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Abstract. We study one-dimensional domains, particularly those of the form

K[[ta + tb, tc, td]] ⊆ K[[t]] (the formal power series ring in one variable over
a field K) that contain all high powers of t. Here a, b, c, and d are positive

integers. We seek to find families in which the minimal number of generators

of the defining prime ideal can be arbitrarily large. We have results and con-
jectures which parallel the work of T.T. Moh as well as new conjectures for the

rings studied by Moh. We will define and discuss the Cohen-Macaulay type of

these rings. This work is related to the problem of determining whether there
exist three n×n commuting matrices over a field K such that the algebra they

generate has vector space dimension greater than n over K.
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1. Motivation

Let K be a field of characteristic 0 and consider the map of formal power series
rings K[[x, y, z]]→ K[[t]] such that f(x, y, z) is sent to f(ta + tb, tc, td). The image
of this map is K[[ta + tb, tc, td]]. T.T. Moh has shown in [7] that the kernel of this
map is a prime that can require arbitrarily large numbers of generators for certain
choices of a, b, c, and d. This implies that the type of these rings can be artbitrarily
large. We will discuss this result and conjectures about the rings Moh studied in
section 3.

Understanding rings that have this property may help understand an open que-
siton about commuting matrices. Namely, let there be d n×n matrices with entries
in K. Is the vector space dimension of the algebra generated by these matrices over
K less than or equal to n? When d = 1, the answer is “yes”. This follows from
the Cayley-Hamilton theorem which says that a matrix satisfies its characteristic
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polynomial. The answer is also “yes” when d = 2. This was proved by Gersten-
haber in [3], and we refer the reader to [5] for further background on the topic.
Counterexamples have been found which show that, in general, the answer to this
question is “no” for d ≥ 4. However, the question is still open for d = 3. The study
of modules over these rings that have finite vector space dimension over K may
lead to a counterexample.

2. Background and Key Definitions

We review key definitions and concepts needed to develop the notion of type.

Definition 2.1. A domain is a commutative ring A such that ab = 0 implies that
a = 0 or b = 0 for all a, b ∈ A.

Definition 2.2. The fraction field of a domain A is defined as

frac(A) = {(a, b) ∈ A×A : b 6= 0}/ v

where v is an equivalence relation s.t. (a, b) v (a′, b′) if and only if ab′ = a′b.

We define the multiplication and addition of two elements of frac(A) as follows:

[(a, b)] · [(a′, b′)] = [(aa′, bb′)]

[(a, b)] + [(a′, b′)] = [(ab′ + a′b, bb′)]

When b 6= 0, [(a, b)] · [(b, a)] = [(ab, ab)] = [(1, 1)], so [(b, a)] is the inverse of [(a, b)].
These defintions agree with the usual operations on fractions in Q.

Definition 2.3. A ring is Noetherian if each of its ideals is finitely generated. That
is, for every ideal I ⊆ R, there exist f1, . . . , fk ∈ R such that I = Σki=1Rfi.

Definition 2.4. A ring is said be be quasilocal if it has a unique maximal ideal.

Some authors refer to quasilocal rings as local, but we will reserve the term for
Noetherian quasilocal rings.

One can study the power series rings K[[ta+tb, tc, td]] or the localized polynomial
rings K[ta + tb, tc, td] as type is defined for one-dimensional local domains.

2.1. Dimension.

Definition 2.5. The Krull dimension of a ring R is the supremum of the lengths
of strictly ascending chains of prime ideals in R.

When K is algebraically closed, the dimension of a closed algebraic set X in
Kn (including Kn itself) is the Krull dimension of the coordinate ring K[X] of
X. The coordinate ring of Kn is the polynomial ring K[x1, . . . , xn], which has
Krull dimension n. In this sense, the notion of Krull dimension can be considered
as a generalization of the notion of dimension of a vector space. A field K has
dimension 0 since the zero ideal is its only prime ideal. The rings we are studying
are one-dimensional since their only prime ideals are the zero ideal and the maximal
ideal.

Definition 2.6. Let R be a local ring of Krull dimension d. Then there exist
x1, . . . , xd ∈ m such if I = (x1, . . . , xd)R then Rad(I) = m. This sequence of
elements is called a system of parameters.
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2.2. Type. We first present the definition of type in terms of the socle of a ring
and then in terms of free resolutions. An example follows which shows how to apply
both defintions.

