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Abstract. Let (R,m) be a local Artinian ring. A conjecture of S. Dutta, M. Hochster, and C. Huneke

states that the first Koszul homology module of n elements in m with coefficients in R needs at least n

generators. We prove this conjecture in the case where R is equicharacteristic and m3 = 0.

1. Introduction

We prove the case where R is equicharacteristic and m3 = 0 of the following conjecture, which arose in

discussions among S. Dutta, M. Hochster and C. Huneke in the early 1980s, but was not published at that

time. The conjecture was discussed in a 2004 talk by Hochster [2].

Conjecture 1.1. Let (R,m) be a local Artinian ring and let u1, . . . , un be elements of m. Then the number

of generators of H1(u1, . . . , un;R) is at least n.

If true, this conjecture solves an open problem that is part of a family of unsolved problems related to

the Buchsbaum-Eisenbud-Horrocks conjecture.

Consequence 1.2. Let (S,m) be an equicharacteristic regular local ring. Let I, J be m-primary ideals of

S and let n be the Krull dimension of S. Then the number of generators of I∩J
IJ
∼= Tor1

(
R
I ,

R
J

)
is at least n.

There are many open problems concerning lower bounds for dimk k ⊗Tori(M,N) when M,N have finite

length over a regular local ring of dimension d and additional information such as the numbers of genera-

tors of M,N is specified. If N = k, the conjecture that
(
d
i

)
is a lower bound on dimk k ⊗ Tori(M,N) is the

Buchsbaum-Eisenbud-Horrocks problem. If i = 1 andM,N are cyclic, the conjecture that dimk k⊗Tori(M,N)

is bounded below by n is Consequence 1.2. In fact, to prove Consequence 1.2 it suffices to show that Con-

jecture 1.1 holds when R is equicharacteristic and u1, . . . , un are purely linear [5], but the general version of

the conjecture is an interesting problem in its own right.

The conjecture is easily verified if n = 1, and an argument of S. Dutta proves the case where n = 2

[5]. Furthermore, A. Zhang has recently shown that the number of generators is at least n + cid(R) −

cid
(

R
(s1,...,sn)R

)
, where cid(R) denotes the complete intersection defect of R [5]. Taking a direct approach,

we prove the conjecture in the case where R is equicharacteristic and m3 = 0.
1
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In this paper, all rings are taken to be commutative with unity. Section 2 covers some basic concepts

in commutative algebra as a starting point for undergraduates reading this paper. Section 3 collects some

preliminary lemmas that reduce the problem to the situation where the n elements are either variables or

quadratic forms in the remaining variables; these lemmas were known at the outset of this project but not all

of them had been previously published. Section 4 contains original results, culminating in the main theorem.

2. Background

Definition 2.1. A ring R is said to be local if it has a single maximal ideal. We say (R,m) is local when it

is convenient to specify the maximal ideal m of R.

Definition 2.2. A ring R is said to be Artinian if it satisfies the descending chain condition, i.e. if any

strictly descending chain of ideals of R

I1 ) I2 ) I3 ) · · ·

is finite.

Note. If (R,m) is local, then R is Artinian if and only if mn = 0 for some n ∈ N.

Example 2.3. Let R = Z/8Z. Then R is a local Artinian ring with maximal ideal (2).

Example 2.4. Let R = k[x, y]/(x, y)2, where k is a field. Then R is a local Artinian ring with maximal

ideal (x, y).

Example 2.5. Let R = k[x, y]/(x2, xy2, y3), where k is a field. Then R is a local Artinian ring with maximal

ideal (x, y).

Definition 2.6. A ring R is said to be equicharacteristic if it contains a field. Otherwise, we say R is of

mixed characteristic.

Definition 2.7. Let u1, . . . , un be elements of a ring R. A relation on u1, . . . , un is an n-tuple (r1, . . . , rn)

such that r1u1 + · · ·+ rnun = 0.

Example 2.8. Let R = k[x, y]. Then (4y,−6) is a relation on 3x and 2xy.

Example 2.9. Let R = k[x, y]/(x2, xy, y3). Then (x, x), (x, y2), and (y,−2x) are relations on 2x and y.

Definition 2.10. Let u = u1, . . . , un ∈ R. A relation on u of the form (. . . , 0, uj , 0, . . . , 0,−ui, 0, . . .), where

uj occurs in the ith position and −ui occurs in the jth position, is called a Koszul relation on u.
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Definition 2.11. Let u = u1, . . . , un ∈ R. Then the relations on u form a submodule N of Rn and the

Koszul relations on u generate a submodule of N . The quotient module N/L is called the first Koszul

homology of u with coefficients in R and is denoted H1(u;R).

Throughout the paper we make use of several standard tools in homological algebra, particularly the

Koszul complex and the resulting long exact sequence in homology. I. Swanson’s online notes [4] are a good

introductory reference for these topics. A more advanced treatment of Koszul homology can be found in

[1, §1.6] or [3, Ch. IV A].

