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Abstract

In this paper, we apply the method of [Dn18] to Painlevé III equation and study the small
x asymptotic behavior of its special function solutions. We first find the simultaneous solutions
between Ricatti and generic Painlevé III equations and express it in terms of the solutions of Bessel
equation. Via Bäcklund transformations, we construct the solutions for Painlevé III with more
general parameters. Since there are no closed formulas for these solutions, we shift our focus to
compute the explicit formula for the associated tau function using certain identities from linear
algebra. To do asymptotic analysis of the expression, we rewrite the formula in the form suitable
for computing x → 0 asymptotics and obtain our main result.
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1 Introduction

Painlevé equations are six nonlinear second-order ordinary differential equations. They are
written in the form of y′′ = R(y′, y, t) with R a rational function. Their solutions have the so called
Painlevé property. That means the locations of singularities that are log(z) type don’t depend on
the initial conditions, but the locations of singularities that are 1/z type do depend. Most of the
solutions of Painlevé equations are transcendental. That means their solutions can’t be reduced to
simpler special functions. However, there are several exceptions in particular for Painlevé III equation.
It is easier to study asymptotic behavior of such solutions and that is why we are interested in it. Also,
Painlevé equations have wide applications in other areas of mathematics, especially random matrix
theory, see [FW01, FW02].
In particular, Painlevé III equation is given by:

u′′(x) =
(u′(x))

2

u(x)
− u′(x)

x
+

αu2(x) + β

x
+ u3(x)− 1

u(x)
, α, β ∈ C.

Consider the tau function given by the determinantal form:

τn(x) = xn(n−1)(−1)
n(n−1)

2 det
({

fα
2 −j+k(x)

}n−1

j,k=0

)
Then the solution of Painlevé III equation can be written as the following form:

qn(x) =
τn+1(x, α− 2)τn(x, α)

τn+1(x, α)τn(x, α− 2)

After the asymptotic analysis of the expression of τn(x), we rewrite the formula in the form suitable
for computing x → 0 asymptotics in terms of the leading term and obtain the following result:

τn(x) ∼
2−αrc+2rc(n−rc)+

αn
2

πn
d
rc
1 d

n−rc
2 (sin(

α

2
π))

n G(rc + 1)G(−α
2 + n − rc + 1)G(n − rc + 1)G(rc + α

2 + 1)

G(−α
2 + n − 2rc + 1)G(α

2 − n + 2rc + 1)
x
n(n−1)+αrc−nα

2
−2rc(n−rc)

where

d1 = c1(1 + cot(π
α

2
)i) + c2(1− cot(π

α

2
)i),

d2 = c2 csc(π
α

2
)i− c1 csc(π

α

2
)i,

c1, c2 ∈ C,

rc(α, n) =


0 if α > 2n− 2

n− j if − 2n+ 4j − 2 < α < −2n+ 4j + 2 and j = 1, 2, . . . , n− 1

n if α < −2n+ 2

,

G(x) refers to Barnes G-function

Eventually, in this paper, we derived the asymptotic of qn(x) as x → 0 applying the result above to
the solution of qn(x) through tau function as our main result:

qn(x) ∼



1
2n+2−α

x if α > 2 + 2n

(−1)n
(

d1
d2

)[(
Γ(−α

2
−n+2j+1)

Γ(α
2
+n−2j)

)2 Γ(n−j+α
2
)Γ(n−j+1)

Γ(−α
2
+j+1)Γ(j+1)

]
(x
2
)α+2n−4j−1 if − 2n+ 4j < α < −2n+ 4j + 2

and j = 0, 1, . . . , n

(
d2
d1

)[(
Γ(α

2
+n−2j+1)

Γ(−α
2
−n+2j)

)2 Γ(−α
2
+j+1)Γ(j)

Γ(n+α
2
−j+1)Γ(n−j+1)

]
( 2
x
)2n−4j+α+1 if − 2n+ 4j − 2 < α < −2n+ 4j

and j = 1, 2, . . . , n

−α+2n
x

if α < −2n
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2 Review of important definitions and results

