
CURVE COMPLEXES OF NON-ORIENTABLE SURFACES
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Abstract. We explore non-orientable surfaces and their associated curve com-

plexes. Studying the combinatorics modeled by the curve complex of a surface

helps elucidate the algebraic properties of the mapping class group of the sur-
face. We begin by studying geometric properties of the curve complexes of

non-orientable surfaces and the geometric properties of natural sub-complexes

of the curve complex. Finally, we prove that the curve complex of a non-
orientable surface is homotopy equivalent to a wedge of spheres of possibly

different dimensions.
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1. Preliminaries

In this section, we give some necessary background knowledge and notation used
in this paper. For a more in-depth treatment of the ideas in this section, see [1].

In this paper, we will use F to denote a surface that may be either orientable or
non-orientable. We will use S to denote an orientable surface. And we will use N
to denote a non-orientable surface. By the Classification of Surfaces Theorem [5],
every connected, orientable, compact surface can be identified by three different
topological invariants: the genus g, the number of boundary components s, and the
number of marked points n. We will denote a specific orientable surface of genus
g with s boundary components and n punctures by Sng,s. By the Classification
of Surfaces Theorem [5], every connected, non-orientable, compact surface can be
identified by three different topological invariants: the number of cross caps c, the
number of boundary components s, and the number of marked points n. Recall, a
cross cap in a surface F is a two-dimensional surface in 3-space that is one-sided
and the continuous image of a Möbius strip that intersects itself in an interval.
Equivalently, a cross cap in a surface F is the compliment of an open disk in the
surface with the antipodal points on its boundary identified. We will denote a
specific non-orientable surface with c cross caps, s boundary components, and n
punctures by Nn

c,s. Notice that marked points in a surface can equivalently be
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viewed as punctures in a surface. In light of this, we will freely switch between
these two formulations.

The primary objects that we are interested in studying are the isotopy classes
of simple closed curves in a surface. We say that a simple closed curve is essential
if it is not isotopic to a curve in a regular neighborhood of a point, puncture, or
boundary component. A curve which is not essential is said to be non-essential.
A curve µ in a surface F is called a Möbius curve if one component of F − µ is a
Möbius band. This brings us to the definition of the curve complex of a surface.

Definition 1.1. The curve complex associated to a surface F , denoted C(F ), is the
simplicial complex whose vertices are the isotopy classes of essential simple closed
curves in F , excluding Möbius curves. A set of k+ 1 vertices {v0, . . . , vk} defines a
k-simplex if the geometric intersection number i(vi, vj) is zero for all i and j.

Notice that C(F ) is a flag complex and thus the combinatorial and geometric
information is encoded completely in its 1-skeleton. Moreover, from the point of
view of the curve complex, boundary components and punctures are the same,
replacing one by the other does not change the isomorphism type of the curve
complex. In the case of a non-orientable surface, the lack of orientation gives rise
to a notion of orientable and non-orientable curves.

Definition 1.2. Let α be a simple closed curve in a surface F .

• We say that α is one-sided if a regular neighborhood of α is topologically
a Möbius band.
• We say that α is two-sided if a regular neighborhood of α is topologically

an annulus.

Definition 1.2 motivates the definitions of the following sub-complexes of the
curve complex of a surface.

Definition 1.3. Let C1(F ) denote the full sub-complex of C(F ) spanned by vertices
given by one-sided curves. Let C2(F ) denote the full sub-complex of C(F ) spanned
by vertices given by two-sided curves.

When F is an orientable surface, we have that C2(F ) is equal to C(F ). We will
also consider the following sub-complex.

Definition 1.4. Let CNS(F ) denote the full sub-complex of C(F ) spanned by ver-
tices given by curves α such that F − α is connected.

The non-separating curve complex CNS(F ) is also commonly denoted by N (F )
and NonSep(F ).

The remainder of this paper is organized as follows. In Section 2, we study the
geometric properties of the curve complex and its natural sub-complexes. Specif-
ically, we will study the connectivity of C1(F ), C2(F ), and CNS(F ), investigate if
any of these sub-complexes are quasi-isometric to the full complex, and look at the
structure of maximal simplices. In Section 3, we study the homotopy type of the
curve complex of a surface F . In the case of F orientable, Harer showed that C(Sng,s)
is homotopy equivalent to a wedge of spheres of dimension 2g + s + n − 3, baring
some exceptional cases [2]. We generalize Harer’s argument to non-orientable sur-
faces and show that C(Nn

c,s) is homotopy equivalent to a wedge of spheres each with
dimension fewer than or equal to c+ s+ n− 3, baring some exceptional cases.



CURVE COMPLEXES OF NON-ORIENTABLE SURFACES 3

2. Geometry of the Curve Complex

We begin this section by showing that C(Nn
c,s) is connected. This proposition is

left as an exercise in Schleimer’s notes on the curve complex, see [9]. Our proof is
a generalization of the proof for the case of orientable surfaces, which is originally
due to Lickorish [4].