3. Preliminaries

We first recall some basic facts relating the Koszul homology modules on sets of elements that generate

the same ideal in R. These are stated in greater generality in [1, §1.6] and [3, Ch. IV A].

Lemma 3.1. Let R be a ring. Suppose u = u1, . . . , un, v = v1, . . . , vn ∈ R and there exists an invertible

n× n matrix A with v = uA. Then Hi(v;R) ∼= Hi(u;R).

Lemma 3.2. Let R be a local ring and let u = u1, . . . , un, v = v1, . . . , vn ∈ R be such that (u) = (v). Then

Hi(v;R) ∼= Hi(u;R).

Note that u and v have the same order in the lemma above; the next few lemmas address the case where

their orders differ.

Corollary 3.3. Let R be a ring and let v1, . . . , vm ∈ R. If vm ∈ (v1, . . . , vm−1), then Hi(v1, . . . , vm;R) =

Hi(v1, . . . , vm−1, 0;R).

Lemma 3.4. Let R be a ring and let v = v1, . . . , vm ∈ R. Then

Hi(v1, . . . , vm, 0;R) = Hi(v1, . . . , vm;R)⊕Hi−1(v1, . . . , vm;R).

Corollary 3.5. Let (R,m) be a local ring and let v = v1, . . . , vm ∈ m. Let u = u1, . . . , un be a set of elements

that minimally generate (v). If the minimal number of generators of H1(u;R) is at least n, then the minimal

number of generators of H1(v;R) is at least m.

The next lemma follows from Proposition 1.6.5 of [1].

Lemma 3.6. Let R be a ring and let u = u1, . . . , un ∈ R. Then (u) annihilates H1(u;R). In particular, if

(R,m) is a local ring with m = (x1, . . . , xd) and x1, . . . , xr ∈ (u), then mH1(u;R) = (xr+1, . . . , xd)H1(u;R).

Furthermore, if H1(u;R) = N/L, where N is the module of relations on u and L is the module generated by

the Koszul relations on u, then mN + L = (xr+1, . . . , xd)N + L.
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The following lemmas greatly reduce the number of cases that need to be considered to prove the conjecture

when m3 = 0 and R is equicharacteristic.

Lemma 3.7. Let (R,m, k) be an equicharacteristic local Artinian ring. Then

R ∼=
k[[x1, . . . , xd]]

I
∼=
k[x1, . . . , xd]

I

for some d ∈ N and (x1, . . . , xd)-primary ideal I of k[x1, . . . , xd]. Moreover, we may take I ⊆ (x1, . . . , xd)
2.

Proof. The first isomorphism follows from the structure theory of complete local rings in the equicharacteris-

tic case (R is complete since it is a local Artinian ring). The second isomorphism holds since I is m-primary.

We may assume I ⊆ (x1, . . . , xd)
2; otherwise it would be equivalent to decrease d. �

Corollary 3.8. Let R be a local Artinian ring containing a field. Suppose m3 = 0. Then R ∼= S/V where

S = k[x1, . . . , xd]/m
3 for some d ∈ N and V ⊆ m2/m3.

Lemma 3.9. Let I be a proper ideal of S = k[x1, . . . , xd]/m
3. Let v = v1, . . . , vn be a minimal generating

set of I. Then H1(v;S) ∼= H1(u;S) for some u = x1, . . . , xr, qr+1, . . . , qn, where the qi are quadratic forms

in xr+1, . . . , xd and x1, . . . , xr, qr+1, . . . , qn minimally generate (u).

Proof. We may think of S as k[[x1, . . . , xd]]/m
3. Let r = dimk(I + m2)/m2 and renumber the vi so that the

images of v1, . . . , vr form a basis for (I + m2)/m2. Subtract scalar linear combinations of v1, . . . , vr from

vr+1, . . . , vn to obtain yr+1, . . . , yn ∈ m2. By Lemma 3.2, H1(v;S) ∼= H1(v1, . . . , vr, yr+1, . . . , yn;S). Let

x′i := vi for 1 ≤ i ≤ r. Extend x′1, . . . , x
′
r to a minimal set of generators x′1, . . . , x

′
d of m. By the structure

theory of complete regular local rings, there is a k-automorphism k[[x1, . . . , xd]]→ k[[x1, . . . , xd]] that maps

x′i to xi for all i ≤ d. This induces a k-automorphism θ of S. Let wj := θ(yj) ∈ m2 for j > r. The

images of v1, . . . , vr, yr+1, . . . , yn are x1, . . . , xr, wr+1, . . . , wn, where the latter are in m2. Therefore we have

H1(v1, . . . , vr, yr+1, . . . , yn;S) ∼= H1(x1, . . . , xr, wr+1, . . . , wn;S). Subtract linear combinations of x1, . . . , xr

from wr+1, . . . , wn to obtain qr+1, . . . , qn ∈ (xr+1, . . . , xd)
2. Then by Lemma 3.2,