2.1 Bessel equation and contour integral representation of its solution

Definition 2.1.1. Bessel equation is given by

u′′(x) +
u′(x)

x
+

(
1− ν2

x2

)
u(x) = 0

We can remove 1
x2 term changing the unknown function v(x) = x−νu(x). The new version of Bessel

equation is given by

v′′(x) +
(2ν + 1)

x
v′(x) + v(x) = 0 (1)

One of the standard solutions in the form of series representation is given by (see [DLMF, (10.9.4)])

Jν(x) =
x ν

2 ν

∞∑
k=0

(−1)kx 2k

2 2kk!Γ(ν + k + 1)
(2)

where Γ(x) is Gamma function.
There are also contour integral representations for standard solutions which are mainly used in this
paper. For −π

2 < arg(x) < π
2 , they are given by (see [DLMF, (10.9.17), (10.9.18)])

Jν(x) =
1

2πi

∞+iπ∫
∞−iπ

ex sinh(z)−νzdz, (3)

H(1)
ν (x) =

1

πi

∞+iπ∫
−∞

ex sinh(z)−νzdz, (4)

H(2)
ν (x) = − 1

πi

∞−iπ∫
−∞

ex sinh(z)−νzdz, (5)

2.2 Some useful identities between cylinder functions

Define the function

Yν(x) =
Jν(x) cos(πν)− J−ν(x)

sin(πν)
(6)

The functions Jν(x), Yν(x), H
(1)
ν (x), H

(2)
ν (x) are called cylinder functions and are denoted by Cν(x).

We can show that Cν(x) satisfies the following properties (see [DLMF, (10.6.2)]):

C ′
ν(x) =

ν

x
Cν(x)− Cν+1(x) (7)

C ′
ν(x) = Cν−1(x)−

ν

x
Cν(x) (8)

And also, we can obtain the following relations (see [DLMF, (10.4.3)]):

H(1)
ν (x) = Jν(x) + iYν(x) (9)

H(2)
ν (x) = Jν(x)− iYν(x) (10)

3



Figure 1: Contours of Jν(x), H
(1)
ν (x) and H

(2)
ν (x)

2.3 The simultaneous solutions of Ricatti and Painlevé III equations

We want to obtain the solutions of Painlevé III, but usually there are no direct method to solve a
nonlinear equation. Therefore, in this section, we try to construct simultaneous solutions between
Painlevé III and a well-chosen equation which has a close relation with Bessel equation in order to
write the solutions of Painlevé III in terms of (4) and (5).

Definition 2.3.1. Ricatti equation is first order nonlinear ODE given by

u′(x) = a(x)u2(x) + b(x)u(x) + c(x), a(x) ̸= 0. (11)

Notice that if u(x) solves Ricatti equation, then u(x) = − 1
a(x)

v′(x)
v(x) where v(x) solves the following

linear ODE:

a(x)v′′(x)− (a′(x) + a(x)b(x))v′(x) + c(x)a2(x)v(x) = 0, a(x) ̸= 0. (12)

Definition 2.3.2. Painlevé-III equation is second order nonlinear ODE given by

u′′(x) =
(u′(x))

2

u(x)
− u′(x)

x
+

αu2(x) + β

x
+ u3(x)− 1

u(x)
, α, β ∈ C. (13)
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We try to look for the simultaneous solutions of the two equations (11), (13). Taking the first
derivative of (11) and plugging in the u′(x), we get:

u′′(x) = 2a2(x)u3(x) + (a′(x) + 3a(x)b(x))u2(x) + (2a(x)c(x) + b2(x) + b′(x))u(x) + (b(x)c(x) + c′(x))

Meanwhile, plugging (11) into (13), we get:

u′′(x) = (a2(x)+1)u3(x)+(2a(x)b(x)−a(x)− α

x
)u2(x)+(b2(x)+2a(x)c(x)− b(x)

x
)u(x)+

c(x)− 1

u(x)
+2b(x)c(x)−c(x)− β

x

By matching and solving for the coefficients, we have totally four cases. We list them below:

a(x) = 1, b(x) =
α− 1

x
, c(x) = 1, β = 2− α (14)

a(x) = −1, b(x) =
−1− α

x
, c(x) = −1, β = −2− α (15)

a(x) = 1, b(x) =
α− 1

x
, c(x) = −1, β = α− 2 (16)

a(x) = −1, b(x) =
−1− α

x
, c(x) = 1, β = α+ 2 (17)

Note that for (14), the linearized Ricatti equation (12) becomes the new version of Bessel equation (1)
in the following form

v′′(x) +
(1− α)

x
v′(x) + v(x) = 0

which has a solution
v1(x) = x−ν(k1H

(1)
ν (x) + k2H

(2)
ν (x)), ν = −α

2

Alternatively it can be written is

v1(x) = x−ν(k̃1H
(1)
−ν (x) + k̃2H

(2)
−ν (x)), ν = −α

2
.

