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Abstract

The Principal-Agent problem studies the optimal way to build contracts between
economic agents facing asymmetries of information. We can consider for example the
case of an employer wanting to remunerate an employee, while having only partial
knowledge of the actions that the latter could perform. From the mathematical point
of view, the theory is extremely rich, in the sense that it mixes many topics such as
stochastic optimal control, optimization on spaces of infinite dimension, variational
calculus, partial differential equations, stochastic calculus or the theory of backwards
stochastic differential equations. This work focuses on a contractual relationship that
is maintained over (discrete) time. We want to discuss how we built weak formulation
of Principal-Agent Problem step by step.

1 Introduction

A Principal-Agent problem is to find the optimal contract between two parties, the Principal
(she) and the Agent (he). Through his actions, the Agent can control the value of the outcome
of the project, which benefits the Principal. Essentially, the Principal hires the Agent to work
on her behalf, but both of them are selfish, meaning that they only care about themselves.
A typical example is when the Principal acts as an investor and the Agent as a portfolio
manager who manages investor’s money on her/his behalf. In a more relaxed setting, the
relationship between a doctor and a patient can be regarded as a Principal-Agent case.

This theory emerged in the 1970s, when economists realized that the theory of general
equilibrium was not able to reproduce and solve situations where it is necessary for one
of the agents to create a contract prompting the other agent to behave appropriately. It
was pointed out that the unobservable behavior by insured people could reduce economic
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efficiency. Then Zeckhauser[1] and Spence and Zeckhauser[2] provided early models for such
situation and Mirrlees[3, 4] introduced a more general model for moral hazard problem.

The basic model is the single period one. The interaction between the Agent and the
Principal happens only once. We consider the case where the Principal leads by making
different decisions first and then the Agent follows; this type of Principal–Agent problem
corresponds to a Stackelberg game in game theory. There are many important works which
discuss single period models including Shavell[5], Grossman and Hart[6], Rogerson[7] and
Jewitt[8]. When the single period model was well understood, the natural extension was a
dynamic system which involves multi-period models. In the dynamic model, we can consider
questions as role memory, savings and commitment of the Agent under contract. There are
famous works that discussed the repeated Principal-Agent problem, including Fundenberg,
Holmstrom and Milgrom[9], Malcomson and Spinnewyn[10], Holmstrom and Milgrom[11],
Lambert[12] amongst others.

The key feature in the problem is the asymmetric information between parties. Based on
how much information the Principal is able to access, there are three main cases that have
been studied in the literature: first-best case, second-best case, and third-best case. In
the first-best case, or risk sharing, it is assumed that the Principal has all the information
she needs. Both parties agree on how to share the risk, so she does not lose any utility.
In the second-best case, the action of the Agent is not observable or non-contractible and
the Principal can only observe the outcome controlled by the Agent, which lead to moral
hazard. In the third-best case, the Principal cannot observe the Agent’s type. In this case,
the Principal faces both moral hazard and adverse selection.

In our paper, we only discuss the second-best case, where the moral hazard is present.
Intuitively, the moral hazard describes the situation where the Agent might be willing to
take unnecessary risk when he does not suffer the consequences of his actions. For example,
when protected by insurance, people (the Agent) tend to take unnecessary risks, which could
cause losses for insurance companies (the Principal). The Principal’s goal is thus, to provide
incentives to the Agent in order to align the interests of both sides. The question can be
approached under continuous-time or discrete-time setting, but we will only examine the
discrete-time (multi-period) case here.

We consider a discrete-time model with N periods. For each period n, where n ≤ N , the
agent works at the beginning of the period to control the outcome distribution of xn and
receives the payment cn from the Principal at the end of the period (or at the beginning of
the next period), when the outcome xn is revealed. The effort that the Agent chooses to
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exert at this period is denoted as an, and the payment value cn will depend on the work
outcome (xn), meaning that cn = c(x1, . . . , xn). The agent’s problem is to find the best
sequence of efforts, given the contract offered by the principal. That is

VA(c) = sup
a

EPa

[
N∑
n=1

e−rnuA(cn)−
N∑
n=1

e−r(n−1)g(an)

]

The agent gains from the value of the contract uA(cn) and loses utility g(an) by exerting
efforts. Since we choose effort at the beginning the period, we discount the effort by e−r(n−1).
We want to find the maximized value of summation of discounted utility the agent gains
from period 0 to arbitrary period N .