H1(x1, . . . , xr, qr+1, . . . , qn;S) ∼= H1(x1, . . . , xr, wr+1, . . . , wn;S) ∼= H1(v;S). �

We briefly outline the method used to prove the main result, Theorem 4.6. We first find the module

H1(u;S) explicitly in Lemma 4.5. With some manipulations of exact sequences, we use this information to

determine H1(u;R). We then examine

H1(u;R)

mH1(u;R)
.
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Recall that by the local case of Nakayama’s lemma, the minimal number of generators of H1(u;R) is equal to

the dimension of this module as a vector space over k. In general, the obvious lower bound on the dimension

of this module is not quite sufficient to prove the conjecture. Instead, we decompose the module into a direct

sum of two submodules, one of which is easy to understand. To handle the other submodule, we construct a

surjective map from it onto a completely different module to obtain a lower bound on its minimal number

of generators. We show that the sum of this value and the number of generators of the simpler submodule

is at least n and the result follows.

4. Results

The first result below is not involved in the proof of the main theorem, but immediately proves the case

where u1, . . . , un are quadratic.

Proposition 4.1. Let (R,m) be a local Artinian ring such that m has d ≥ 1 generators. Let q = q1, . . . , qn ∈

m2 be such that q1, . . . , qn minimally generate (q) and mqi = 0 for all 1 ≤ i ≤ n. Then the minimal number

of generators of H1(q;R) is nd ≥ n.

Proof. Let N be the module of all relations on q1, . . . , qn. Since q1, . . . , qn minimally generate (q), we have

that N ⊆ m⊕n. Since m annihilates (q), N = m⊕n. Let ei denote the basis element (. . . , 0, 1, 0, . . .) of R⊕n,

where the 1 occurs in the ith position. We have H1(q;R) = N/L, where L is the module generated by the

Koszul relations qjei − qiej . By Nakayama’s lemma, the minimal number of generators of H1(q;R) is equal

to the k-vector space dimension of

H1(q;R)

mH1(q;R)
∼=

m⊕n

(m2)⊕n
∼=
( m

m2

)⊕n
,

which is exactly nd. �

Corollary 4.2. Let S = k[x1, . . . , xd]/m
3, where m = (x1, . . . , xd). Let V ⊆ m2/m3 and let R = S/V .

Let q = q1, . . . , qn such that qi ∈ m2 and q1, . . . , qn minimally generate (q). Then the minimal number of

generators of H1(q;R) is exactly nd.

Lemma 4.3. Let S = k[x1, . . . , xd]/m
3, where m = (x1, . . . , xd). Let L be the module of Koszul relations on

x1, . . . , xr. Then

H1(x1, . . . , xr;S) =
S⊕r2 + L

L
∼=
S⊕r2

L2
,

where L2 = S⊕r2 ∩ L. Moreover, dimk L2 = d
(
r
2

)
−
(
r
3

)
and dimk H1(x1, . . . , xr;S) = r

(
d+1
2

)
− d
(
r
2

)
+
(
r
3

)
≥

rd+
(
r
3

)
.
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Proof. Let N be the module of all relations on x1, . . . , xr and let L be the module generated by the Koszul

relations on x1, . . . , xr. We first show that N = S⊕r2 + L, where L is the module generated by the Koszul

relations on x1, . . . , xr. Since S3 = 0, it is clear that S⊕r2 ⊆ N . Consider N/S⊕r2 . These may be identified

with the relations (s1, . . . , sr) such that the si have degree 1. Note that these relations hold in the polynomial

ring T = k[x1, . . . , xd]. Since x1, . . . , xr form a regular sequence in T , the relations must be in L, so

N = S⊕r2 + L. Let L2 = S⊕r2 ∩ L.

Then

H1(x1, . . . , xr;S) =
S⊕r2 + L

L
∼=

S⊕r2

S⊕r2 ∩ L
=
S⊕r2

L2
.

Note that S⊕r2 is a k-vector space of dimension r
(
d+1
2

)
. We claim that L2 is a k-vector space of dimension

d
(
r
2

)
−
(
r
3

)
. Take the graded Koszul complex on x1, . . . , xr over S in degree 3. This yields an exact sequence

0→ [ker d1]3 → [S(−1)⊕r]3
d1−→ [S]3 →

[
S

(x1, . . . , xr)S

]
3

→ 0

The dimensions of three of these modules are easy to calculate:

dimk[S(−1)⊕r]3 = dimk[S⊕r]2 = r

(
d+ 1

2

)
dimk[S]3 =

(
d+ 2

3

)
dimk

[
S

(x1, . . . , xr)S

]
3

= dimk k[x1, . . . , xd−r]3 =

(
d− r + 2

3

)
Since the alternating sum of the dimensions is zero,

dimk[ker d1]2 = dimk[S(−1)r]3 + dimk

[
S

(x1, . . . , xr)S

]
3

− dimk[S]3

= r

(
d+ 1

2

)
+

(
d− r + 2

3

)
−
(
d+ 2

3

)
= d

(
r

2

)
−
(
r

3

)
Since ker d1 = L, it follows that H1(x1, . . . , xr;S) = S⊕r2 /L2 has dimension

r

(
d+ 1

2

)
− d
(
r

2

)
+

(
r

3

)
=
rd(d− r + 2)

2
+

(
r

3

)
≥ rd+

(
r

3

)
For heuristic reasons, we give a second, more intuitive argument that the dimension of L2 is d

(
r
2

)
−
(
r
3

)
.