By changing the function back, the simultaneous solution of (11) and (13) has the form

u1(x) = − d

dx
ln(v1(x))

Similarly, for (15), the linearized Ricatti equation (12) becomes the new version of Bessel equation (1)
in the following form

v′′(x) +
(1 + α)

x
v′(x) + v(x) = 0

which has a solution
v2(x) = x−ν(k3H

(1)
ν (x) + k4H

(2)
ν (x)), ν =

α

2

By changing the function back, the simultaneous solution of (11) and (13) has the form

u2(x) =
d

dx
ln(v2(x))

However, we don’t consider the rest two cases in this paper since they are corresponding to the so called
”modified Bessel equation”. The readers can refer to [Cla23, Theorem 3.5] and [DLMF, §32.10(iii)] for
details.

2.4 Bäcklund transformation

To construct more solutions for PIII equation with more general parameters, we need to introduce a
powerful tool, see [DLMF, §32.7(iii)]
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Definition 2.4.1. Bäcklund transformations for the Painlevé-III equation are given by

B1 : (u(x), α, β) →
(

xu′(x) + xu2(x)− βu(x)− u(x) + x

u(x)(xu′(x) + xu2(x) + αu(x) + u(x) + x)
, α+ 2, β + 2

)
B2 : (u(x), α, β) →

(
xu′(x)− xu2(x) + βu(x)− u(x)− x

u(x)(xu′(x)− xu2(x)− αu(x) + u(x)− x)
, α− 2, β − 2

)
B3 : (u(x), α, β) →

(
− xu′(x) + xu2(x) + βu(x)− u(x)− x

u(x)(xu′(x) + xu2(x) + αu(x) + u(x)− x)
, α+ 2, β − 2

)
Assume that u(x) solves Painlevé-III equation. Denote B1(u(x), α, β) = (v(x), α+2, β+2). Using

Mathematica, we can furtherly show that v(x) solves Painlevé-III equation

v′′(x) =
(v′(x))

2

v(x)
− v′(x)

x
+

(α+ 2)v2(x) + (β + 2)

x
+ v3(x)− 1

v(x)
, α, β ∈ C.

Similarly, denote B2(u(x), α, β) = (v(x), α − 2, β − 2). We can show that v(x) solves Painlevé-III
equation

v′′(x) =
(v′(x))

2

v(x)
− v′(x)

x
+

(α− 2)v2(x) + (β − 2)

x
+ v3(x)− 1

v(x)
, α, β ∈ C.

In addition, denote B3(u(x), α, β) = (v(x), α + 2, β − 2). We can show that v(x) solves Painlevé-III
equation

v′′(x) =
(v′(x))

2

v(x)
− v′(x)

x
+

(α+ 2)v2(x) + (β − 2)

x
+ v3(x)− 1

v(x)
, α, β ∈ C.

More specifically, in our case, we can apply B1 on u1(x) to construct all the solutions satisfying
α + β = 2 + 4N. Moreover, we can also apply B2 on u2(x) to construct all the solutions satisfying
α+ β = −2− 4N.
Remark 1: Notice that one of the factors in the denominator of the new solutions is one side of Ri-
catti equation. There is a singularity for B1 when α+ β = −2 and when u2(x) solves Ricatti eqaution
with condition (15) , so it can only be applied on u1(x). Similarly, there is a singularity for B2 when
α + β = 2 and when u1(x) solves Ricatti eqaution with condition (14), so it can only be applied on
u2(x).
Remark 2: We will not use B3 to construct solutions in this paper since it can only be applied on
the solutions corresponding to ”modified Bessel equation”. But it is useful to formulate the general
solution in section 2.7.
Remark 3: Instead of applying B2 and using u2(x), we can use the transformation u(x) → −u(x).
Remark 4: There are no explicit formulae for these solutions constructed by Bäcklund transforma-
tions, we have to use other methods to study them.