Proposition 2.1. Let N be a non-orientable surface with c cross caps and s bound-
ary components. If 3c

2 +s ≥ 5, then for all α and β in C(N) the following inequality
holds

d(α, β) ≤ 2 log2(i(α, β)) + 2.

Proof. To establish the result, we use a curve surgery argument. We will first show
that the result holds for any α and β in C2(N)∪M , whereM denotes the collection
of Möbius curves in N . We will induct on the geometric intersection number of α
and β.

First, suppose that i(α, β) = 1. Then a regular neighborhood of α ∪ β is home-
omorphic to a punctured torus, say Y . If N − Y is empty or contractible, then N
is topologically a punctured torus or a torus, which contradicts our assumption of
3c
2 + s ≥ 5. Selecting the boundary curve γ of Y , we have that

i(α, γ) = 0 = i(γ, β).

It follows that

d(α, β) ≤ d(α, γ) + d(γ, β) = 2 ≤ 2 log2(i(α, β)) + 2.

Next, suppose that i(α, β) = 2. Notice that α must consecutively intersect β
with one of two different orientations as shown in the left two configurations in
Figure 1.

Figure 1. Curve surgeries used in the proof of Proposition 2.1.

Let’s first consider the configuration on the far left of Figure 1. Notice that γ1
and γ2 are both disjoint from α and β. If both γ1 and γ2 are non-essential, then
we may consider the pair of curves in the top and bottom of the configuration that
are disjoint from γ1 and γ2. If both of these curves are also non-essential, then N
is topologically a four times punctured sphere, which contradicts our assumption
of N . Hence, at least one of these curves is essential, say γ, and yields

i(α, γ) = 0 = i(γ, β).

It follows that

d(α, β) ≤ d(α, γ) + d(γ, β) = 2 ≤ 2 log2(i(α, β)) + 2.
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Now consider the configuration in the center of Figure 1. Since

i(α, γ1) = 1 = i(α, γ2)

we know γi is essential. If γi was non-essential, then we could resolve the intersection
with α. However, we can only resolve trivial intersections in pairs of two since a
trivial intersection always forms a bigon [1]. Consequently, we can see that no such
bigon is formed and γi is essential. Moreover, both γ1 and γ2 intersect β strictly
fewer than two times. We select one of these curves to be γ. It follows that

d(α, β) ≤ d(α, γ) + d(γ, β) = 4 ≤ 2 log2(i(α, β)) + 2.

Inductively, suppose that i(α, β) > 2. We need to handle two different cases.
First, suppose that α has two consecutive points of intersection along β oriented as
shown in the center configuration of Figure 1. Since

i(α, γ1) = 1 = i(α, γ2)

we know γi is essential. Moreover, at least one of γ1 or γ2 intersects β fewer than
or equal to n/2 times. We select said curve to be γ. If α does not have such
consecutive points of intersection along β, then we must have that α intersects β
as shown in the right configuration of Figure 1. Up to changing the orientation of
α, we may assume that α intersects β at x1, x2, x3 in that respective order. Notice
that a regular neighborhood of α ∪ γ1 ∪ γ2 is topologically a four times punctured
sphere. To see this, note that α∪γ1∪γ2 is isotopically two cords glued onto α such
that the cords share a common point of intersection with α. Hence, α ∪ γ1 ∪ γ2 is
isotopically a wedge of three circles and its regular neighborhood is a four times
punctures sphere. Let’s denote this four times punctured sphere by Y . If N − Y
is topologically a disjoint collection of disks, then we have that c = 0 and s ≤ 4,
which contradictions our assumption of N . Selecting some boundary curve of Y ,
which is disjoint from α, γ1, and γ2 and essential in N , we have that

d(α, γ1) = 2 = d(α, γ2).

Moreover, at least one of γ1 or γ2 intersects β fewer than or equal to n/2 times.
We select said curve to be γ. Using our selected γ, we have

d(α, β) ≤ d(α, γ) + d(β, γ)

≤ 2 + 2 log2(i(β, γ)) + 2

≤ 2 + 2 log2(i(α, β)/2) + 2

= 2 log2(i(α, β)) + 2.

To complete the proof, notice that each γ we constructed was two-sided as an
orientation of each regular neighborhood is obtained from the orientations of the
regular neighborhoods of α and β. However, γ may have been a Möbius curve.
In this case, we may replace γ by the core circle γ′ of the Möbius band that γ
bounds. This is because i(α, γ) = 0 if and only if i(α, γ′) = 0 for all α. After this
replacement, the result follows. �

Corollary 2.2. Let N be a non-orientable surface with c cross caps and s boundary
components. If 3c

2 + s ≥ 5, then C(N) is connected.