First, note that L is a k-vector space spanned by the
(
r
2

)
elements of the form lij = xjei − xiej , where ei

denotes the ith basis element (. . . , 0, 1, 0, . . .) of S⊕r. Since m3 = 0, every element of L can be written in the

form
∑
sij lij where the sij have degree at most 1. It follows that L2 is spanned by the d

(
r
2

)
elements xklij

where 1 ≤ k ≤ d. There are
(
r
3

)
elements xklij satisfying 1 ≤ k < i < j ≤ r, and for any such element we
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have xklij = xilkj − xj lki. Thus, L2 is spanned by the d
(
r
2

)
−
(
r
3

)
elements xklij such that k ≥ i. It remains

to show that these are linearly independent over K. Suppose
∑
cijkxklij = 0 for some cijk ∈ K. The qth

position of this sum (now excluding the terms where k < i) is given by

d∑
k=q

n∑
j=q+1

cqjkxkxj −
q−1∑
i=1

d∑
k′=i

ciqk′xk′xi.

The set of xkxj from the first double sum and the set of xk′xi from the second double sum are disjoint,

by the following argument. If some xkxj = xk′xi, then we must have k = i or j = i, but these are both

impossible since q ≤ k ≤ d and 1 ≤ i ≤ q− 1, and j > i by definition. Finally, since k′ ≥ i, no xk′xi appears

more than once in the second double sum, so each xk′xi appears exactly once in the entire sum. Since the

entire sum is zero, each ciqk = 0. But this holds for each q, so every coefficient is zero and the elements are

linearly independent. �

The next lemma is superfluous, as it follows from Theorem 4.6 (and the proofs are quite similar), but we

include it here for heuristic reasons.

Lemma 4.4. S = k[x1, . . . , xd]/m
3 and V ⊆ m2/m3, where m = (x1, . . . , xd). Let R = S/V and x =

x1, . . . , xr. Then the minimal number of generators of H1(x;R) is at least r.

Proof. The short exact sequence 0→ V → S → R→ 0 yields a long exact sequence in Koszul homology

H1(x;V )→ H1(x;S)→ H1(x;R)→ H0(x;V )→ H0(x;S)→ H0(x;R)→ 0

which becomes

H1(x;V )→ H1(x;S)→ H1(x;R)→ V

(x)V
→ S

(x)S
→ R

(x)R
→ 0

Since V is annihilated by (x), H1(x;V ) ∼= V ⊕r/(0) ∼= V ⊕r and V/(x)V ∼= V . Thus the sequence becomes

V ⊕r
ϕ−→ H1(x;S)

ψ−→ H1(x;R)
δ−→ V

φ−→ S

(x)S
→ R

(x)R
→ 0

By Lemma 4.3,

H1(x;S) =
S⊕r2

L2
.

Since the map ϕ is induced by the inclusion V ⊕r ↪→ S⊕r, the image of V ⊕r in H1(x;S) is

V ⊕r + L2

L2
.
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By exactness, kerψ = Imϕ, so

Imψ ∼=
H1(x;S)

Imϕ
=
S⊕r2

L2

/
V ⊕r + L2

L2

∼=
S⊕r2

L2 + V ⊕r
.

Similarly, ker δ = Imϕ, and Im δ = kerφ = V ∩ (x)S. Thus the short exact sequence

0→ ker δ → H1(x;R)
δ−→ Im δ → 0

becomes

0→ S⊕r2

L2 + V ⊕r
→ H1(x;R)

δ−→ V ∩ (x)S → 0 .

Let s = dimk V ∩ (x)S and let t = dimk V . Clearly, if s ≥ r, then we are done. Suppose s < r. There is

an injection

V

V ∩ (x)S
↪→ S2

S2 ∩ (x)S
∼= k[xr+1, . . . , xd]2,

so t = dimk V ≤ s + dimk k[xr+1, . . . , xd]2 = s +
(
d−r+1

2

)
. Because we have an obvious lifting at the

chain level, the standard construction of the connecting homomorphism δ yields that δ sends
∑r
i=1 biei to∑r

i=1 bixi ∈ (x)S. If
∑r
i=1 biei ∈ H1(x;R), then

∑r
i=1 bixi ∈ 0R, so

∑r
i=1 bixi ∈ V . Note that this map

sends [H1(x;R)]2 to 0, so [H1(x;R)]1 � V ∩(x)S. Since [ker δ]1 = 0, ker δ ∩ H1(x;R)]1 = 0, so δ restricted to

[H1(x;R)]1 is an isomorphism. It then follows that [H1(x;R)]2 = ker δ. By Nakayama’s lemma, the minimal

number of generators of H1(x;R) is equal to

dimk
H1(x;R)

mH1(x;R)
.