2.5 Hamiltonian system

We use the formulas presented in [Cla23].

Definition 2.5.1. Denote q(x) solution of the Painlevé-III equation. Fix ε = ±1. The momentum
associated to it is given by

p(x) =
1

2q2(x)

(
xq′(x) + xq2(x)− εx+ q(x)

(
β − ε

ε

))
Definition 2.5.2. Denote q(x) solution of the Painlevé-III equation. Fix ε = ±1. The Hamiltonian
associated to it is given by

H(x) = p2(x)q2(x)− p(x)

(
xq2(x)− εx+ q(x)

(
β − ε

ε

))
+ 2xq(x)

(
β − ε(2 + α)

4ε

)
We can show that Painlevé-III equation is equivalent to the Hamiltonian system:

x
dq

dx
=

∂H

∂p

x
dp

dx
= −∂H

∂q
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2.6 Tau function and Toda equation

For details of this section see [Oka87] and [FW02].

Definition 2.6.1. Consider Painlevé-III equation. Fix ε = ±1. Define auxiliary Hamiltonian using
formula

h(x) =
1

2

(
H(x) + q(x)p(x)− εx2 +

1

4
(β − 4ε)(β + ε(α− 2))

)
Consider Painlevé-III equation. Choose ε = 1. Since momentum and Hamiltonian are expressed

in terms of q(x), the action of Bäcklund transformation B1 can be extended from (q(x), α, β) to p(x),
H(x) and h(x). We denote

(qn(x), α+ 2n, β + 2n) = Bn
1 (q(x), α, β) (18)

pn(x) = p(x)|q(x)→qn(x),β→β+2n (19)

Hn(x) = H(x)|q(x)→qn(x),p(x)→pn(x),α→α+2n,β→β+2n (20)

hn(x) = h(x)|H(x)→Hn(x),q(x)→qn(x),p(x)→pn(x),α→α+2n,β→β+2n (21)

To study the behavior of PIII equation more easily, we introduce the tau function associated with the
solution.

Definition 2.6.2. Define tau function for Painlevé-III equation using formula

x
d

dx
ln(τn(x)) = hn(x)

It is defined up to a constant.

Using the following identity:

hn+1(x) = hn(x)− pnqn(x)−
3

2
+

α

4
− 3β

4
+ 2n

We can show that the Toda equation holds:

x
d

dx
x
d

dx
ln(τn(x)) = Cn

τn+1(x)τn−1(x)

τ2n(x)

for some constant Cn.

Actually, denote f(x) = x
d

dx
x
d

dx
ln(τn(x)) and g(x) = τn+1(x)τn−1(x)

τ2
n(x)

. Basically, we want to show

f(x) = Cng(x). Taking natural log on both sides, we get ln f(x) = ln g(x) + lnCn. Therefore, it is

equivalent to show
d

dx
(ln f(x)− ln g(x)) = 0.

Well, by using Definition 2.6.2 and the identity above, we have:

d

dx
ln(g(x)) =

pn−1(x)qn−1(x)− pn(x)qn(x) + 2

x
(22)

d

dx
ln(f(x)) =

h′
n(x) + xh′′

n(x)

xh′
n(x)

(23)

By using Definition 2.6.1 and (18)–(21), we rewrite (23),(22) in terms of qn(x). With the aid of
Mathematica, we can verify the difference of them is zero.
Actually, using transformation τn(x) → anτn(x) one can change constant Cn in the Toda equation to
be 1. an can be obtained by solving a difference equation

Cna
2
n = an+1an−1

The general solution is:

an =
an1

an−1
0

n−1∏
j=1

j∏
i=1

Ci, n ∈ N

By picking the initial conditions a0 = a1 = 1, we get:

an =

n−1∏
j=1

j∏
i=1

Ci, n ∈ N
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2.7 Some linear algebra

Toda equation determines the tau function recursively. If we want to derive some nice formula for it,
we need some properties of determinants.

Proposition 2.7.1. The Leibniz formula for the determinant of n× n matrix A = {aij}ni,j=1 is given
by

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
k=1

ak,σ(k)

where Sn is the set of permutations of n elements and sgn(σ) is sign of permutation σ.