On the other side, the Principal decides by anticipating the optimal effort a? exerted by the
agent when he is offered the contract. The principal chooses the best contract, by solving
agent’s problem for every possible contract. In general, the principal possesses a utility
function which benefits from the value of the project and loses from paying the agent the
contract c.

Thus, the principal’s problem is described by

VP = sup
c

EPa?(c) [
uP (x, c)

]
.

such that
V A(c) ≥ R0,

where for every c, a?(c) is the optimal response of the agent to the contract and R0 is the
minimum utility provided by the contract c such that the agent decides to accept it. The
principal has to satisfy the constraint of minimum utility required by the agent and then
achieve the optimal expected utility through manipulating the contract value c.

2 Model

We choose a suitable probability space (Ω,F ,P) with a family of independent identically
distributed random variables (Yi)i∈N, which have mean 0 and variance 1. Denote by FY

the filtration generated by the family (Yi)i∈N and define the process S by S0 := 0 and
Sn :=

∑n
i=1 Yi for n ≥ 1. Moreover, for a fixed σ > 0, define the process X by X0 := 0 and
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for n ≥ 1 define recursively

Xn+1 := Xn + σ(Sn+1 − Sn), P− a.s.

The processX will be referred as the outcome process and the agent is in charge of controlling
its distribution. The random process S represents the noise.

We start by proving that, given our choice of the random variables Yi, the process S defined
above is a (P,FY )−martingale. We compute also the quadratic variation of this process.

Proposition 1. The process S is a (P,FY )−martingale.

Proof. By the definition of a martingale, it is sufficient to prove EP(Sn+1|Fn) = Sn for every
n ∈ N. Let us fix an arbitrary n ∈ N. Then

EP(Sn+1|Fn) = EP(Sn+1 − Sn + Sn|Fn)

= EP(Sn+1 − Sn|Fn) + EP(Sn|Fn)

= EP(Yn+1|Fn) + Sn

= EP(Yn+1) + Sn

= Sn

Proposition 2. There exists a deterministic process 〈S〉 such that M := S2 − 〈S〉 is a
(P,FY )−martingale.

Proof. In order to determine the process 〈S〉, we will perform some preliminary computa-
tions. More precisely, we will prove that the process S2 is an (P,FY )−submartingale.

EP(S2
n+1|Fn) = EP((Sn + Sn+1 − Sn)2|Fn)

= S2
n + 2EP(Sn(Sn+1 − Sn)|Fn) + EP((Sn+1 − Sn)2|Fn)

= S2
n + 2SnEP(Sn+1 − Sn)|Fn) + EP((Sn+1 − Sn)2|Fn)

= S2
n + EP((Sn+1 − Sn)2|Fn)

≥ S2
n

From above, we know

EP(S2
n+1|Fn) = S2

n + EP((Sn+1 − Sn)2|Fn)

= S2
n + EP(Y 2

n+1|Fn)
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Notice that since EP(Yn|Fn) = 0,

V ar(Yn) = EP(Y 2
n |Fn) = 1

Then

EP(S2
n+1 − 〈S〉n+1|Fn) = EP(S2

n+1|Fn)− 〈S〉n+1

= S2
n + V ar(Yn+1)− 〈S〉n+1

= S2
n − 〈S〉n

Then, ∀n ∈ N
〈S〉n+1 − 〈S〉n = V ar(Yn+1) = 1

It is obvious that 〈S〉n = n satisfies the condition.

