
Numerical Ring Invariants and the Alternating Sums of Graded

Betti Numbers

Michael Phelan

July 2015

Abstract

Utilizing a computation on the numerical invariants of graded rings and modules, this REU paper will
show methods to use the Hilbert function to recover information about the alternating sums of graded
Betti numbers. The consistency and structure of this computation will be explored for the coordinate
rings of varieties of projective space, and reduced modules over polynomial rings. Next steps in the
research will be discussed.

1 Introduction

In the study of commutative algebra and projective algebraic geometry, it is often useful to study numerical
invariants on graded S-modules M “ ‘nPNMi where S is a polynomial ring in degree-one variables over
an algebraically closed field. We will use the convention that Mapdq=Ma`d. Invariants such as the Hilbert
functionHM pnq=dimk(Mn) and the Hilbert series hM ptq “

ř

kPNHM pkqt
k, reveal much about the underlying

algebraic geometry and intersection theory of their associated projective varieties.
The deep connection to intersection theory encoded in the Hilbert polynomial here is that the Hirzebruch-

Riemann-Roch theorem (a seminal theorem of intersection theory) gives us a way of understanding the Euler
characteristic of a projective variety X over an algebraically closed field k with associated ring R. That is,
given knowledge of the Chern and Todd classes of Pd, as well as knowledge of the sections Opnq of a very
ample invertible sheaf on X, we can compute the Euler characteristic χpFpnqq [4]. Let’s see the connection
by restating the Hilbert polynomial in terms of the Euler characteristic, χ. That is, we know that given a
coherent sheaf F , and a very ample invertible sheaf Op1q the function χpFp´qq : N ÝÑ N that follows the
rule n ÞÑ χpFbOp1qbnq is, for n " 0 equal to the dimension of the cohomology module h0pFbOp1qbnq. But
we have this spectacular theorem that the ring R1 “ ‘nPZ(h0pF bOp1qbnq) is isomorphic to krx0, ..., xds{I,
where I is the ideal of the image of the mapping induced by Opnq, which is exactly R. we can now see that
HRpnq=χpFpnqq for n " 0.[1]

Now, of course, the above meanderings are not the most straightforward way to compute the Hilbert
polynomial. The most standard way to go about this business is to obtain a free resolution of the ring
R in terms of a polynomial ring krx0, ...xds. Then the alternating sums of the syzygy modules’ Hilbert
polynomials are just the Hilbert polynomial of R.[3]

But there is another way to obtain the Hilbert polynomial. Let’s introduce another, third numerical
invariant on a graded R-module M , the formal sum hGM ptq “

ř

i,jPNp´1qiβijt
j . Using the graded free

resolution, we may show that HM pnq “
řkdimpRq

j“0 p
ř8

i“0p´1qiβijqHSpn´jq, where kdim is the krull dimension

of R. We will typically write this as: HM pnq “
řkdimpRq

j“0 αiHSpn ´ jq, where the αi have the obvious
meaning. It makes sense to write this as a matrix equation for sufficiently large variables ni, Represented as
rHSpni´ jqsrαis “ rHM pniqs, where j indexes rows and i indexes columns. From there, we can ask questions
about this matrix. Namely, the questions of whether or not this equation is consistent, whether the matrix
rHSpni ´ jqs is invertible, and whether or not the alternating sums of Betti numbers, the αi, are dependent
on our choice of ni.
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2 Consistency in the Easiest Case

What we have really produced in the above section is an algorithm that ultimately finds the alternating
sums of graded Betti numbers for a graded module given knowledge of the Hilbert functions of the module
and its ambient ring. Let us work in the simplest case, where S “ krx0, ..., xds. Let M be a graded, finitely
generated S-module, and our equation becomes:

¨

˚

˝

HSpn0q ¨ ¨ ¨ HSpn0 ´ dq
...

. . .
...