Directly using the proposition above, we can show the following formula for derivative of a deter-
minant

d

dx
det(A) =

n∑
j=1

∑
σ∈Sn

sgn(σ)

(
d

dx
aj,σ(j)

) n∏
k = 1
k ̸= j

ak,σ(k) (24)

Proposition 2.7.2. Denote Ai|j the matrix obtained from A by deleting of ith row and jth column.
The Laplace expansion for the determinant along the jth row is given by

det(A) =

n∑
k=1

(−1)k+jajk det(Aj|k)

Proposition 2.7.3 (see [VV23]). Denote Aij|kl the matrix obtained from A by deleting of ith and jth
row anf kth and lth column. The Deshanot-Jacobi identity is given by

det(A) det(Aij|ij) = det(Ai|i) det(Aj|j)− det(Ai|j) det(Aj|i), 1 ≤ i, j ≤ n

Corollary 2.7.1. Using the formula for the derivative of determinant and Deshanot-Jacobi identity,
we can show that functions in the form of

fn(x) = det

{(
x
d

dx

)i+j

f0(x)

}n

i,j=0

 (25)

solve Toda equation corresponding to Painlevé-III equation(
x
d

dx

)2

ln(fn(x)) =
fn+1(x)fn−1(x)

f2
n(x)

, n ≥ 1 (26)

Proof. Specifically, to match the expression in Proposition 2.7.3, we rewrite (25) as:

fn−1(x)fn+1(x) = fn(x)

(
x
d

dx

)2

fn(x)−
(
x
d

dx
fn(x)

)2

, n ≥ 1

Let fn+1(x) = det(A). Obviously, it follows that fn(x) = det(An+2|n+2) and fn−1(x) = det(An+1,n+2|n+1,n+2).
Then we take the first derivative of the determinant in (25) by multi-linearity with respect to rows.

Since a determinant with two identical rows is zero, the simplified result we end up with is x
d

dx
fn(x) =

det(An+1|n+2). SinceAn+1|n+2 = (An+2|n+1)
T , it implies that x

d

dx
fn(x) = det(An+1|n+2) = det(An+2|n+1).

Then we take the second derivative of the determinant in (25) successively by multi-linearity with re-
spect to columns. Similarly, since a determinant with two identical columns is zero, the simplified

result is ended with

(
x
d

dx

)2

fn(x) = det(An+1|n+1). It shows that the statement holds.

Now we already have the fundamental form for τn. We compute h0(x), h1(x), and h2(x) in the

case of Painlevé-III equation and ε = 1, α + β = 2 in terms of functions H
(1)
α
2
(x), H

(2)
α
2
(x). If we pick

the base cases carefully in the following way

τ0(x) = 1

8



τ1(x) = c1H
(1)
α
2
(x) + c2H

(2)
α
2
(x)

τ2(x) = det

(
τ1(x) τ ′1(x)
τ ′1(x) τ ′′1 (x)

)
Then we will get the inductive formula for τn

τn(x) = det

{(
x
d

dx

)i+j−2

τ1(x)

}n

i,j=1


Remark: One can show numerically that the explicit formula for qn is

qn(x) =
τn+1(x, α− 2)τn(x, α)

τn+1(x, α)τn(x, α− 2)
(27)

Obviously, there is a close relation between τn and qn from this formula. We can also use this to verify
our main result.

2.8 Andréief identity

To improve our result based on the inductive formula, we introduce a more advanced identity.

Proposition 2.8.1 (see [For18]). Andréief identity is given by the following formula

∫
Γ

. . .