Since H1(x;R) = [H1(x;R)]1 ⊕ [H1(x;R)]2, m[H1(x;R)]2 = 0, and m[H1(x;R)]1 ⊆ [H1(x;R)]2,

dimk
H1(x;R)

mH1(x;R)
= s+ dimk

[H1(x;R)]2
m[H1(x;R)]1

.

Let B be the module of degree 1 relations on x1, . . . , xr. Then

[H1(x;R)]1 =
B

L1

∼= V ∩ (x)S

and it follows that dimk B/L1 = s. We have

[H1(x;R)]2 = ker δ =
S⊕r2

L2 + V ⊕r
,

so

[H1(x;R)]2
m[H1(x;R)]1

=
S⊕r2

L2 + V ⊕r

/
mB + L2 + V ⊕r

L2 + V ⊕r
=

S⊕r2

mB + L2 + V ⊕r
=

S⊕r2

(xr+1, . . . , xd)B + L2 + V ⊕r
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(the last equality holds since x1, . . . , xr annihilate H1(x;R); see Lemma 3.6). Let T be the polynomial ring

k[x1, . . . , xd]. Since each element of S1 ⊕ S2 has a unique coset representative in T1 ⊕ T2, there is a natural

vector space isomorphism between S1 ⊕ S2 and T1 ⊕ T2. Consider the map

γ : (S1 ⊕ S2)⊕r → (T1 ⊕ T2)⊕r → T2 ⊕ T3

that sends the ith basis element ei to xi. We have γ(S⊕r2 ) = (x1, . . . , xr)T2 and γ(V ⊕r) = (x1, . . . , xr)Ṽ ,

where Ṽ is the isomorphic image of V in T r2 . Furthermore, γ(L2) = 0. Note that γ restricted to S⊕r1 is the

same as the composition obtained by applying δ and then the natural vector space isomorphism from S2 to

T2, so γ(B) = Ṽ ∩ (x)T ∼= V ∩ (x)S = δ(B). Thus, γ induces a well-defined surjective map from

[H1(x;R)]2
m[H1(x;R)]1

∼=
S⊕r2

(xr+1, . . . , xd)B + L2 + V ⊕r

to the module

(x1, . . . , xr)T2

(xr+1, . . . , xd)(Ṽ ∩ (x)T ) + (x1, . . . , xr)Ṽ
.

We will show this module has dimension at least r − s and the result will follow. Note that

dimk(x1, . . . , xr)T2 = dimk T3 − dimk(xr+1, . . . , xd)
3 =

(
d+ 2

3

)
−
(
d− r + 2

3

)
.

We have dimk Ṽ ∩ (x)T = dimk V ∩ (x)S = s and

dimk Ṽ = dimk V = t ≤ s+

(
d− r + 1

2

)
.

Then the dimension of (xr+1, . . . , xd)(Ṽ ∩ (x)T ) + (x1, . . . , xr)Ṽ is bounded above by

(d− r)s+ rs+ r

(
d− r + 1

2

)
= ds+ r

(
d− r + 1

2

)
.

Thus the dimension of the entire module is at least(
d+ 2

3

)
−
(
d− r + 2

3

)
− ds− r

(
d− r + 1

2

)
=
dr2

2
+
dr

2
− ds− r3

3
+
r

3
,

which at least r − s for all d, r ≤ d, and s < r. �

Lemma 4.5. Let S = k[x1, . . . , xd]/m
3 and let u = x1, . . . , xr, qr+1, . . . , qn, where the qi are quadratic in

xr+1, . . . , xd and minimally generate (qr+1, . . . , qn). Let x = x1, . . . , xr. Then

H1(u;S) ∼=
(S⊕r2 + L)⊕ (S1 ⊕ S2)⊕n−r

L⊕ L′ ⊕ L′′
∼=
S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

L2 ⊕ L′ ⊕ L′′
,



10 NINA PANDE

where L is generated by the Koszul relations on x1, . . . , xr, L
′ is generated by the Koszul relations qjei−xiej

where i ≤ r and j ≥ r + 1, and L′′ is generated by the Koszul relations on qr+1, . . . , qn. Moreover, the

minimal number of generators of H1(u;S) is at least n.

Proof. We first show that

H1(u;S) ∼=
(S⊕r2 + L)⊕ (S1 ⊕ S2)⊕n−r

L⊕ L′ ⊕ L′′
.