Now we turn our attention to the connectivity properties of C1(N) and C2(N).
Then connectivity of C2(N) follows quickly from Corollary 2.2. If two vertices of
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C2(N) are connected by a path that contains a one-sided curve, then we can push
this path off of the one-sided curve into C2(N).

Proposition 2.3. Let N be a non-orientable surface with c cross caps and s bound-
ary components. If c+ s ≥ 5, then C2(N) is connected.

Proof. Fix some α and β in C2(N). Suppose that

P = (α = γ0, . . . , γi, . . . , γn = β) ⊂ C(N)

is a path from α to β in C(N). To show that C2(N) is connected, we push this path
in C(N) off any one-sided curves, producing a path from α to β in C2(N). Suppose
that γi is a one-sided curve. Consider the surface X = N − γi. If X is orientable,
then X is homeomorphic to S c−1

2 ,s+1, which is connected when c + s ≥ 5. By the

connectivity of C(X) there exists a path P ′ in C(X) from γi−1 to γi+1. This path
P ′ from γi−1 to γi+1 in C(X) lies in C(N) by the injectivity of π1(X) into π1(N).
When X is orientable, P ′ is composed entirely of two-sided curves and we have
resolved the issue caused by γi. If X is non-orientable, then X is homeomorphic to
Nc−1,s+1, which is connected when c+s ≥ 5. The same argument above gives a path
P ′ from γi−1 to γi+1 in both C2(X) and C2(N). However, P ′ may contain one-sided
curves. Since N has a finite number of disjoint one-sided curves, we may repeatedly
apply this argument to X and its subsurfaces until we obtain an orientable surface
and a path composed of two-sided curves. Repeatedly applying this argument to
each element of P that is one-sided, we obtain the desired result. �

Unlike the connectivity of C2(N), the connectivity of C1(N) depends on the
number of cross caps in N . If the number of cross caps is even, then C1(N) is
connected. If the number of cross caps is odd, then C1(N) is not connected. The
proof of the latter statement is simple.

Proposition 2.4. Let N be a non-orientable surface with an odd number of cross
caps. Then C1(N) is not connected.

Proof. Consider the one-sided curve v show in Figure 2. Note that N − v is ori-
entable and thus contains no one-sided curves. Hence, if α is in C1(N), then we
must have that i(v, α) 6= 0. It follows that v is disjoint from every other face of
C1(N). Consequently C1(N) is not connected. �

Figure 2. Isolated curve used for Proposition 2.4. Note, the
barred circle in the figure represents a cross cap in N . That is,
antipodal points are identified on the circle in N .

To prove the former statement, we need to introduce some necessary machinery.
The first result that we will need is a lemma due to Putman [8].
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Lemma 2.5 (Putman). Consider a group G acting upon a simplicial complex X.
Fix a vertex v ∈ X and a set S of generators for G. Assume the following hold.

(1) For all vertices v′ ∈ X, the orbit G · v intersects the connected component
of X containing v′.

(2) For all s ∈ S, there is some path Ps in X from v to s · v.

Then X is connected.

For our purposes, our simplicial complex will be C1(N) and our group will be
the mapping class group of N , Mod(N).1 With this in mind, we need a generating
set for Mod(N). Consider the collections of curves shown in Figure 4. Given α
in a surface F , we denote the positive Dehn Twist about α by Tα. Let wi denote
the push map of zi along αi. Let σs+i denote the elementary braid on N . Given a
curve α that intersects zi followed by zn as shown in Figure 3, σs+i(α) is defined
as shown in Figure 3.

Figure 3. Mapping given by the braid element σs+i.

Let y denote the cross cap slide performed on the component of the compliment
of ξ that is a Klein bottle with boundary.2 We have the following result due to
Stukow [10].

Theorem 2.6 (Stukow). Let N be a non-orientable surface with c cross caps and n
punctures. If c ≥ 3, c is even, and n ≥ 2, then the mapping class group Mod(Nn

g,s)
is generated by

{T`, ws+1, σs+1, . . . , σs+n−1, y, Tλ | ` ∈ D }.

1Recall that the mapping class group of a non-orientable surface N is π0(Homeo(N)), where

Homeo(N) is the set of homeomorphism of N endowed with the compact-open topology.
2To review the definition of a cross cap slide, see [3]. To review the definition of a push map

of a point along a loop, see [1].
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Figure 4. Curves used to generate Mod(N) as in Theorem 2.6.
Let the collection of curves on the top surface be denoted by D .

Proposition 2.7. Let N be a non-orientable surface with an even number of cross
caps c and n punctures. If c ≥ 3 and n ≥ 2, then C1(N) is connected.

Proof. To show this result, we use Lemma 2.5. Consider the basepoint v indicated in
Figure 5. Using a Classification of Surfaces argument, one can show that there exists
a unique orbit of one-sided curves under the action of Mod(N). Hence, condition
(1) of Lemma 2.5 is clearly satisfied. Next, its clear that the only generators that
may act non-trivially on v are Tcr and Tbr+1 . However, both of these Dehn Twists
acting on v produce curves that are disjoint from v. Hence, condition (2) of Lemma
2.5 is satisfied. By Lemma 2.5, we have that C1(N) is connected. �
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Figure 5. Basepoint for Proposition 2.7.