∫
Γ

det
(
{fj(xk)}nj,k=1

)
det

(
{gj(xk)}nj,k=1

) n∏
k=1

h(xk)dxk = n! det



∫
Γ

fj(x)gk(x)h(x)dx


n

j,k=1


Proposition 2.8.2. The formula for the Vandermonde determinant is given by

det(
{
xk
j

}n

j,k=0
) =

∏
0≤j<k≤n

(xk − xj)

Lemma 2.8.1. Using identities (7), (8) from section 2.2, we show that in the case of Painlevé-III
and ε = 1 we have

τn(x) = xn(n−1)(−1)
n(n−1)

2 det
({

fα
2 −j+k(x)

}n−1

j,k=0

)
where

fν(x) = c1H
(1)
ν (x) + c2H

(2)
ν (x)

Proof. From the inductive formula of τn(x), we know:

τn(x) = det

{(
x
d

dx

)k+j

fα
2

}n−1

k,j=0


By identities (7), (8) from section 2.2, we can obtain the following relations:

x
d

dx
fα

2
(x) = xfα

2 −1(x)−
α

2
fα

2
(x) (28)

x
d

dx
fα

2
(x) = −xfα

2 +1(x) +
α

2
fα

2
(x) (29)

For relation (28), by induction, we can show:(
x
d

dx

)j

fα
2
(x) = xjfα

2 −j(x) +

j−1∑
k=0

ckjx
kfα

2 −k(x) (30)
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for some coefficients ckj . Well, we furtherly simplify the determinant using (30):

det

{(
x
d

dx

)k+j

fα
2

}n−1

k,j=0

 =

∣∣∣∣∣∣∣∣∣∣
fα

2
(x) x

d

dx
fα

2
(x) · · ·

xfα
2

−1(x) + c01fα
2
(x) x

d

dx
(xfα

2
−1(x)) + c01x

d

dx
fα

2
· · ·

x2fα
2

−2(x) + c12xfα
2

−1(x) + c02fα
2

x
d

dx
(x2fα

2
−2(x)) + c12x

d

dx
xfα

2
−1 + c02x

d

dx
fα

2
· · ·

.

.

.
.
.
.

. . .

∣∣∣∣∣∣∣∣∣∣
Observe that by elementary row operations, we can always use the previous rows to eliminate the∑j−1

k=0 ckjx
kfα

2 −k(x) part in a fixed row and the value of the determinant doesn’t change. Finally, we
will end up with:

det

{(
x
d

dx

)k+j

fα
2

}n−1

k,j=0

 =

∣∣∣∣∣∣∣∣∣∣
fα

2
(x) x

d

dx
fα

2
(x) · · ·

xfα
2

−1(x) x
d

dx
(xfα

2
−1(x)) · · ·

x2fα
2

−2(x) x
d

dx
(x2fα

2
−2(x)) · · ·

.

.

.
.
.
.

. . .

∣∣∣∣∣∣∣∣∣∣
= det

{(
x
d

dx

)k

xjfα
2 −j

}n−1

k,j=0



By relation (29), by induction, we can show:(
x
d

dx

)k

xjfα
2 −j(x) = (−1)kxj+kfα

2 −j+k(x) +

k−1∑
n=0

dnkjx
j+nfα

2 −j+n(x) (31)

To prove (31) by (29), we first fix k = 1 and induct on j. We have

x
d

dx
xjfα

2 −j = −xj+1fα
2 −j+1(x) + xj

(α
2
− j

)
fα

2 −j(x) + jxjfα
2 −j(x) (32)

= −xj+1fα
2 −j+1(x) + xj α

2
fα

2 −j(x) (33)

After showing (32) we induct on k. We can noticed that dnkj actually doesn’t depend on j. So (31)
can be written as(

x
d

dx

)k

xjfα
2 −j = (−1)kxj+kfα

2 −j+k(x) +

k−1∑
n=0

dnkx
j+nfα

2 −j+n(x) (34)

Again, we futherly simplify the determinant by (34):

det

{(
x
d

dx

)k+j

fα
2

}n−1

k,j=0

 =

∣∣∣∣∣∣
fα

2
(x) −xfα

2
+1 + d01fα

2
· · ·

xfα
2

−1(x) −x2fα
2

+ d01xfα
2

−1 · · ·
.
.
.

.

.

.
. . .