Note that L + L′ + L′′ encompasses all of the Koszul relations on x1, . . . , xr, qr+1, . . . , qn. Clearly, L ∩

L′′ = 0. We have L ⊆ ((x1, . . . , xr)S)⊕r, L′′ ⊆ (k[xr+1, . . . , xd]2)⊕n−r, and L′ ⊆ (k[xr+1, . . . , xd]2)⊕r ⊕

((x1, . . . , xr)S)⊕n−r, so (L⊕L′′)∩L′ = 0 and we can write L⊕L′⊕L′′. Let N be the module of all relations

on x1, . . . , xr, qr+1, . . . , qn. Since x1, . . . , xr, qr+1, . . . , qn minimally generate (u), N ⊆ (S1 ⊕ S2)⊕n. The qi

are annihilated by S1 ⊕ S2, so (S1 ⊕ S2)⊕n−r ⊆ N , corresponding to qr+1, . . . , qn. Then the rest of N is

simply the relations on x1, . . . , xn, which is S⊕r2 + L by Lemma 4.3. Simplifying, we have

H1(u;S) ∼=
(S⊕r2 + L)⊕ (S1 ⊕ S2)⊕n−r

L⊕ L′ ⊕ L′′
∼=

S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

(S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r) ∩ (L⊕ L′ ⊕ L′′)
∼=
S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

L2 ⊕ L′ ⊕ L′′
.

Then

H1(u;S)

mH1(u;S)
∼=

S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

L2 ⊕ L′ ⊕ L′′ + S⊕n−r2

∼=
S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

L2 ⊕ L′ ⊕ L′′
∼=

S⊕r2 ⊕ S⊕n−r1

L2 ⊕ L′ ∩ (S⊕r2 ⊕ S⊕n−r1 )

(since L′′ ⊆ S⊕n−r2 ). We have L′ ∩ (S⊕r2 ⊕ S⊕n−r1 ) = {c(qjei − xiej) | c ∈ k, 1 ≤ i ≤ r, r + 1 ≤ j ≤ n}, so

modulo L′ ∩ (S⊕r2 ⊕ S⊕n−r1 ), the elements xiej for 1 ≤ i ≤ r < j ≤ n are in S⊕r2 . Thus

H1(u;S)

mH1(u;S)
∼=
S⊕r2 ⊕ (kxr+1 + · · ·+ kxd)

⊕n−r

L2

and it follows that

dimk
H1(u;S)

mH1(u;S)
= r

(
d+ 1

2

)
+ (d− r)(n− r)− d

(
r

2

)
+

(
r

3

)
.

This value is at least n if and only if

0 ≤ rd2 + rd

2
− dr2 + dr

2
+ (d− r − 1)n− (d− r)r +

(
r

3

)
=
rd(d− r)

2
+ (d− r − 1)n+ r2 +

(
r

3

)
.

Since d ≥ r, this is certainly non-negative provided d ≥ r + 1. Suppose d = r. Then u = x1, . . . , xd, so

n = d = r and the above formula becomes n2 − n+
(
n
3

)
, which is at least n for all n ≥ 2. �
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Theorem 4.6. Let S = k[x1, . . . , xd]/m
3 and V ⊆ m2/m3, where m = (x1, . . . , xd). Let R = S/V , u =

x1, . . . , xr, qr+1, . . . , qn, where the qi are quadratic in xr+1, . . . , xd and minimally generate (qr+1, . . . , qn).

Then the minimal number of generators of H1(u;R) is at least n.

Proof. The short exact sequence 0→ V → S → R→ 0 yields a long exact sequence in Koszul homology

H1(u;V )→ H1(u;S)→ H1(u;R)→ H0(u;V )→ H0(u;S)→ H0(u;R)→ 0

which becomes

H1(u;V )→ H1(u;S)→ H1(u;R)→ V

(u)V
→ S

(u)S
→ R

(u)R
→ 0

Since V is annihilated by the ui, H1(u;V ) ∼= V ⊕n/(0) ∼= V ⊕n and V/(u)V ∼= V . Therefore the sequence

becomes

V ⊕n
ϕ−→ H1(u;S)

ψ−→ H1(u;R)
δ−→ V

φ−→ S

(u)S
→ R

(u)R
→ 0

By Lemma 4.5,

H1(u;S) ∼=
S⊕n2 ⊕ (S1 ⊕ S2)⊕n−r

L2 ⊕ L′ ⊕ L′′
.

Since the map ϕ is induced by the inclusion V ⊕n ↪→ S⊕n2 , the image of V ⊕n in H1(u;S) is

V ⊕n + L2 ⊕ L′ ⊕ L′′

L2 ⊕ L′ ⊕ L′′
.

By exactness, ker δ ∼= Imψ and kerψ ∼= Imϕ, so

ker δ ∼= Imψ ∼=
H1(x;S)

Imϕ
∼=
S⊕n2 ⊕ (S1 ⊕ S2)⊕n−r

L2 ⊕ L′ ⊕ L′′

/
V ⊕n + L2 ⊕ L′ ⊕ L′′

L2 ⊕ L′ ⊕ L′′
∼=
S⊕n2 ⊕ (S1 ⊕ S2)⊕n−r

V ⊕n + L2 ⊕ L′ ⊕ L′′
.