EP(S2
n+1 − 〈S〉n+1|Fn) = EP(S2

n+1|Fn)− (n+ 1)

= S2
n + 1− (n+ 1)

= S2
n − n

Therefore, M is a martingale if 〈S〉n = n,

From Proposition 1, we know S is a (P,FY )-martingale and we also know that 〈S〉n = n

since E[Yi] = 0 and V ar[Yi] = 1. Now, we want to define a new measure Pa over (Ω,F) by
dPa

dP

∣∣
FN

= E(Za) for a discrete process Z = (Zn)n∈N, where

E(Z)n := exp(Zn)
n∏
i=1

(1 + ∆Zi)e
−∆Zi

Before we proceed, we want to prove some properties of E(Z).

Proposition 3.

E(Z)n = E(Z)0 +
n∑
i=1

E(Z)i−1(Zi − Zi−1).

Proof. Prove by induction. For n = 1,

5



E(Z)1 = eZ1(1 + ∆Z1)e−∆Z1

= eZ0(1 + Z1 − Z0)

= eZ0 + eZ0(Z1−Z0)

= E(Z)0 + E(Z)0(Z1 − Z0)

Assume that for some m ∈ N the assumption is true. Then, we have for m+ 1

E(Z)m+1 = eZmeZm+1−Zm

(∏
i≤m

(1 + ∆Zi)e
−∆Zi

)
((1 + ∆Zm+1)e−∆Zm+1)

= E(Z)m(1 + Zm+1 − Zm)

= E(Z)m + E(Z)m∆Zm+1

= E(Z)0 +
m∑
i=1

[E(Z)i−1(Zi − Zi−1)] + E(Z)m(Zm+1 − Zm)

= E(Z)0 +
m+1∑
i=1

[E(Z)i−1(Zi − Zi−1)]

Proposition 4. If Z is a martingale, then E(Z) is a martingale

Proof. Since Z is a martingale,
E(Zn|Fn−1) = Zn−1

Thus,
E(Zn − Zn−1|Fn−1) = 0

To prove E(Z) is a martingale, it is sufficient to show

E(E(Z)n|Fn−1) = E(E(Z)0 +
n∑
i=1

(E(Z)i−1(Zi − Zi−1))|Fn−1)

= E(Z)0 +
n−1∑
i=1

[E(Z)i−1(Zi − Zi−1)] + E(E(Z)n−1(Zn − Zn−1)|Fn−1)

= E(Z)n−1
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So E(Z) is a martingale.

Now, let’s get back to the process we discussed before. Define h : R → R be a bounded
function and a = (an)n∈N be a predictable process. Define a process Sa where Sa = S− 1

σ
h(a)•

〈S〉. With the properties we have proved for E(Z), we are able to prove a very important
property of the process Sa under probability measure Pa. Notice that a represents the efforts
exerted by the Agent, which change the original distribution of outcome process.

Proposition 5. The process Sa is a Pa-martingale

Proof. First, we know that

h(an) • 〈Sn〉 =
n∑
k=1

h(ak)(〈Sk〉 − 〈Sk+1〉)

Since σ2 = 1

h(an) • 〈Sn〉 =
n∑
k=1

h(ak)

which is a predictable process.

EPa(Sn+1 −
1

σ
h(an+1) • 〈Sn+1〉|Fn) = EPa(Sn+1|Fn)− 1

σ
h(an+1) • 〈Sn+1〉

= EPa(Sn + Yn+1|Fn)− 1

σ
h(an+1) • 〈Sn+1〉

= EPa(Yn+1|Fn) + Sn −
1

σ
h(an+1) • 〈Sn+1〉

=
EP(Yn+1E(Za)n+1|Fn)

E(Za)n
+ Sn −

1

σ
h(an+1) • 〈Sn+1〉

Since

EP(Yn+1E(Za)n+1|Fn) = EP(Yn+1E(Za)0 +
n+1∑
i=1

E(Z)i−1(Za
i − Za

i−1)|Fn)

= EP(Yn+1E(Za)0 + Yn+1

n∑
i=1

E(Z)i−1(Za
i − Za

i−1) + Yn+1E(Za)n(Za
n+1 − Za

n)|Fn)