HSpndq ¨ ¨ ¨ HSpnd ´ dq

˛

‹

‚

¨

˚

˝

α0

...
αd

˛

‹

‚

“

¨

˚

˝

HM pn0q
...

Hpndq

˛

‹

‚

where αi are the alternating sums of the graded Betti numbers of M .
We work in this case for two reasons. The first is that the proofs involved while dealing with this case,

and the other cases discussed at the end of the paper are so similar that they do not bear repeating. Instead,
lemmas will be introduced that allow direct translation of our inductive arguments. The second reason that
this case is the only one that will be fully worked is that it relies on intuition about binomial coefficients.
The lemmas introduced later on will just be, in essence, a statement of some version of Pascal’s rule for
Hilbert polynomials.

2.1 Invertibility

Returning back to our main discussion, we wish to show that the (d` 1)ˆ(d` 1) matrix introduced in the
above section is invertible.

Theorem 1. The matrix

A “

¨

˚

˝

HSpn0q ¨ ¨ ¨ HSpn0 ´ dq
...

. . .
...

HSpndq ¨ ¨ ¨ HSpnd ´ dq

˛

‹

‚

is invertible if and only if all the ni are unequal.

Proof. Were some ni “ nj for i ‰ j, then two of the columns would be the same, and the determinant 0.
Conversely, proceed by induction on d. When d=1, det(A)=n0 ´ n1, which is easily verifiable by hand.
In the inductive case, it is of note that the ijth entry can be written as HSp´jqpniq. This motivates writing

the following:

A “

¨

˚

˝

`

n0`d
d

˘ `

n0`d´1
d

˘

¨ ¨ ¨
`

n0

d

˘

...
. . .

. . .
...

`

nd`d
d

˘ `

nd`d´1
d

˘

¨ ¨ ¨
`

nd

d

˘

˛

‹

‚

To show that this is invertible, produce a new matrix A1 of equal determinant by subtracting each column
other than the first from the column to its immediate right, so that the ijth entry of the new matrix A1 is
`

ni`d´j
d

˘

´
`

ni`d´j`1
d

˘

. After applying Pascal’s rule, we write

2



A1 “

¨

˚

˝

`

n0`d
d

˘

´
`

n0`d´1
d´1

˘

¨ ¨ ¨ ´
`

n0

d´1

˘

...
. . .

. . .
...

`

nd`d
d

˘

´
`

nd`d´1
d´1

˘

¨ ¨ ¨ ´
`

nd

d´1

˘

˛

‹

‚

By our inductive hypothesis, we know that the d ˆ d minor whose top leftmost entry is ´
`

n0`d´1
d´1

˘

is
invertible. This implies that columns 2 to d are of full rank. Now consider the columns of A1. Define a
linear transformation T : Rd`1 ÝÑ Pd, where Pd is the vector space of degree at most d polynomials with
coefficients in R. Let T prxisq=ppkq, where p is the polynomial produced by performing Lagrange interpolation
on rpxi, niqs. This function with this particular choice of codomain is an isomorphism of vector spaces, so
it sends linearly independent sets to linearly independent sets, and we can see trivially that columns 2 to d
will be sent to linearly independent degree d ´ 1 polynomials, whereas column 1 will be sent to a degree d
polynomial. So the columns of A1 are linearly independent, and so A is invertible.

This fact actually gives as a corollary the ability to understand the polynomial structure of det(A), up
to a scalar factor.

Corollary 1. The determinant of the matrix A of Theorem 1 is, for some scalar c equal to 1
c

ś

i‰jpni´njq

From the above proof we know that A is invertible if and only if the sequence n0 ¨ ¨ ¨nd contains only
distinct integers (forwards is free, if ni “ nj was equal, the i` 1st and the j ` 1st row would be the same).
From this we can infer that the determinant of A must divide the following polynomial in the ni:

p˚q “
1

c

ź

i‰j

pni ´ njq

So the degree of detpAq as a polynomial in the ni is at least
`

d
2

˘

. Now, by performing elementary column
operations on A in a similar manner as described in the proof of theorem 1, we can obtain the following
matrix:

A2 “

¨

˚

˝

`

n0`d
d

˘

´
`

n0`d´1
d´1

˘

´
`

n0`d´2
d´2

˘

¨ ¨ ¨ ´
`

n0

0

˘

...
. . .