Proposition 2.4 motives the following definition.

Definition 2.8. Let C′1(F ) denote the abstract simplicial complex with the same
set of vertices as C1(F ), but 〈v0, . . . , vk〉 is a k-simplex in C′1(F ) if i(vi, vj) ≤ 1 for
all i and j.

Proposition 2.9. Let N be a non-orientable surface with c cross caps and s bound-
ary components. If 3c

2 + s ≥ 5, then C′1(N) is connected.

Proof. Let α and β be two one-sided curves in N that are in minimal position and
consider Figure 6. Inductively, suppose that i(α, β) = n > 1 and any curves with
intersection number fewer that n are connected in C′1(N).

Figure 6. Curve surgeries used in the proof of Proposition 2.9.

Let’s first consider the configuration on the left of Figure 6. Notice that one of
the two dotted curves is one-sided and in the correct position with respect to α.
Call said curve γ. Notice that i(α, γ) = 1 and γ intersects β fewer than i(α, β)
times. After we note that γ is essential, we are done by induction.

Now consider the configuration on the right of Figure 6. Again, one of the
two dotted curves is one-sided. Notice that if i(α, β) = 2, then i(β, γ) = 1 and
consequently γ is essential. If i(α, β) > 2 and γ is nonessential, then there must
be a bigon formed between α and β, which contradicts our assumption of α and
β being in minimal position. Moreover, γ intersects β strictly fewer than i(α, β)
times. Inductively, we are done. �

Now we turn our attention to the connectivity of CNS(N). In the spirit of the
proof of Proposition 2.3, if two non-separating curves are connected by a path that
contains a separating curve, then we push our path off of this separating curve.

Proposition 2.10. Let N be a non-orientable surface with c cross caps and s ≤ 1
boundary components. If 3c

2 + s ≥ 5, then CNS(N) is connected.

Proof. Let α, β ∈ CNS(N). Suppose that

P = (α = γ0, . . . , γn = β) ⊂ C(N)
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is a path from α to β. We show that CNS(N) is connected by pushing this path
off any separating curves. Suppose that γi is a separating curve. Then N − γi
has two components, which we denote by X1 and X2. If γi−1 is in X1 and γi+1

is in X2, then i(γi−1, γi+1) = 0 and we may remove γi from P . If γi−1 and γi+1

are both in X1, then by our assumption of the complexity of N , we may find a
nonseparating curve γ′ in X2. To obtain our modified path, we simply replace γi
with γ′. Repetitively applying this argument to each separating curve in P , we
obtain the desired result. �

A natural question to ask about these various sub-complexes is whether or not
they are quasi-isometric to the full complex. Let’s recall the definition of a quasi-
isometry.

Definition 2.11. A function f : Y → X is a (K,E) quasi-isometric embedding for
K ≥ 1, E ≥ 0 if, for every x, y ∈ Y , we have

1

K
(dY (x, y)− E) ≤ dX(f(x), f(y)) ≤ K · dY (x, y) + E.

If f is E-dense (an E neighborhood of f(Y ) equals all of X) then we say that f is
a quasi-isometry and that X is quasi-isometric to Y .

We begin by showing that CNS(N) is quasi-isometric to C(N). To see this, we
first need to notice the following corollary of Proposition 2.10.

Corollary 2.12. Let N be a non-orientable surface with c cross caps and s ≤ 1
boundary components. If 3c

2 + s ≥ 5, then for all α and β in CNS(N), we have

dCNS
(α, β) = dC(α, β).

Proof. This follows from the proof of Proposition 2.10, where we show that the
shortest path between α and β can always be realized in CNS(N). �

Proposition 2.13. Let N be a non-orientable surface with c cross caps and s ≤ 1
boundary components. If 3c

2 + s ≥ 5, then CNS(N) is quasi-isometric to C(N).

Proof. By Corollary 2.12, we must have that the natural inclusion of CNS(N) into
C(N) is a quasi-isometric embedding. To see that this inclusion is a quasi-isometry,
it remains to show that CNS is dense in C(N). Let γ be in C(N). If γ is in CNS(N),
then we are done. If γ is a separating curve, then consider a component X of N−γ.
Notice that π1(X) injects into π1(N). Hence, selecting some element α in CNS(X)
gives us an element of CNS(N) such that d(α, γ) = 1. It follows that CNS is 1-dense
in C(N) and the result follows. �

Below we will show that neither C1(N) nor C2(N) is quasi-isometric to C(N).
But before doing so, we need to introduce some terminology and develop some
machinery.

Definition 2.14. A surface F is called sporadic if C(F ) is not connected. Similary,
a surface F is called non-sporadic if C(F ) is connected.

