
Visualizing Fluid Flows Using Line Integral

Convolution Method

Shuyang Wang

Mentors: Shravan Veerapaneni, Ruowen Liu

University of Michigan
July 2019

Abstract

We compare the results of visualizing complex �uid �ows using
the Line Integral Convolution (LIC) method, streamlines and arrows
to demonstrate the advantages of the LIC method. We also apply
the LIC method to visualize �uids inside an irregular pipe. To deal
with the inaccurate velocity data near the �uid-structure interface, we
design several methods to interpolate the data between the boundary
and the interior part. Barycentric interpolation performs well and is
generalizable. We conclude with the visualization of complex �uid
�ows in 3D.

1 Introduction

Complex �uids are made of simple �uids and particles of other substances
contained in them. The interaction between the �uids and the particles pro-
duces various interesting features of the �uid �ows. Given the data of the
vector �eld and the shapes of the particles, we want to visualize the complex
�uids. Common methods of visualizing vector �elds, such as using stream-
lines and using arrows, have some drawbacks. The Line Integral Convolution
(LIC) method proposed by Cabral and Leedom[1], however, produces a com-
prehensible and accurate representation of the vector �eld. In section 2, we
provide an interpretation of the LIC method from the perspective of convo-
lution in image processing. In section 3, we present the result of applying the
LIC method to the visualization of an example complex �uid and compare
it with the results of using streamlines and of using arrows to demonstrate
the advantages of the LIC method. The merits of the LIC method can also

1



be shown in the visualization of �uids inside irregular structures, where the
interaction between the �uid and the structure gives rise to complicated
movements of the �ows. In section 4, we demonstrate the visualization of an
example Newtonian �uid inside an irregular pipe and discuss several ways
of interpolating the data near the �uid-structure interface. We proceed to
the visualization of 3D complex �uid �ows in section 5 as a closure to this
report.

2 Line Integral Convolution method

The LIC method takes in a white noisy background texture. For each pixel,
it integrates the convolution kernel along the streamline and computes the
convolution of the input texture and the kernel to get the output value of the
pixel. Each pixel is processed in the same way to generate the output texture.

2.1 Convolution in image processing

The idea of convolution in image processing is used in this method. Con-
volution is derived from the mathematical de�nition of convolution of two
functions in discrete case. One function is the representation of the origi-
nal image, the other function is called a kernel. In 1D convolution, let X
be the input image, which maps each pixel to its value in the original im-
age, and let K be the kernel. The output value for a pixel m is given by
Y (m) =

∑
iX(i) ·K(m− i).

2D convolution is more common in image processing. A matrix M of the
same size of the original image is convoluted with a kernel K. Each entry
M(i, j) is the value of the (i, j)-th pixel of the input image. The output value
for a pixel (m,n) is given by Y (m,n) =

∑
i

∑
j M(i, j) ·K(m− i, n− j).

Depending on di�erent purposes, a kernel can be chosen to be of di�erent
shapes and values to achieve certain e�ects, such as blurring or sharpening
the local features of the input image. In both 1D and 2D cases, the domain
of the kernel is usually chosen to be symmetric about the origin. The sum-
mation is taken over all the pixels within the domain of the kernel, so that
the convolution at pixel p takes a weighted sum of the pixels in a neighbor-
hood centered at p of the size of the kernel domain, where the weights are
determined by the kernel. While this method can cause problem for pixels
on the edge, where some pixels in its neighborhood are out of bounds of the
original image, this issue can be handled by, for example, padding the input
image.

2



2.2 Algorithm of the LIC method

In Cabral and Leedom's method, a matrix X of the same size as the given
vector �eld and �lled with random data is used as the original image in
convolution. For each pixel, the kernel K is computed from the given vector
�eld V . We call the output matrix Y . The algorithm processes one pixel
p(x, y) at a time in the following steps. Note that (x, y) is the Cartesian
coordinate of p in the vector �eld by convention, which is di�erent from the
i, j indexing in matrices.

Step 1: Determine the streamline going through p(x, y) of length 2L.
We call the starting pixel P0. The vector at this pixel is given by V (P0). The
next pixel in the forward direction of the streamline is the nearest pixel in
the direction of V (P0), and we call it P1. The length ∆s0 of the streamline
segment inside the cell of P0 is stored. Once the streamline reaches the cell
of P1, it starts to follow the direction of the vector V (P1), which leads to the
next pixel P2. Repeat the above method until the total length of streamline
segments reaches L. To maintain symmetry, we compute the streamline
in the backward direction in a similar way. Then we have the streamline
S = {P ′k′ , P ′k′−1, ..., P ′1, P0, P1, ..., Pk−1, Pk}.