. . .
. . .

...
`

nd`d
d

˘

´
`

nd`d´1
d´1

˘

´
`

nd`d´2
d´2

˘

¨ ¨ ¨ ´
`

nd

0

˘

˛

‹

‚

In this way, we know that detpA2q=detpAq can be written as a linear combination of polynomials of
degree 0 ` 1 ` 2 ` .... ` d “ 1

2dpd ´ 1q “
`

d
2

˘

. So deg(det(Aqq is at most
`

d
2

˘

. So it must be that detpAq is
(˚), for some scalar c.

2.2 ni dependency

The above sections only proved that solutions to rHSpni ´ jqsrαis “ rHM pnis exist, not whether they are
independent on choices of n0 ¨ ¨ ¨nd. This is an important consistency check. To motivate this, we note that
these equations are often too large to reasonably solve by hand, and that a program such as Mathematica
may be unable to give a reasonable closed form. In even a simple example, if you try to solve this equation
for d “ 3 and M “ S{pfq where f has degree i ą 2, you will most likely end up with:

¨

˚

˚

˝

1{6p11i´ 6i2 ` i4q
1{2p´6` 5i2 ´ i3q
1{2p´6i´ 4i2 ´ i3q
rpn0, n1, n2, n3, iq

˛

‹

‹

‚

Where rpn0, n1, n2, n3, iq is a rational function whose closed form takes up about 3 pages. This is not a
useful solution. However, after a few hours of frustration, you might be lucky enough to obtain the more
reasonable closed form:
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¨

˚

˚

˝

1{6ip11` 5i` iq
´1{2ip6´ 5i` i2q
1{2ip3´ 4i` i2q
´1{6ip2´ 3i` i2q

˛

‹

‹

‚

Although this case can be resolved in a reasonable amount of time with computing software, larger, more
complicated cases may not be tractable. Here we prove a result motivated by examples as above:

Theorem 2. For krx0, ..., xds “ S, the alternating sums of graded Betti numbers of a finitely generated
S-module M are expressible as polynomials of degree ď d in the twists of S appearing in the graded free
resolution of M . It is possible to find these polynomials from the matrix equation rHSpni´jqsrαis “ rHM pnis
for any choices of sufficiently large ni.

Proof. M is Noetherian, so Hilbert’s syzygy theorem gives that it has a finite graded free resolution [3].
This implies that its Hilbert polynomial may be written as a finite linear combination of shifted binomial
coefficients, so it suffices to show that, for

¨

˚

˝

HSpn0q ¨ ¨ ¨ HSpn0 ´ dq
...

. . .
...

HSpndq ¨ ¨ ¨ HSpnd ´ dq

˛

‹

‚

¨

˚

˝

f0
...
fd

˛

‹

‚

“

¨

˚

˝

`

n0`d´k
d

˘

...
`

nd`d´k
d

˘

˛

‹

‚

The fi are polynomials in k. In fact, we only need to prove this for a single row. We can prove this by
induction on d (the base step here is omitted, but easy to verify). Now suppose there exist polynomials pipkq
of degrees ď d´ 1 that satisfy, for all n P Z:

p0pkq
`

n`d´1
d´1

˘

` ¨ ¨ ¨ ` pdpkq
`

n
d´1

˘

“
`

n`d´1´k
d´1

˘

Then, by elementary properties of binomial coefficients:
n`d´k
r´1 pp0pkq

`

n`d´1
d´1

˘

` ¨ ¨ ¨ ` pdpkq
`

n
d´1

˘

q “
`

n`d´k
d

˘

To show that the resulting polynomials are not dependent on choice of n, consider the ith term in the
above linear combination:

n`d´k
d´1 pipkq

`

n`d´i
d´1

˘

=pn`d´i
d´1 ` i´k

d´1 qpipkq
`

n`d´i
d´1

˘

=p
`

n`d´i`1
d

˘

` i´k
d´1 p

`

n`d´i
d

˘

´
`

n`d´i`1
d

˘

qqpipkq

This gives that fi`1pkq “ p1`
i´k
d´1 qpipkq ` pi`1pkq, which is a polynomial of degree ď d.