We will need the following result due to Masur and Minsky [7].

Theorem 2.15 (Masur and Minsky). For a non-sporadic orientable surface S there
exists c > 0 such that, for any pseudo-Anosov h ∈ Mod(S), any γ ∈ C(S) and any
n ∈ Z,

d(hn(γ), γ) ≥ c|n|.
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It follows immediately from Theorem 2.15 that C(S) has infinite diameter. Re-
call, that every non-orientable surface has an orientation double cover that is an
orientable surface with the deck transformation given by the antipodal map. The
following result is due to Masur and Schleimer [6].

Theorem 2.16 (Masur and Schleimer). Let N be a non-orientable surface with an
orientation double cover S. Then C(N) is qausi-isometric to a subcomplex of C(S)
that is invariant under the action of the deck transformation.

The final result that we will need is given by Farb and Margalit [1].

Theorem 2.17 (Farb and Margalit). Let A = {α1, . . . , αn} and B = {β1, . . . , βm}
be multicurves in an orientable surface S that together fill S. Any product of positive
powers of the Tαi and negative powers of the Tβi , where each αi and each βi appear
at least once, is pseudo-Anosov.

Using these three results, we can prove the following.

Proposition 2.18. Let N be a non-orientable surface whose orientation double
cover S is non-sporadic. Then C(N) has an infinite diameter.

Proof. By Theorem 2.16, i : C(N) ↪→ C(S) is a quasi-isometric embedding with
i(C(N)) invariant under the deck transformation f associated to the orientation
double cover. The deck transformation is simply the restriction of the map x 7→ −x
in R3 to the double cover, embedded in the obvious way in R3.

Figure 7. Multicurves in the orientation double cover for Propo-
sition 2.18 where F ∼= P#Sg,s. Let A = {ai, di} and B =
{bi, ci, fi, hi}.

Figure 8. Multicurves in the orientation double cover for Propo-
sition 2.18 where F ∼= K#Sg. Let A = {ai, di} and B =
{bi, ci, fi, hi}.
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Consider either the collection of curves in Figure 7 if N ∼= P#Sng or the collection
of curves in Figure 8 if N ∼= K#Sng . Notice that A∪B fill S in both cases. Consider
the homeomorphism

g :=
∏
`∈A

T`
∏
`∈B

T−1` .

By Theorem 2.17, g is pseudo-Anosov. Notice that f takes A to A and B to B .
Moreover, if x and y are in A , then TxTy = TyTx. Similarly for B . It follows that
f ◦ g = g ◦ f . Therefore, g is a pseudo-Anosov homeomorphism that commutes
with the deck transformation. Consequently, g take i(C(F )) into itself. The result
follows from Theorem 2.15. �

Finally, we need the following definition given by Masur and Schleimer [6].

Definition 2.19. Let X be a subsurface of a surface F . The subsurface projection,
πX : C(N)→ C(X), is defined as follows. Fix α in C(N) and isotope α to minimize
the number of connected components of α ∩X. Now,

• if α ⊂ X, then set πX(α) = α.
• if i(α, ∂X) > 0, then pick any arc α′ ⊂ α ∩ X, set Y equal to a closed

neighborhood of α′ ∩ ∂X, and set πX(α) equal to any component of ∂Y
which is essential in X.
• if α ⊂ F −X, then set πX(α) = ∅.

We can now prove that the natural inclusion of C2(N) into C(N) is not a quasi-
isometric embedding.

Proposition 2.20. Let N be a non-orientable surface whose orientation double
cover S is non-sporadic. The natural inclusion of C2(N) into C(N) is not a quasi-
isometric embedding.

Proof. Let µ ∈ N be a one-sided curve. Consider the subsurface X = N − µ. By
Proposition 2.18, we know that for any m there exists α and β in C2(X) such that
dC(X)(α, β) ≥ m. By the injectivity of π1(X) into π1(N), we have that both α
and β are in C2(N). Next, notice that if (α = γ0, . . . , γn = β) is a path from α to
β in C(N), then dC(X)(α, β) ≤ 6n. This follows from the fact that if i(γ, δ) = 0,
then i(πX(γ), πX(δ)) ≤ 4 and by Proposition 2.1 we have dC(X)(πX(γ), πX(δ)) ≤ 6.
Chaining together the above inequalities we have

m ≤ dC(X)(α, β) ≤ 6 · dC(N)(α, β) ≤ 6 · dC2(N)(α, β).

It follows that we may select α and β in C2(N) that are arbitrarily far apart in
C2(N). Moreover, we may choose both α and β to be disjoint from µ and con-
sequently dC(N)(α, β) = 2. It follows that the natural inclusion takes vertices at
arbitrarily large distances to distance 2. Therefore, the natural inclusion is not a
quasi-isometric embedding. �

We may use a similar argument to show that the natural inclusion of C1(N) into
C(N) is not a quasi-isometric embedding.