Definition 2.7. LetR be a ring andM anR-module. A set of elements x1, . . . , xn ∈
R is called a regular sequence in M if

(1) (x1, . . . , xn)M 6= M . In the case where M = R, this says that (x1, . . . , xm)
is a proper ideal.

(2) xi+1 is not a zerodivisor in M/(x1, . . . xi)M for 0 ≤ i ≤ n− 1.

For example, x1, . . . , xn is a regular sequence in R = K[x1, . . . , xn].

Definition 2.8. Let R be a local (Noetherian) ring. If R has Krull dimension n,
and x1, . . . , xn is a system of parameters, then R is Cohen-Macaulay if x1, . . . , xn
is a regular sequence. This is independent of the choice of system of parameters. If
a system of parameters x1, . . . , xn generates m, R is called regular.

We refer the reader to [2] for a general reference for facts about Cohen-Macaulay
rings.

Let R be a Cohen-Macaulay ring with x1, . . . , xn a system of parameters. Then

socle
(

R
(x1,...,xn)

)
= AnnR/(x1,...,xn)m is an R/m-module. That is, it is a vector

space over R/m = K.

Definition 2.9. The type of a ringR is theK-vector space dimension of socle
(

R
(x1,...,xn)

)
where x1, . . . , xn is any system of parameters. The type is independent of the spe-
cific choice.

Now we define type in terms of free resolutions. Direct summands of free modules
are not always free; instead, they are said to be projective. However, if they are over
a local ring and finitely generated, then they are free. The same holds over a poly-
nomial ring. Let M be a finitely generated R-module with generators m1, . . . ,mb0

where R is local. Consider the map Rb0 �M which maps (r1, . . . , rb0) to Σb0i=1rimi.
Let Z0 the kernel of this map, which corresponds to elements (r1, . . . , rb0) such that

Σb0i=1rimi = 0. Then one can define a composite map Rb1 � Z0 → Rb0 and con-
struct an exact sequence:

Z0

. . . Rb2 Rb1 Rb0 M

Z1

This gives a free resolution since each of the modules is free.

Hilbert proved the following theorem for polynomial rings and finitely generated
graded modules [6]. The regular local case is due to Auslander and Buchsbaum [1].

Theorem 2.10 (Hilbert syzygy theorem). If R is a regular local ring, every finitely
generated module over R has a finite free resolution of length at most dimR.

Let R be a quasilocal ring and M a finitely generated R-module with generators.
Then there is a “good” notion of minimal generators.
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Lemma 2.11 (Nakayama’s lemma). If mM = M then M = 0.

Proof. Let u1, . . . , un be generators of M of the smallest possible cardinality. One
can express un ∈ mM as

m1u1 + . . .mnun = r1u1 + . . . rnun

for ri ∈ m. It follows that

(1− rn)un = r1u1 + · · ·+ rn−1un−1

Note that 1− rn is a unit in R since R is local. Hence un ∈ Ru1 + · · ·+Run. This
contradicts the minimality of the generators. �

Corollary 2.12. Let M be a finitely generated module over R, a quasilocal ring.
Then u1, . . . , un generate M if and only if their images generate M

mM .

Proof. It sufficies to show that M
Ru1+···+Run

is zero. Consider

M/Ru1 + · · ·+Run
m(M/Ru1 + · · ·+Run)

∼=
M/mM

Images of (Ru1 + · · ·+Run)

But the second of these is equal to 0 since u1, . . . , un generate M . It follows that
M

Ru1+···+Run
= 0. �

A set of elements u1, . . . , un are a minimal generating set of M if and only if
ū1, . . . ūn ∈ M/mM (a R/M -module) are a vector space basis over R/M = K.
Let µ(M) denote the cardinality of the smallest generating set. This is equal to
dimKM/mM .

