That is, A knows �everything� about B. On
the other hand, if A and B are independent random variables, it can be checked that
H(AB) = H(A) +H(B), that is, I(A;B) = 0.
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Observe that if C is taken to be trivial (that is, C takes only one value), then the
formula for I(A;B|C) reduces to the formula for I(A;B). This agrees with our intuition
that if C is trivial, then we are not �given� anything, so we should just get the mutual
information between A and B.
A fundamental result in information theory is the following inequality:

Proposition 1.3 (Shannon's inequality). For all random variables X, Y, Z we have

I(X;Y |Z) ≥ 0.

Thus, (conditional) mutual information is always nonnegative: the case mentioned
above where A and B are independent is the �worst� it can get.
By adding together (nonnegatively weighted) applications of Shannon's inequality, we

can build other true inequalities involving entropy; such inequalities, as we will see, are
collectively called �Shannon-type inequalities.�

2. Information inequalities

Motivated by the existence of Shannon's inequality, we might seek to study the possible
inequalities that can be written down about entropies of variables. This leads to the
following de�nition:

De�nition 2.1. An information inequality on (four) variables A,B,C,D is a true in-
equality of the form

0 ≤
∑

∅6=X⊆ABCD

CXH(X),

with real coe�cients CX .

(It isn't hard to generalize this de�nition to n variables, but the case of four variables
is the one we are interested in.) For example, Shannon's inequality, applied in the form
I(A,B;C) ≥ 0, is an information inequality, because it can be rewritten in terms of
entropies as

−H(C) +H(AC) +H(BC)−H(ABC) ≥ 0.

Thus CC = −1, CAC = 1, CBC = 1, CABC = −1, and all other CX = 0 in this case.
In working with (four-variable) information inequalities, it can be helpful to identify

an information inequality 0 ≤
∑
CXHX with its �coe�cient vector�

(CX) = (CA, CB, CC , CD, CAB, . . . , CABCD) ∈ R15.

In this way, each information inequality corresponds to a point in the vector space R15.
However, it is clear that not every point corresponds to a (valid) information inequality.
(As a simple example, if a point p gives rise to an information inequality that is not
always an equality, such as Shannon's inequality, then clearly the point −p does not also
give rise to an information inequality.) Thus, the following notion naturally arises:

De�nition 2.2. For four variables, �information inequality space� is the subset M4 of
R15 consisting of all points (CA, CB, . . . , CABCD) which de�ne information inequalities.
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Instead ofM4, one might take a more direct approach and try to understand the space
of entropies themselves: that is, the space of all vectors of the form

(H(A), H(B), . . . , H(ABCD)) ∈ R15.

By de�nition, this latter space, which is denoted Γ∗4 in [1], is the �nonnegative dual� of
M4: the set of all points in R15 whose inner product with any point inM4 is nonnegative.
It is an open problem to understand the structure of the space Γ∗4 (or, equivalently, M4).
(Note that the notation M4 is not particularly standard.)
As mentioned before, one class of information inequalities are those that are derived

from multiple applications of Shannon's basic inequality. In symbols:

De�nition 2.3. A Shannon-type inequality is an information inequality of the form

k∑
i=1

αiI(Xi;Yi|Zi) ≥ 0,

where αi ≥ 0 and Xi, Yi, Zi ⊆ ABCD.

In other words, a Shannon-type inequality is a nonnegative linear combination of ap-
plications of Shannon's inequality � an element of the �nonnegative span� of the possible
applications of Shannon's inequality.
A reasonable guess might be that the Shannon-type inequalities are the only informa-

tion inequalities. In other words, one might hypothesize that the possible applications
of Shannon's inequality �nonnegatively span� the space M4. It took until the mid-1990s
for a counterexample to be discovered, by Zhang and Yeung [2]. They discovered the
following inequality, which cannot be written as a linear combination of applications of
Shannon's inequality:

Theorem 2.4 (Zhang-Yeung inequality). For all random variables A,B,C,D, we have

I(A;B) ≤ 2I(A;B|C) + I(A;C|B) + I(B;C|A) + I(A;B|D) + I(C;D).