Proposition 2.21. Let N be a non-orientable surface whose orientation double
cover S is non-sporadic. The natural inclusion of C1(N) into C(N) is not a quasi-
isometric embedding.
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Proof. Let γ ∈ N be a non-separating curve that is not one-sided. Consider the
non-orientable subsurface X = N −γ. Applying the same argument as in the proof
of Proposition 2.20 with this different X and instead α and β being in C1(X), we
have that we may select α and β in C1(N) that are arbitrarily far apart in C1(N)
but that are distance 2 apart in C(N). It follows that the natural inclusion takes
vertices at arbitrarily large distances to distance 2. Therefore, the natural inclusion
is not a quasi-isometric embedding. �

We conclude this section by studying the dimensions and maximal simplices of
C(N) and its natural sub-complexes C1(N) and C2(N).

Proposition 2.22. Let N be a non-orientable surface with c cross caps and s
boundary components. Then a pants decomposition of N is composed of c + s − 2
pairs of pants

Proof. Suppose that there are m pairs of pants, then an Euler characteristic argu-
ment shows that

−m = χ(N) = 2− c− s.
The result follows. �

Proposition 2.23. Let N be a non-orientable surface with c cross caps and s
boundary components. Let ∆ be a maximal simplex of C(N).

(1) If c is odd, then

3c− 1

2
+ s− 2 ≤ dim(∆) ≤ 2c+ s− 3.

(2) If c is even, then

3c− 2

2
+ s− 2 ≤ dim(∆) ≤ 2c+ s− 3.

Proof. By Proposition 2.22, we have that m = c + s − 2. Counting the boundary
curves and the curves we cut along to obtain our pant’s decomposition, we must
have that

3m = 2t+ `+ s

where t is the number of two-sided curves that we cut along and ` is the number
of one-sided curves that we cut along. An easy computation shows that

t =
3c− `+ 2s− 6

2
.

If c is odd, then 1 ≤ ` ≤ c. It follows that

3c+ 1

2
+ s− 3 ≤ t+ ` ≤ 2c+ s− 3.

If c is even, then 0 ≤ ` ≤ c. It follows that

3c

2
+ s− 3 ≤ t+ ` ≤ 2c+ s− 3.

The result follows by noticing that any maximal simplex in C(N) is given by t
two-sided curves and ` one-sided curves. �

Corollary 2.24. Let N be a non-orientable surface with c cross caps and s bound-
ary components. If ∆ is a top-dimensional maximal simplex of C1(N), then ∆ has
dimension 2c+ s− 3.
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Corollary 2.25. Let N be a non-orientable surface with c cross caps and s bound-
ary components. Let ∆ be a top-dimensional maximal simplex of C2(N).

(1) If c is odd, then

dim(∆) =
3c− 1

2
+ s− 2.

(2) If c is even, then

dim(∆) =
3c− 2

2
+ s− 2.

3. Homotopy Type of the Curve Complex

In this section, we show that the argument used by Harer [2] to compute the
homotopy type of the curve complex of an orientable surface can be generalized for
non-orientable surfaces. Harer’s result is as follows.

Theorem 3.1 (Harer). For g > 0, the complex C(S0
g) is homotopy equivalent

to a wedge of spheres of dimension 2g − 2, and the complex C(Sng ) is homotopy
equivalent to a wedge of spheres of dimension 2g + n − 3 for n > 0. For g = 0,
C(Sn0 ) is homotopy equivalent to a wedge of spheres of dimension n− 4.

We show the following generalization for non-orientable surfaces.

Theorem 3.2. Let N be a non-orientable surface with c > 0 cross caps and n
punctures. The curve complex of N is homotopy equivalent to a wedge of spheres
of dimensions fewer than or equal to c+ n− 2 if n = 0 and c+ n− 3 if n > 0.

To prove Theorem 3.2, we start with the following observation.

Remark 3.3. Consider C(Nn
c ) and let {p1, . . . , pn} denote the collection of punc-

tures in Nn
c . Let Ĉ(Nn

c ) denote the sub-complex of C(Nn
c ) spanned by simplices

〈γ0, . . . , γk〉 such that γi does not bound a disk containing p1 and some other pj .
Notice that forgetting the point p1 gives rise to a map

ϕ : Ĉ(Nn
c )→ C(Nn−1

c )

when n > 0. When n = 1, we have that Ĉ(N1
c ) = C(N1

c ).

The following lemma is due to Harer [2]. We give it here for completeness and
to show that it holds for non-orientable surfaces.

Lemma 3.4. ϕ is a homotopy equivalence for all n.