Remark. As illustrated in Figure 1 from Cabral and Leedom's paper [1], the
streamline going through p(x,y) locally follows the direction of the vectors,
which is a good approximation of the �ow.
This streamline speci�es the domain of the kernel, as the shape of the neigh-
borhood of p(x, y) in convolution. Notice that the streamline centered at p
can be di�erent for di�erent pixels, so a speci�c kernel is computed for each
p.

3



Figure 1: Streamline going through p(x, y)[1]

Step 2: Integrate along the streamline.
Once we determine the domain of the kernel, we want to assign weights
to the pixels covered in the kernel. A scalar function k that maps a point
(x, y) to a real number is integrated along the streamline. Each segment of
the streamline can be viewed as a parametric curve in t. Compute wi =∫
si
k(t) dt, where si is the segment in the cell of pixel Pi. Similarly, w′i is

computed for each segment in the backward direction. Now we de�ne the
kernel K to be a function that maps each streamline segment to the weight
w.

Remark. The scalar function k can be customized for di�erent purposes.
To visualize the vector �eld, k can simply be a constant function. In this
case, the integral coincides with the length ∆si (multiplied by the constant)
stored before. For the purpose of post processing images with LIC method,
special k functions can be used.

Step 3: Compute the output value for each pixel.
Although the input texture is 2 dimensional, the idea of 1D convolution is
used, since the kernel on the streamline can be viewed as a 1 dimensional line
consisting of continuous line segments. For the pixel p, Y (p) = (

∑
iX(Pi) ·

wi+
∑

j X(P ′j) ·w′j)/(
∑

iwi+
∑

j w
′
j). The numerator is the weighted sum of

the pixels on the streamline and the denominator is to normalize the value.
Process every pixel in the same way to generate the output texture.

Remark. The LIC method has the advantage of locality inherited from the
property of convolution, which allows the algorithm to be optimized. The
accuracy of this method can be illustrated by the good approximation of the
streamline as discussed in Step 1.

4



2.3 Implementation

The development of our LIC program is based on the implementation of
the LIC method in Python by Dzhelil Rufat[2]. We added features such
as assigning a color map to indicate the magnitude of the vectors, plotting
shapes of the particles and options to smooth the boundary of the pipe and
to specify the size of the output image.

3 Visualization of complex �uid �ows

We apply the LIC method to visualize a complex �uid containing three
vesicles in continuous time steps. We also use streamlines and arrows to
represent the vector �eld at time step 1. The comparison of the results of
the three methods is shown in the �gure below.

(a) LIC method (b) Streamlines (c) Arrows

Figure 2

The e�ect of sampling the vector �eld with streamlines depends on the
placement and the density of the samples. It can miss certain features of the
�ow when no streamline crosses that region. Using arrows at each data point
to represent the vectors does not miss data, but can take up a considerable
amount of memory to store the information for each arrow, which is highly
ine�cient when the input size is large. Moreover, the sparse arrows can not
clearly illustrate the subtle features of the �ow. As a texture-based technique,
the LIC method outputs a more comprehensible and accurate visualization
of the complex �uids compared to these methods. We normalize the output
values of the pixels globally for all time steps and make an animation of the
movements of the �uid. The images at time step 1, 51, 101 and 151 are
shown below.

5



(a) Time step 1 (b) Time step 51

(c) Time step 101 (d) Time step 151

Figure 3

4 Visualization of �uids inside an irregular pipe

The interaction of the �uids and the irregular structure containing it can
produce interesting features of the �ow. The LIC method can be used to
properly visualize such �ows. We study a deformable irregular pipe as shown
in Figure 4. The data given include the meshgrid of the vector �eld, the
velocity at each grid point, and the coordinates and velocities of the points
on the boundary of the pipe.

6



Figure 4: Irregular pipe

The result of applying the LIC method and removing the area outside
the pipe is shown below in Figure 5. To deal with the problem of inaccurate
data near the �uid-structure interface, we want to interpolate the data in
the gap between the boundary and the interior part of the pipe, shown as
the green area in Figure 6.

Figure 5

7



Figure 6

4.1 1D linear interpolation

On each vertical line x = x0, we linearly interpolate the data of P (x0, y)
in the gap using the the nearest interior point P1(x0, y1) and outside point
P2(x0, y2) on the vertical line. Since the data of outside points are inaccurate,
we use the velocity of the nearest point on the boundary to P2 as the velocity
at P2. The interpolated values are given by

Vx(P ) = Vx(P1)
y2 − y

y2 − y1
+ Vx(P2)

y − y1
y2 − y1

Vy(P ) = Vy(P1)
y2 − y

y2 − y1
+ Vy(P2)

y − y1
y2 − y1

.

The result of linear interpolation on the vertical line is shown in Figure 7.
This method performs well where the boundary is almost perpendicular to
the vertical line, as shown in the black frame. When the point is distant
from the nearest points outside the gap on the vertical line, this estimation
is unreliable, as shown in the blue frame.