= µE(Za)0 + µ
n∑
i=1

E(Z)i−1(Za
i − Za

i−1) + E(Z)nh(an+1)EP(Y 2
n+1 − Yn+1|Fn)

= µE(Za)n + E(Za)nh(an+1)σ2
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So we have

EPa(Sn+1 −
1

σ
h(an+1) • 〈Sn+1〉|Fn) =

1

σ
h(an+1) + Sn − h(an+1) • 〈Sn+1〉

= Sn −
1

σ
h(an) • 〈Sn〉

Therefore the process S − 1
σ
h(a) • 〈S〉 is a (Pa,FY )−martingale

We present now the main result of this section, which corresponds to the weak formulation
of the agent’s controlling actions.

Theorem 1. The process X satisfies

Xn+1 = Xn + h(an+1) + σ(San+1 − San), Pa − a.s.,

where Sa = S − 1
σ
h(a) • 〈S〉 is a (Pa,F)−martingale.

Proof. From Proposition 2, we know Sa is a Pa-martingale. Finally, note that

σ(Sn+1 − Sn) = h(an+1) + σ(Sn+1 − Sn)− h(an+1)

= h(an+1) + σ(Sn+1 − Sn −
1

σ
h(an+1))

= h(an+1) + σ(Sn+1 −
1

σ

n+1∑
n=1

h(ai)(〈Si〉 − 〈Si−1〉)− Sn +
1

σ

n∑
n=1

h(ai)(〈Si〉 − 〈Si−1〉

= h(an+1) + σ(San+1 − San)

We conclude by noting that the measures P and Pa are equivalent.

3 Solving the agent’s problem

In this section, we fix a contract (cn)n∈N, offered by the Principal. The goal is to find the
optimal response of the agent to such a generic contract. At any intermediate time i, define
the continuation utility of the agent, if he chooses to exert effort a, as

UA
i (a) = EPa

[
N∑
n=i

e−r(n−i)uA(cn)−
N∑

n=i+1

e−r(n−1−i)g(an)

∣∣∣∣∣Fi
]
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At the last period, we have UN(a) = uA(cN). We define now the following auxiliary process,
which is going to be useful because of the next Proposition

Ma
i := e−riUA

i (c, a) +
i−1∑
n=0

e−rnuA(cn)−
i∑

n=0

e−r(n−1)g(an).

Proposition 6. Ma is a Pa-martingale.

Proof.

Ma
i = e−ri · EPa

[
N∑
n=i

e−r(n−i)uA(cn)−
N∑

n=i+1

e−r(n−1−i)g(an)

∣∣∣∣∣Fi
]

+
i−1∑
n=0

e−rnuA(cn)−
i∑

n=0

e−r(n−1)g(an)

= EPa

[
N∑
n=i

e−rnuA(cn)−
N∑

n=i+1

e−r(n−1)g(an)

∣∣∣∣∣Fi
]

+
i−1∑
n=0

e−rnuA(cn)−
i∑

n=0

e−r(n−1)g(an)

= EPa

[
N∑
n=0

e−rnuA(cn)−
N∑
n=0

e−r(n−1)g(an)

∣∣∣∣∣Fi
]

Thus, it is a Pa-martingale, as the process of conditional expectation of a fixed random
variable (see next Lemma).

Lemma 1. The process of conditional expectation of a fixed random variable is a martingale.

Proof. Let Mi = E[A|Fi]. By the tower property

E [Mi+1|Fi] = E [E [A|Fi+1] |Fi] = E [A|Fi] = Mi

So the process Mi is a martingale.