Another useful observation: If we have M “ S{I, our polynomial ring modded out by the ideal of a
regular sequence, s1 ¨ ¨ ¨ sn P S whose degrees are ri and n ă d, a quick modification to the above proof
gives that the polynomials αi will have degrees exactly d in the ri. If ps1 ¨ ¨ ¨ snq “ p1q, then some ri=0
and S{p1q “ 0. All of the Betti numbers of S{p1q are 0. This implies that the αi are all zero, so that
αipr1, ¨ ¨ ¨ , rnq “

śn
k“1 rkγpr1, ¨ ¨ ¨ , rnq, where γ is a degree n´ d polynomial.

3 The case of S{I

The above proofs were painfully reliant on results of the Hilbert syzygy theorem, that is, our ability to
write Hilbert functions of a module over a ring krx0, ..., xrs “ S as finite linear combinations of S’s Hilbert
function. This finite-length free resolution is what gives us an easy way to write the Hilbert polynomials of
finitely generated S-modules as finite linear combinations of HS . When we change our ambient ring, so that
instead of S-modules we consider R-modules where R “ S{I is a factor of S by some homogeneous ideal I,
we very quickly lose our ability to write finite free resolutions in terms of R. The simplest example of this
is that if R “ krxs{pxnq, then there is no m ‰ 0 that R{pxmq has a finite free resolution in terms of R [2].
There are two ways to cope with this. The first of which is to use properties of rings and modules to reduce
the statement into something easily understandable, the second of which is to consider the R-module as a
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S-module and obtain the Hilbert polynomial by using a finite syzygy complex. Here is an example of the
former, before we move on to a longer discussion of the latter:

Example It is well known that for a homogeneous ideal I not generated by linear elements and ring
R “ S{I, the quotient R-module R{aR with a being the irrelevant ideal has no finite free resolution over R
[2]. However, we know that R{aR – S{abS R. Then we have that the ith graded part of S{abS R is:

pS{abS Rqi “ ‘m`n“ippS{aqm bS Rnq

We know that since S{a is a residue field, if m ą 0, then pS{aqm bS Rn “ 0. This vastly simplifies our
problem since now we know that HR{aRpiq “dimk pS{abS Riq, where dimk is the dimension of the graded
part of a module over a k-algebra as a k-vector space. This allows us to conclude that HR{aR “ HR. This
also gives that when we consider the system of linear equations Aα “ HM , our α is the standard basis vector
e1, for any I.

Even in this relatively simple example, calculation of the Hilbert polynomial becomes very much non-
obvious. This motivates the next section.

3.1 Regular Sequences, or How I Learned to Stop Worrying and Love the
Koszul Complex

The simplest interesting case of considering our ambient ring being R “ S{I is when I “ pfq, for some
homogeneous element f who is at least quadratic. The main question is whether or not the theorems of
section 2 hold in this capacity. This exclusively involves coming up with a method of generalizing the
property of binomial coefficients used in section 2 to Hilbert polynomials. Namely, Pascal’s rule.

Lemma 1. Let f P S “ krx0, ..., xds and f 1 P S1 “ krx0, ..., xd´1s have that degpfq=degpf 1q=i ě 2. Then
HS{pfqpnq ´HS{pfqpn` 1q “ ´HS1{pf 1qpnq. Moreover, HS{pfq has degree r ´ 1 and HS1{pf 1q degree r ´ 2.