Proof. Let N ′ = N0
c − {p2, . . . , pn} and choose a complete hyperbolic metric of

finite area on N ′. Each isotopy class of simple closed curves is given by a unique
geodesic. Since there exists a point in N ′ that does not meet a geodesic, we may
select such a point, say p′. Then ψ : C(Nn−1

c ) → Ĉ(Nn
c ) gives a mapping by

setting p1 = p′. Notice that ψ can be viewed as an inclusion. Furthermore, since
its clear that ϕ ◦ ψ is the identity, Id, on C(Nn−1

c ), we must have that ϕ is a

retraction of Ĉ(Nn
c ) onto the image of ψ and consequently the naturally included

copy of C(Nn−1
c ). Applying the functor πn(−), we have that ϕ∗ ◦ ψ∗ = Id∗ and

consequently ϕ∗ : πn(Ĉ(Nn
c ))→ πn(C(Nn−1

c )) is surjective for all homotopy groups.
To complete the proof we will show that ϕ∗ is injective for all homotopy groups.
Applying Whitehead’s Theorem in the case of simplicial complexes, it follows that
ϕ is a homotopy equivalence.
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Let f : Σn → Ĉ(Nn
c ) be a simplicial map of a piecewise linear n-sphere and set

f ′ = ψ ◦ ϕ ◦ f . We show that f ′ is homotopic to f , completing the proof. Let
N ′′ = N ′ − p1. Given vertices v1, . . . , vk of Σn, set ci = f(vi) and c′i = f ′(vi) such
that ci and c′i are the geodesic representatives in N ′′, on which we may choose a
complete hyperbolic metric of finite area. Notice that ci is isotopic to c′i in N ′.

Let A1, . . . , Ak ⊂ N ′ × I denote the imbedded annuli which give isotopies from
ci to c′i such that Ai ∩ (N ′ × {0}) = ci and Ai ∩ (N ′ × {1}) = c′i. Notice that the
product structure on each Ai is compatible with the product structure on N ′ × I.
We may arrange the Ai to be pairwise transverse and each Ai to be transverse to
p1 × I. We will arrange the Ai such that if ci ∩ cj = ∅ then either Ai ∩Aj = ∅ or
c′i = c′j and Ai ∩ Aj = c′i. Suppose that i(ci, cj) = 0 for some i and j. Notice that
either (Ai ∩ Aj) ∩ (N ′ × 1) = ∅ or c′i is equal to c′j . It follows that any unwanted
intersections that ruin the desired arrangement mentioned above between Ai and
Aj are circles.

Let c ⊂ Ai ∩ Aj be such a circle. Suppose that c is isotopic to the boundary of
Ai. Since c is simple, it must be a generator in π1(Ai). But π1(N ′× I) being equal
to π1(N ′) implies that c must be a generator in π1(Aj) otherwise cj would be non-
essential in N ′. It also follows that c′i equals c′j . Now we may simply interchange
the part of Ai which contains c′i with the part of Aj that contains c′j and push the
modified Ai and Aj off each other in order to eliminate c without changing the
product structure. We may repeatedly apply this argument to remove all circles
that are generators in π1(Ai) for all i.

Now suppose that c is not homotopic to the boundaries Ai and Aj . Then c
bounds a disk Di in Ai whose interior is disjoint from Aj and a disk Dj in Aj
whose interior is disjoint from Ai. Replace Dj with Di and push out slightly to
remove c from Ai ∩ Aj . This procedure maintains the product structure and no
new intersections are created. We may repeatedly apply these processes until all
the remaining circles of intersection between the Ai are removed.

Now we may move the Ai such that p1× I intersects only one annulus at a time.
Let 0 < t1 < · · · < tm < 1 be the times that these intersections occur. Suppose
that Ai meets p1 at t1. Let d1 = Ai ∩ (N ′ × {t1 + ε}) viewed in N ′ such that
t1 + ε < t2 and ε > 0. Notice that d1 may be isotoped to a curve that is disjoint
from ci. By the conditions imposed on the Ai above, we have that if i(ci, cj) = 0,
then d1 may be isotoped to a curve that is disjoint from cj . If τ = 〈v1, vj1 , . . . , vj`〉
is a top-dimensional simplex of Σn in the star of v1, then add 〈v1, w1, vj1 , . . . , vjn〉
to Σn along τ , where w1 is a newly introduced vertex. We may extend f in the
obvious manner by sending w1 to d1. Continuing this process for all ti, the result
is a homotopy of f to f ′. This completes the proof. �

We now turn to the proof of Theorem 3.2. Our argument below is in the spirit
of Harer’s original argument for the orientable case.

Proof. Suppose by way of induction that the result holds for surfaces with any
number of cross caps fewer than c and with an arbitrary number of punctures. The
base case of a sphere with an arbitrary number of punctures is given by Theorem 3.1.
Let C(N0

c )◦ denote the barycentric subdivision of C(N0
c ). Notice that the vertices of

C(N0
c )◦ correspond to multicurves and faces are added for chains of proper inclusions

among these multicurves. More precisely, the collection of multicurves 〈αj0, . . . , α
j
j〉

with 0 ≤ j ≤ k span a k-simplex if 〈αj0, . . . , α
j
j〉 ⊂ 〈α

j+1
0 , . . . , αj+1

j+1〉 for all j < k.
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Given v ∈ C(N0
c )◦, we define the weight of v, denoted w(v), to be the number of

curves contained in the multicurve v minus one. Equivalently, w(v) is the dimension
of the simplex for which v was a barycenter.