8



Figure 7: 1D linear interpolation

4.2 2D spline interpolation

A 2D spline is a piecewise polynomial parametric curve consisting of the co-
ordinate functions x(t) and y(t). Given the coordinates and function values
of a certain set of points, we can �nd a spline curve going through them,
which can be used to compute the function values for other points. To inter-
polate the points in the gap, we want to use a set of interior and boundary
points to �nd the spline curve. We �rst compute the norms at the boundary
points. Each time, we use the norms of three consecutive points to de�ne a
local region for interpolation. The intersections of the norms with the pipe
boundary, the gap boundary, and ten interior lines parallel to the boundary
are used to compute the spline function, as shown in Figure 8. The velocities
of the gap points in the local region can be obtained from the spline function.

9



Figure 8: 2D spline interpolation

The result of 2D spline interpolation is shown below in Figure 9. The
method performs well in general. It �xes the obvious inaccuracy in the
black frame, but the result is not satisfying in certain regions, as in the
blue frame. Moreover, this algorithm is hard to implement and needs the
derivatives at each boundary points to compute the norms, so it is not ideal
to be generalized to other irregular pipes.

Figure 9: 2D spline interpolation

10



4.3 Barycentric interpolation

Given a triangle 4A1A2A3 as in Figure 10, for an arbitrary point P , its
Barycentric coordinate is a triple (t1, t2, t3) such that when assigning masses
of t1, t2, t3 to A1, A2, A3 respectively, P is the geometric centroid of the
triangle. Note that these masses are allowed to take negative values, when
P is outside the triangle. We specify an orientation of the triangle, for
example, A1 → A2 → A3 → A1, then ti can be obtained by computing the
volume of 4AjAkP , where j 6= i, k 6= i and Aj → Ak is in the orientation.
Suppose the points have coordinates A1(x1, y1), A2(x2, y2), A3(x3, y3) and
P (x, y), then

ti =
1

2
(
−−−→
AjAk ×

−−→
AjP ) =

1

2
((xk − xj)(y − yj)− (x− xj)(yk − yj)).

After normalizing t1, t2, t3, we can compute the value at P by

V = t1 · V1 + t2 · V2 + t3 · V3,

where V1, V2, V3 are the values at A1, A2 and A3.

P

A2 A3

A1

t3 t2

t1

Figure 10

For each point in the gap, we �nd two nearest points on the boundary
and the nearest interior point to form a triangle. We use Barycentric in-
terpolation to compute the velocity at the point in the gap. Barycentric
interpolation works well and can be easily generalized to other pipe shapes.
We conclude the visualization of 2D �uid �ows with the nice result of this
method in Figure 11.

11



Figure 11: Barycentric interpolation

5 Visualization of complex �uid �ows in 3D

We want to visualize the sedimentation of a cube within the �uid. Although
the LIC method is capable of being extended to 3D volume visualization[3],
the inherent di�culty lies in visualizing dense 3D textures. We use ParaView
instead to visualize this sedimentation process by sampling the vector �eld
with streamlines at each time step. The streamlines are rendered as tubes
whose color indicates the magnitude of the velocity and spheres are placed
at the eight corners of the cube. Figure 12 presents the images at time 0.0,
50.0, 100.0 and 150.0.

12



(a) Image at time 0.0 (b) Image at time 50.0

(c) Image at time 100.0 (d) Image at time 150.0

Figure 12: Sedimentation

Future directions To animate the process of the sedimentation, we use a
sequence of images at each time step to make a movie. Jobard and Lefer [4]
propose a way to correlate the streamlines in neighboring frames to produce
a smooth animation of unsteady �ow in 2D. This method can be generalized
to 3D �ows. It requires to keep track of streamlines in each frame, which
can be further explored in future work.

References

[1] Cabral, Brian, and Leith Casey Leedom. Imaging vector �elds using line
integral convolution. No. UCRL-JC-112935; CONF-9208240-1. Lawrence
Livermore National Lab., CA (United States), 1993.

[2] Rufat, Dzhelil. "LicPy." LicPy - Dzhelil Rufat, rufat.be/licpy/

[3] Interrante, Victoria, and Chester Grosch. "Visualizing 3D �ow." IEEE
Computer Graphics and Applications 18.4 (1998): 49-53.

[4] Jobard, Bruno, and Wilfrid Lefer. "Unsteady �ow visualization by ani-
mating evenly-spaced streamlines." Computer Graphics Forum. Vol. 19.
No. 3. Oxford, UK and Boston, USA: Blackwell Publishers Ltd, 2000.

13


	Introduction
	Line Integral Convolution method
	Convolution in image processing
	Algorithm of the LIC method
	Implementation

	Visualization of complex fluid flows
	Visualization of fluids inside an irregular pipe
	1D linear interpolation
	2D spline interpolation
	Barycentric interpolation

	Visualization of complex fluid flows in 3D