(Here is one reason why the case of four variables is interesting. It turns out that in
three or fewer variables, all information inequalities are Shannon-type, so this is the �rst
�non-Shannon� case.)
The Zhang-Yeung inequality was discovered and proved by applying a certain result

in entropy theory called the �copy lemma.� This work has since been superseded and
generalized by Dougherty, Freiling, and Zeger [1], who used the copy lemma together
with a large computer search to generate 214 new non-Shannon inequalities. We now
examine their work in more detail.

3. The copy lemma and non-Shannon inequalities

The copy lemma is the following result, which promises the existence of a random
variable satisfying certain conditions:

Lemma 3.1 (Copy lemma). Let A,B,C,D be random variables. Then there is a random
variable R with the following properties:

(i) The joint random variables (A,B,C) and (A,B,R) have the same distribution.
(ii) I(CD;R|AB) = 0.
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We say that R is a �D−copy of C over AB.�

By using the copy lemma, Dougherty, Freiling, and Zeger [1] generated 214 new non-
Shannon inequalities with a computer search:

Theorem 3.2 (Dougherty, Freiling, Zeger 2011). The inequality

aI(A;B) ≤ bI(A;B|C) + cI(A;C|B) + dI(B;C|A) + eI(A;B|D)

+ fI(A;D|B) + gI(B;D|A) + hI(C;D) + iI(C;D|A)

is non-Shannon for each of the following tuples (a, b, c, d, e, f, g, h, i):

(2, 4, 2, 1, 3, 1, 0, 2, 0), (2, 3, 3, 1, 5, 2, 0, 2, 0), (3, 6, 3, 1, 6, 3, 0, 3, 0),

(2, 4, 2, 1, 2, 0, 0, 2, 3), (2, 3, 3, 2, 2, 0, 0, 2, 0), (4, 6, 4, 3, 4, 2, 1, 4, 0),

(2, 5, 2, 1, 2, 0, 0, 2, 0), (2, 4, 3, 1, 2, 0, 0, 2, 0), (2, 4, 1, 2, 2, 3, 0, 2, 0),

(3, 7, 4, 1, 4, 1, 0, 3, 0), (4, 6, 11, 3, 6, 2, 0, 4, 0), . . . [203 more]

In their paper, Dougherty, Freiling, and Zeger wondered why they had only found
inequalities of the special form

aI(A;B) ≤ bI(A;B|C) + cI(A;C|B) + dI(B;C|A) + eI(A;B|D)

+ fI(A;D|B) + gI(B;D|A) + hI(C;D) + iI(C;D|A),

with 9 parameters. Indeed, a generic information inequality on A,B,C,D would have
24− 1 = 15 parameters, one for each nonempty subset of ABCD. To conclude this note,
we present one possible answer.

4. Results

We have found 6 �nice� constraints that completely characterize the form of the above
inequalities.

Theorem 4.1. An information inequality 0 ≤
∑

X CXH(X) can be written in the form

aI(A;B) ≤ bI(A;B|C) + cI(A;C|B) + dI(B;C|A) + eI(A;B|D)

+ fI(A;D|B) + gI(B;D|A) + hI(C;D) + iI(C;D|A)

if and only if the following six constraints hold:

CABCD =
∑
X

CX =
∑
A∈X

CX =
∑
B∈X

CX =
∑
C∈X

CX =
∑
D∈X

CX = 0.

Proof. The theorem is essentially a statement in linear algebra over R15. To prove it, it
su�ces to check that (i) the six constraints are linearly independent; (ii) the nine terms
I(A;B), I(A;B|C), etc. are linearly independent; (iii) all these nine terms satisfy the
six constraints. �

Given the natural form of these constraints, a good direction for future work would
be to determine whether or not the method of [1] necessarily produces inequalities 0 ≤∑

X CXH(X) that satisfy these constraints. It is also an open question, to the best of
our knowledge, whether there are any non-Shannon inequalities not of this form that are
not easily derived from the 214 above inequalities.
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