∣∣∣∣∣∣
Similarly, by applying elementary row operation on columns, we can always use the previous columns
to eliminate the

∑k−1
n=0 dnkx

j+nfα
2 −j+n(x) part in a fixed column and the value of the determinant

doesn’t change. Finally, we will end up with:

det

{(
x
d

dx

)k+j

fα
2

}n−1

k,j=0

 = det
(
(−1)kxj+kfα

2 −j+k(x)
)

By multi-linearity of determinant, we can factor out (−1)kxj+k and reach the conclusion:

τn(x) = det
(
(−1)kxj+kfα

2 −j+k(x)
)
= xn(n−1)(−1)

n(n−1)
2 det

({
fα

2 −j+k(x)
}n−1

j,k=0

)
where

fν(x) = c1H
(1)
ν (x) + c2H

(2)
ν (x)

That completes the proof.
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We apply Andréief identity to show that for the case of Painlevé-III and ε = 1 we get the following
result.

Theorem 2.8.1. The explicit formula for τn(x) is given by

τn(x) =
xn(n−1)(−1)

n(n−1)
2

n!

∫
Γ3∪Γ4

. . .

∫
Γ3∪Γ4

∏
0≤j<k≤n−1

(tk − tj)

(
1

tk
− 1

tj

) n−1∏
k=0

h(tk)dtk (35)

where

h(t) =
e

x
2 (t−

1
t )

πit1+
α
2
(c1χΓ3

(t)− c2χΓ4
(t))

Γ3 is contour of integration for H
(1)
ν (x) and Γ4 is contour of integration for H

(2)
ν (x) after change of

variable ez = t.

Proof. By (4),(5) we get:

fα
2
(x) = c1H

(1)
α
2
(x) + c2H

(2)
α
2
(x)

= c1
1

πi

∞+iπ∫
−∞

ex sinh(z)−α
2 zdz − c2

1

πi

∞−iπ∫
−∞

ex sinh(z)−α
2 zdz

=
1

πi

c1

∞+iπ∫
−∞

e
x
2 (e

z−e−z)−α
2 zdz − c2

∞−iπ∫
−∞

e
x
2 (e

z−e−z)−α
2 zdz


Let ez = t, then we have:

fα
2
(x) =

1

πi

c1

∫
Γ3

e
x
2 (t−

1
t )

t
α
2 +1

dt− c2

∫
Γ4

e
x
2 (t−

1
t )

t
α
2 +1

dt


=

∫
Γ3∪Γ4

e
x
2 (t−

1
t )

πit1+
α
2
(c1χΓ3

(t)− c2χΓ4
(t))dt

where χ(t) is the characteristic function.
Let h(t) = fα

2
(x), then it implies that:

fα
2 −j+k(x) =

∫
Γ3∪Γ4

t−ktjh(t)dt

From Lemma 2.8.1, we obtain:

τn(x) = xn(n−1)(−1)
n(n−1)

2 det
({

fα
2 −j+k(x)

}n−1

j,k=0

)
= xn(n−1)(−1)

n(n−1)
2 det




∫
Γ3∪Γ4

t−ktjh(t)dt


n−1

j,k=0


Let gk(t) = t−k and fj(t) = tj , by Proposition 2.8.1, we get:

τn(x) =
xn(n−1)(−1)

n(n−1)
2

n!

∫
Γ3∪Γ4

. . .

∫
Γ3∪Γ4

det
(
{fj(tk)}nj,k=1

)
det

(
{gj(tk)}nj,k=1

) n∏
k=1

h(tk)dtk

=
xn(n−1)(−1)

n(n−1)
2

n!

∫
Γ3∪Γ4

. . .

∫
Γ3∪Γ4

det

({
tjk

}n

j,k=1

)
det

({
t−j
k

}n

j,k=1

) n∏
k=1

h(tk)dtk
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By Theorem 2.8.2, we can compute the two determinants in the integrand:

det

({
tjk

}n

j,k=1

)
=

∏
0≤j<k≤n−1

(tk − tj)

det

({
t−j
k

}n

j,k=1

)
=

∏
0≤j<k≤n−1

(
1

tk
− 1

tj

)
Thus, the explicit formula for τn(x) is given by:

τn(x) =
xn(n−1)(−1)

n(n−1)
2

n!

∫
Γ3∪Γ4

. . .

∫
Γ3∪Γ4

∏
0≤j<k≤n−1

(tk − tj)

(
1

tk
− 1

tj

) n−1∏
k=0

h(tk)dtk

2.9 Orthogonal polynomial

For details about this section see [Ism05].