Since Ma and Sa are Pa-martingales. We assume (Yi)i∈N only takes two values, then by the
Martingale Representation Property (MRP), we can write it as the stochastic integral of
some process. Indeed, there exists a process Ĥa such that

Ma = Ĥa • Sa = Ĥa • S − 1

σ
Ĥah(a) • 〈S〉.

where Sa = S − 1
σ
h(a) • 〈S〉.
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At time n,

Ma
n =

n∑
i=1

Ĥa
i (Si − Si−1)− 1

σ

n∑
i=1

Ĥa
i h(a)

= e−rnUA
n (c, a) +

n−1∑
i=0

e−riuA(ci)−
n∑
i=0

e−r(i−1)g(ai)

Then we let,

Ma
n+1 −Ma

n = e−rn(e−rUA
n+1(a)− UA

n (a) + uA(cn)− g(an))

= Ĥa
n+1(Sn+1 − Sn)− 1

σ
Ĥa
n+1h(an+1)

Our goal here is to establish differential equation form dU = dS + f , where f is a function.
To eliminate the coefficient in front of UA(a), we multiply ern both forms of the equation,
and define Ha = Ĥa · ern. So we have

e−rUA
n+1(a)− UA

n (a) + uA(cn)− g(an) = UA
n+1(a)− UA

n (a) + (e−r − 1)UA
n+1(a) + uA(cn)− g(an)

= Ha
n+1(Sn+1 − Sn)− 1

σ
Ha
n+1h(an+1)

Then, we will have

UA
n+1(a)−UA

n (a) = Ha
n+1(Sn+1−Sn)− 1

σ
Ha
n+1h(an+1)− ((e−r − 1)UA

n+1(a) + uA(cn)− g(an))

which is

dUA(a) = Ha
n+1dS −

1

σ
Ha
n+1h(an+1)− ((e−r − 1)UA

n+1(c, a) + uA(cn)− g(an))

Our plan is to solve the differential equation by comparison result for Backward Stochastic
Differential Equations (BSDE). For every effort a, let Y a

n := UA
n (a) and define the generator

of the BSDE as

f(an, an+1, y,H) = − 1

σ
Hh(an+1)− ((e−r − 1)y + uA(cn)− g(an))
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Then we have,

Y a
n+1 − Y a

n = f(Y a
n+1, H

a
n+1, a) +Ha

n+1(Sn+1 − Sn) (1)

Y a
N = uA(cn) (2)

Theorem 2 (Comparison Result). Let (Y 1, H1) be the solution to the BSDE in discrete time

Y 1
n+1 − Y 1

n = f1(n, Y 1
n+1, H

1
n+1)−H1

n+1(Sn+1 − Sn)

Y 1
N = ξ1

and let (Y 2, H2) be the solution to the BSDE

Y 2
n+1 − Y 2

n = f2(n, Y 2
n+1, H

2
n+1)−H2

n+1(Sn+1 − Sn)

Y 2
N = ξ2

If ξ1 ≥ ξ2, P− a.s., and ∀n, f1(n, Y,H) ≥ f2(n, Y,H), P− a.s. Then it holds that Y 1
n ≥ Y 2

n

for every n, P− a.s.

Therefore, to solve the agent’s problem, we only need to maximize the generator of the BSDE
at each time n.

4 Future Research

In the previous sections, we have built up a discrete-time model for a discrete–time Principal–
Agent Problem with N periods. Based on our work, we outline the path to follow for solving
the full problem in future research.

On the one hand, by the comparison results, we reformulated the agent’s problem into
maximizing the generator of a BSDE. Given the explicit functions h(an+1), uA(cn), and g(an),
it is easy to find the maximal generator which will be associated to the optimal effort a? and
the maximal utility process of the agent Y a?

n . This means we can find the optimal a? without
any past dependence, by using the process H obtained from the (MRP). In this way, the
agent will decide the optimal effort he would make for maximize his well-being.

On the other hand, given the optimal effort only as a function a?(H), we can reformulate the
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problem of the principal as a control problem in which she controls H. By using the BSDE
(1)-(2) and this auxiliary process, her problem can be equivalently written by omitting the
c and any past dependence.

Eventually, the Principal’s and Agent’s problem can be solved explicitly in our discrete time
model with N periods, by using standard dynamic programming techniques which allow to
associate a Markovian control problem to a Hamilton-Jacobi-Bellman equation. By solving
the HJB equation, we will be able to find the optimal control H and therefore the optimal
contract c.
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