Similarly, Im δ ∼= kerφ ∼= V ∩ (u)S. The connecting homomorphism δ acts as follows. Let a be an element of

H1(u;R) with coset representative (a1, . . . , an) ∈ S⊕n. Then δ(a) = a1x1+· · ·+arxr+ar+1qr+1+· · ·+anqn ∈

V ∩ (u)S. By Lemma 3.5, we may assume x1, . . . , xr, qr+1, . . . , qn minimally generate (u), so that the ai are

in S1 ⊕ S2. Then aiqi = 0 for all i, so Im δ = V ∩ (x1, . . . , xr)S. Thus the short exact sequence

0→ ker δ → H1(u;R)→ Im δ → 0

becomes

0→ S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

V n + L2 ⊕ L′ ⊕ L′′
→ H1(u;R)

δ−→ V ∩ (x1, . . . , xr)S → 0 .
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Let s = dimk V ∩ (x1, . . . , xr)S and let t = dimk V . Clearly, if s ≥ n, then we are done. Suppose s < n.

There is an injection

V

V ∩ (x1, . . . , xr)S
↪→ S2

S2 ∩ (x1, . . . , xr)S
∼= k[xr+1, . . . , xd]2,

so t = dimk V ≤ s+ dimk k[xr+1, . . . , xd]2 = s+
(
d−r+1

2

)
. Let B ⊆ S⊕r1 be the module of degree 1 relations

on x1, . . . , xr. Note that B/L1 injects into H1(u;R), so (x1, . . . , xr)B ⊆ (u)B ⊆ V ⊕n + L2 ⊕ L′ ⊕ L′′. We

claim

B

L1

∼= V ∩ (x1, . . . , xr)S.

Let b1x1 + · · ·+ brxr ∈ V ∩ (x1, . . . , xr)S. Then (b1, . . . , br) ∈ B since b1x1 + · · ·+ brxr = 0R. Note that δ

maps (b1, . . . , br) +L1 to b1x1 + · · ·+ brxr, so the composition δ0 of δ with B/L1 → H1(u;R) is a surjection

of B/L1 onto V ∩ (x1, . . . , xr)S. Suppose δ((b1, . . . , br) + L1) = 0S . Then (b1, . . . , br) is a degree 1 relation

on x1, . . . , xr in S, so it must hold in T = k[x1, . . . , xd] and thus is in L1. Thus δ0 is the desired isomorphism

and it follows that dimk B/L1 = s and

H1(u;R) = ker δ ⊕ B

L1
=
S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

V n + L2 ⊕ L′ ⊕ L′′
⊕ B

L1

∼=
B ⊕ S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

V n + L1 ⊕ L2 ⊕ L′ ⊕ L′′

since B ⊆ S⊕r1 .

By Nakayama’s lemma, the minimal number of generators of H1(u;R) is precisely

dimk
H1(u;R)

mH1(u;R)
.

We have

H1(u;R)

mH1(u;R)
=

B ⊕ S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

V ⊕n + L1 ⊕ L2 ⊕ L′ ⊕ L′′ + mB + S⊕n−r2

∼=
S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

V ⊕n + L2 + L′ + L′′ + mB + S⊕n−r2

⊕ B

L1

since m kills S⊕r2 ⊕ S⊕n−r2 and mS⊕n−r1 ⊆ S⊕n−r2 . Since dimk B/L1 = s, it suffices to show that

S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

V ⊕n + L2 ⊕ L′ ⊕ L′′ + mB + S⊕n−r2

has dimension at least n− s. Since L′′ ⊆ S⊕n−r2 and x1, . . . , xr annihilate B/L1 ⊆ H1(u;R), this simplifies

to

W :=
S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

V ⊕n + L2 + L′ + (xr+1, . . . , xd)B + S⊕n−r2

.

Note that S⊕r2 contains (xr+1, . . . , xd)B and L2 and we can write V ⊕n = V ⊕r ⊕ V ⊕n−r so that V ⊕r ⊆ S⊕r2

and V ⊕n−r ⊆ S⊕n−r2 . Furthermore, L′ = (L′∩ (S⊕r2 ⊕S
n−r
1 ))⊕mL′, where L′∩ (S⊕r2 ⊕S

n−r
1 ) ⊆ S⊕r2 ⊕S

n−r
1
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and mL′ ⊆ S⊕n−r2 . Putting this all together, we have that

W =
S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

V ⊕n + L2 + L′ + (xr+1, . . . , xd)B + S⊕n−r2

∼=
S⊕r2 ⊕ (S1 ⊕ S2)⊕n−r

(xr+1, . . . , xd)B + L2 + V ⊕r + L′ ∩ (S⊕r2 ⊕ Sn−r1 ) + S⊕n−r2

∼=
S⊕r2 ⊕ S⊕n−r1

(xr+1, . . . , xd)B + L2 + V ⊕r + L′ ∩ (S⊕r2 ⊕ Sn−r1 )
.