Let Xk denote the full sub-complex of C(N0
c )◦ composed of vertices with weight

greater than or equal to k. We will construct C(N0
c )◦ by consecutively adding

vertices of lower weight and show for each k that Xk is a wedge of spheres with
dimension fewer than or equal c− 2. Let d denote the dimension of the top dimen-
sional maximal simplex in C(N0

c ). Notice that Xd is a discrete set of points and is
thus a wedge of zero spheres and of dimension fewer than c−2. Inductively, suppose
that Xk+1 has been shown to be a wedge of spheres all of dimensions fewer than
c − 2. Consider some v = 〈γ0, . . . , γk〉 ∈ Xk −Xk+1. Assuming that v has a non-
empty link, we let {N i}i be the set of connected components of N0

c −∪jγj . Notice
that the link of v, L(v), in Xk+1 is simply the join of C(N1), . . . , C(N t). Without
loss of generality, suppose N1, . . . , N ` are orientable surfaces with g1, . . . , g` gen-
era and r1, . . . , r` boundary components respectively. Suppose that N `+1, . . . , N t

are non-orientable surfaces with c`+1, . . . , ct cross caps and r`+1, . . . , rt boundary
components respectively. Via an Euler characteristic argument, we have

2− c = χ(N0
c )

=
∑
i

χ(N i)

=

(∑̀
i=1

2− 2gi − ri

)
+

(
t∑

i=`+1

2− ci − ri

)

= 2t−

(∑̀
i=1

2gi + ri

)
−

(
t∑

i=`+1

ci + ri

)
.

It follows that

c =

(∑̀
i=1

2gi + ri +

t∑
i=`+1

ci + ri

)
− 2t+ 2.

By Theorem 3.1, we have that for i < ` + 1 each N i is a wedge of spheres of
dimension fewer than c − 2. Inductively, we have that for i > ` each N i is a
wedge of spheres of dimension fewer than c − 2. More explicitly, we have that
dim(C(N i)) = 2gi + ri − 3 < c − 2 for i < ` + 1 and dim(C(N i)) ≤ ci + ri − 3 for
i > `. Recalling that L(v) is the join of C(N1), . . . , C(N t), we have that

dim(L(v)) ≤

(∑̀
i=1

2gi + ri − 3

)
+

(
t∑

i=`+1

ci + ri − 3

)
+ (t− 1)

=

(∑̀
i=1

2gi + ri

)
+

(
t∑

i=`+1

ci + ri

)
− 3t+ t− 1

= c− 3.

Notice that Xk is obtained from Xk+1 by forming the join of v with its link
in Xk+1 for all v in Xk − Xk+1. It remains to show that Xk is not contractible.
Consider v and w in Xk − Xk+1 such that v = 〈γ0, . . . , γk〉 and w = 〈δ0, . . . , δk〉.
If i(γi, δj) 6= 0 for some i and j, then there does not exist x in Xk+1 such that
v, w ⊂ x. It follows that L(v) ∩ L(w) = ∅. If i(γi, δj) = 0 for all i and j, then set
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x = 〈γ0, . . . , γk, δ0, . . . , δk〉. Removing redundancies let us write x = 〈ε0, . . . εm〉.
Notice that v, w ⊂ x and L(v)∩L(w) is the link of x in Xm+1. But inductively, L(x)
with its subspace topology in Xm+1 is not contractible and thus forming the joins
of v and w to their respective links suspends L(x), producing a non-contractible
space. This completes the induction on c and the proof for the case of n = 0.

To handle the case of n = 1, recall that Ĉ(N1
c ) = C(N1

c ). By Lemma 3.4, we

have that Ĉ(N1
c ) is homotopic to C(N0

c ). It follows that C(N1
c ) is homotopic to a

wedge of spheres each of dimension fewer than or equal to c + (1) − 3. To handle
the remaining cases, suppose that

C(Nn−1
c ) '

∨
i

Sni

such that 0 ≤ ni ≤ c + (n − 1) − 3 with n > 1. By Lemma 3.4, we have Ĉ(Nn
c )

is homotopic to C(Nn−1
c ). But C(Nn

c ) is obtained from Ĉ(Nn
c ) by forming the join

with each ommitted vertex. All such vertices correspond to curves that encircle
p1 and one other pi. If two such curves are disjoint then they must be isotopic.
It follows that ϕ sends the links of such vertices homeomorphically onto C(Nn−1

c ).
Hence, C(Nn

c ) is homotopic to the join of C(Nn−1
c ) with a wedge of zero spheres.

This completes the proof. �
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