Proof. This is a pretty straightforward binomial coefficient argument. We note that S{pfq has free resolution
0 ÝÑ Sp´iq ÝÑ S (this is simply the Kozsul complex of the regular sequence f). We can now explicitly
calculate its Hilbert polynomial:

HS{pfqpnq “
`

n`d
d

˘

´
`

n`d´i
d

˘

By Pascal’s rule:

“
`

n`d´i
d

˘

`
ři

k“1

`

n`d´k
d´1

˘

´
`

n`d´i
d

˘

“
ři

k“1

`

n`d´k
d´1

˘

. This shows that HS{pfq has degree d´ 1.
Now we can see a way to proceed with the remainder of the proof:
HS{pfqpnq ´HS{pfqpn` 1q

=
ři

k“1

`

n`d´k
r´1

˘

´
ři

k“1

`

n`1`d´k
d´1

˘

=
`

n`d´i
r´1

˘

´
`

n`d
d´1

˘

`
ři

k“1p
`

n`d´k
d´1

˘

´
`

n`d´k
d´1

˘

q

=
`

n`d´i
d´1

˘

´
`

n`d
d´1

˘

Noting that the free resolution of S1{pf 1q is 0 ÝÑ S1p´iq ÝÑ S1 completes the proof.

Actually, as it turns out these results generalize further to any ambient ring R “ S{I with I generated
by a regular sequence. The underlying feature here is that if you have a regular sequence of length n whose
elements have degree ri in S “ krx0, ..., xds, and R “ S1{J with J generated by a regular sequence of length
n whose elements have degree ri in S1 “ krx0, ..., xd´1s (if it exists) will have the same free resolution with
the same twists, that is, the Koszul complex on n elements, only exchanging S for S1 in the second case.
So, when you write the Hilbert polynomial HR as a linear combination of HSp´jq’s, they have the same
coefficients, just substituting HSp´jq for HS1p´jq. Moreover, we have the property that deg(HR)=r ´ n, so
that we know additionally that degree is preserved correctly over these generalizations. I will state without
proof the necessary generalizations of binomial identities to Hilbert polynomials of factor rings of regular
sequences, whose proofs are easier than the above lemma. We will see that the algorithm explored in section
2 is consistent for all regular sequences.
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Lemma 2. Let n ă d ´ 1 and f1, ...fn P S “ krx0, ..., xds and f 11...f
1
n P S

1 “ krx0, ..., xd´1s be regular
sequences who have that degpfiq=degpf 1iq=j ě 2. Then HS{pf1,...fnqpkq ´ HS{pfqpk ` 1q “ ´HS1{pf 1

1...f
1
nq
pkq.

Moreover, HS{pf1,...fnq has degree d´ n and HS1{pf 1
1...f

1
nq

degree d´ pn` 1q.

4 Future Directions and Conclusions

This paper presents proofs for a wide variety of modules over polynomial rings and factors thereof for the
consistency of the equation rHSpni ´ jqsrαis “ rHM pniqs. Consistency is checked by first proving that the
matrix rHSpni´jqs is invertible, then showing that solutions to this equation can be shown to be independent
of the choice of the values of the variables ni This consistency is checked for rings S “ krx0, ..., xds and
factors of S by ideals generated by regular sequences, and finitely generated S- and R- modules. It would
be interesting to look at classes of rings and modules where this equation is not consistent, if they exist. In
order to find more classes of rings and modules for which this equation either works or doesn’t, it will be
necessary to characterize in greater detail the Krull dimension and the degree of the Hilbert polynomial of
the ring. The former issue is not too complex, and for modules that are factor rings, can be done by looking
at localizations at maximal ideals. The latter however, is a harder question. It can be done by looking
directly at the syzygies of a module and computing examples directly. In [1], a sheaf-theoretic approach
to talking about the degree of Hilbert polynomials is presented, which may have more power than direct
computation.
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