Since L′ ∩ (S⊕r2 ⊕ Sn−r1 ) is spanned by {qjei − xiej | 1 ≤ i ≤ r, r + 1 ≤ j ≤ n}, modulo L′ ∩ (S⊕r2 ⊕ Sn−r1 )

we have that xiej ∈ S⊕r2 , so

H1(u;R)

mH1(u;R)
∼=

S⊕r2 ⊕ S⊕n−r1

(xr+1, . . . , xd)B + L2 + V ⊕r + L′ ∩ (S⊕r2 ⊕ Sn−r1 )

∼=
S⊕r2 ⊕ (kxr+1 + · · ·+ kxd)

⊕n−r

(xr+1, . . . , xd)B + V ⊕r + L2

∼=
S⊕r2

(xr+1, . . . , xd)B + V ⊕r + L2
⊕ (kxr+1 + · · ·+ kxd)

⊕n−r.

The k-vector space (kxr+1 + · · · + kxd)
⊕n−r has dimension (d − r)(n − r). If d = r, then u = x1, . . . , xd,

so d = r = n and (d − r)(n − r) = n − r = 0. Moreover, if d − r ≥ 1, then (d − r)(n − r) ≥ n − r, so

dimk(kxr+1 + · · ·+ kxd)
⊕n−r ≥ n− r. If s ≥ r, then we are done. Suppose s ≤ r. We will show that

dimk
S⊕r2

(xr+1, . . . , xd)B + V ⊕r + L2
≥ r − s

and it will follow that

dimk
S⊕r2

(xr+1, . . . , xd)B + V ⊕r + L2
⊕ (kxr+1 + · · ·+ kxd)

⊕n−r ≥ n− r + r − s = n− s.

Let T be the polynomial ring k[x1, . . . , xd]. Since each element of S1⊕S2 has a unique coset representative

in T1 ⊕ T2, there is a natural vector space isomorphism between S1 ⊕ S2 and T1 ⊕ T2. Consider the map

γ : (S1 ⊕ S2)⊕r → (T1 ⊕ T2)⊕r → T2 ⊕ T3

that sends the ith basis element ei to xi. We have γ(S⊕r2 ) = (x1, . . . , xr)T2 and γ(V ⊕r) = (x1, . . . , xr)Ṽ ,

where Ṽ is the isomorphic image of V in T r2 . Furthermore, γ(L2) = 0. Note that γ restricted to S⊕r1 is the

same as the composition obtained by applying δ and then the natural vector space isomorphism from S2 to

T2, so γ(B) = Ṽ ∩ (x1, . . . , xr)T ∼= V ∩ (x1, . . . , xr)S = δ(B). Thus, γ induces a well-defined surjective map

from

S⊕r2

(xr+1, . . . , xd)B + V r + L2
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to the module

(x1, . . . , xr)T2

(xr+1, . . . , xd)(Ṽ ∩ (x1, . . . , xr)T ) + (x1, . . . , xr)Ṽ
.

We will show this module has dimension at least r − s and the result will follow. Note that

dimk(x1, . . . , xr)T2 = dimk T3 − dimk(xr+1, . . . , xd)
3 =

(
d+ 2

3

)
−
(
d− r + 2

3

)
.

We have dimk Ṽ ∩ (x1, . . . , xr)T = dimk V ∩ (x1, . . . , xr)S = s and

dimk Ṽ = dimk V = t ≤ s+

(
d− r + 1

2

)
.

Then the dimension of (xr+1, . . . , xd)(Ṽ ∩ (x)T ) + (x1, . . . , xr)Ṽ is bounded above by

(d− r)s+ rs+ r

(
d− r + 1

2

)
= ds+ r

(
d− r + 1

2

)
.

Thus the dimension of the entire module is at least(
d+ 2

3

)
−
(
d− r + 2

3

)
− ds− r

(
d− r + 1

2

)
=
dr2

2
+
dr

2
− ds− r3

3
+
r

3
,

which at least r − s for all d, r ≤ d, and s < r. �

By Lemma 3.9, we have the following corollary.

Corollary 4.7. Let S = k[x1, . . . , xd]/m
3 and V ⊆ m2/m3, where m = (x1, . . . , xd). Let R = S/V and I

be a proper ideal of R minimally generated by u = u1, . . . , un. Then the minimal number of generators of

H1(u;R) is at least n.

Thus by Corollaries 3.5 and 3.7, we obtain the following result.

Corollary 4.8. Let (R,m) be an equicharacteristic local Artinian ring such that m3 = 0 and let u1, . . . , un

be elements of m. Then the minimal number of generators of H1(u1, . . . , un;R) is at least n.
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