Let R be a Cohen-Macaulay ring of dimension d and S be a regular and local
ring of dimension n which is a homomorphic image of R. Then there is a minimal
free resolution:

0→ Sbn−d → · · · → Sb1 → S → R

By a theorem in Section 3.3 of [2], bn−d is the type of R. For example, if R is
one dimensional and S is three dimensional, then one obtains the following exact
sequence

0→ Sh−1 → Sh → S → R

Example 2.13. Consider the example of the ring K[[t3, t4, t5]] and the K-algebra
homomorphism K[[x, y, z]]→ K[[t3, t4, t5]] such that

x 7→ t3

y 7→ t4

z 7→ t5

We can impose a grading on the ring K[[x, y, z]] such that x has weight 3, y has
4, and z has 5, corresponding to the power of t each variable is mapped to. Under
this map a polynomial in x, y, z, f(x, y, z) is mapped to a polynomial f(t3, t4, t5).
This map is surjective but not injective. The kernel of the map is generated by the
2× 2 minors

I2

[
x y z
y z x2

]
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The resulting relations, which generate the kernel, are xz−y2, yx2−z2, and x3−yz.
Let B denote

K[[x, y, z]]

(xz − y2, yx2 − z2, x3 − yz)
We have that

B ∼= K[[t3, t4, t5]]

Since B is one-dimensional, its type is defined as the dimension of socle( B(g) ) where

g is a non-zero element of the maximal ideal m = (x, y, z). In this example, let
g = x. From the above, it follows that

B

(x)
∼=

K[[y, z]]

(y2, z2, yz)

The elements remaining in the ring are of the form K +Ky +Kz. The generators
of the maximal ideal in B

(x) are y and z, and each is killed by y and z. Thus the

socle of B mod x has dimension two, so the type of the ring K[t3, t4, t5] is two. In
this example, we obtain the following free resolution:

0→ R2 → R3 → R→ K[[t3, t4, t5]]

where R = K[[x, y, z]], the map R2 → R3 is given byx y
y z
z x2


and the map R3 → R is given by

[
F12 −F13 F23

]
where F12 = xz − y2, F13 =

x3 − yz, and F23 = x2y − z2.

3. Results

In the following sections, let K be a field of characteristic 0. All calculations
were done over the rational numbers in Macaulay2 [4].

3.1. Moh Rings. T.T. Moh studied a class of rings of the form K[[ta + tb, tc, td]]
where

a = nm

b = nm+ λ

c = (n+ 1)m

d = (n+ 2)m

for n odd, m = (n + 1)/2, λ > n(n + 1)m, and λ and m are coprime. He showed
that the kernel Pn of the map K[[x, y, z]]→ K[[t]] such that

x 7→ tnm + tnm+λ

y 7→ t(n+1)m

z 7→ t(n+2)m

has at least n generators. This implies that the type is at least n − 1. Let h be a
positive integer such that n = 2h + 1 and m = h + 1. Computation in Macaulay2
for 1 ≤ h ≤ 20 supports the following conjectures:
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Conjecture 3.1. Let B = K[[x,y,z]]
Pn

∼= K[[tnm+ tnm+λ, t(n+1)m, t(n+2)m]] be a Moh

ring with λ = n(n+ 1)m+ 1. Then the type of B is n and socle of B
(z) is generated

by

yn, xyn−1, . . . , xn−2y2, xn−1y

One notes that socle in B/z is generated by all monomials in x and y of degree
n. Further computation for 1 ≤ h ≤ 20 yields the following conjecture:

Conjecture 3.2.

B

(z)
∼=

K[x, y]

(yn+1, xyn, . . . xny, xn+1 + (−1)m−1
(

n
m−1

)
yn)

3.2. “Moh-like” Rings. We introduce a new family of “Moh-like” rings of the
form K[[ta + tb, tc, td]] where

a = 2k2 + 1

b = 2k2 + 2k

c = 2k2

d = 2k2 − k

Since b, c, and d are all multiples of k while a ≡ 1 mod k, these rings contain all
tn for n greater than some N . Let Pk denote the kernel of the map K[[x, y, z]] →
K[[t]] such that

x 7→ t2k
2+1 + t2k

2+2k

y 7→ t2k
2

z 7→ t2k
2−k

and let B = K[[x,y,z]]
Pk

∼= K[[t2k
2

+ t2k
2+2k, t2k

2

, t2k
2−k]]. We present the following

conjecture based on computation for 1 ≤ k ≤ 26.

Conjecture 3.3. When k 6≡ 2 mod 3 the socle of B
(z) is generated by

y2k−2, xy2k−3, . . . , x2k−3y, x2k−2

and the type of the ring is 2k− 1. When k ≡ 2 mod 3 the socle of B
(z) is generated

by

xy2k−2, x4y2k−5, . . . , x2k−3y2

and the type is 2h+ 1 when k = 3h+ 2.
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