Definition 2.9.1. The monic polynomial of degree n

pn(z) = zn +

n−1∑
j=0

ajz
j

is called orthogonal polynomial with respect to weight w(z) on contour Γ if it satisfies conditions∫
Γ

pn(z)z
jw(z)dz = 0, 0 ≤ j ≤ n− 1.

Definition 2.9.2. Moments of the weight w(z) are given by

µj =

∫
Γ

zjw(z)dz

Definition 2.9.3. Hankel determinant associated to the orthogonal polynomials pn(z) is given by

Hn = det
(
{µj+k}nj,k=0

)
Proposition 2.9.1. Denote by Mn(z) the matrix {µj+k}nj,k=0 with last row replaced by (1, z, z2, . . . , zn).

The orthogonal polynomials pn(z) are given by

pn(z) =
det(Mn(z))

Hn−1

We can use multi-linearity property of the determinant to verify the explicit formula for pn given
above is a monic polynomial and satisfies the orthogonality condition by expanding the last row.

Definition 2.9.4. The normalizing constant for orthogonal polynomials pn(z) is given by

hn =

∫
Γ

pn(z)z
nw(z)dz

Proposition 2.9.2. The Hankel determinant is given by

Hn =

n∏
j=0

hj

It is easy to check using multi-linearity property of determinant that we can compute hn recursively
in terms of Hn.
Remark: The normalizing constants for classical orthogonal polynomials can be found in [DLMF,
Table 18.3.1].

12



3 Main result

3.1 Basic strategies

Up to this point, we’ve got enough preparation to compute the asymptotics at zero. Our goal is to
rewrite τn(x) ∼ b(n)xa(n) when x → 0 in the case of ε = 1, α

2 /∈ Z, |Re(α)| < 2n In this part, I will
summarize several key ideas to achieve this goal as following:

• The contours Γ3 and Γ4 spread out to zero and infinity in the formula (35). We can’t put x = 0
here without losing convergence of the integral.

• We rewrite H
(1)
ν and H

(2)
ν in terms of Jν and J−ν . Contour Γ1 for Jν in variable t is located

around infinity, it does not approach zero. Contour Γ2 for J−ν in variable t is located around
zero, it does not approach infinity.

• Expanding the product in the integrand of (35) we get the expressions, where some of the
variables tk will belong to contour Γ1 and others will belong to Γ2.

• We apply change of variable technique t = 2s
x to variables on contours Γ1. The integrand will

preserve exponential decay at infinity when we put x = 0. On the other hand, we apply change
of variable technique t = 1

2xs to variables on contours Γ2. In this case the integrand will preserve
exponential decay at zero when we put x = 0.

3.2 Alternative formula of τn(x)

According to the blueprints above, we can start to derive the alternative formula for τn. Using (6),
(9), (10) we have

H(1)
ν (x) = (1 + i cot(πν))Jν(x)− i csc(πν)J−ν(x)

H(2)
ν (x) = (1− i cot(πν))Jν(x) + i csc(πν)J−ν(x)

Recall that: fν(x) = c1H
(1)
ν (x) + c2H

(2)
ν (x), then we have:

fν(x) = d1Jν(x) + d2J−ν(x) (36)

where
d1 = c1(1 + i cot(πν)) + c2(1− i cot(πν))

d2 = c2 csc(πν)i− c1 csc(πν)i

By formula (3) of Jν(x) it follows that

fν(x) = d1
1

2πi

∞+iπ∫
∞−iπ

ex sinh(z)−νzdz + d2
1

2πi

∞+iπ∫
∞−iπ

ex sinh(z)+νzdz

Making the change of variable z → iπ − z in the second integral we get

fν(x) = d1
1

2πi

∞+iπ∫
∞−iπ

ex sinh(z)−νzdz − d2
eiπν

2πi

−∞∫
−∞+2iπ

ex sinh(z)−νzdz

Let ez = t, we have

fν(x) =

∫
Γ1∪Γ2

e
x
2 (t−

1
t )

2πit1+ν
(d1χΓ1(t)− d2e

iπνχΓ2(t))dt

Γ1 is contour of integration for Jν(x) and Γ2 is contour of integration for J−ν(x) after change of variable

ez = t shown in the Figure 4. Now, redefine h(t) = e
x
2 (t− 1

t )

2πit1+
α
2
(d1χΓ1

(t) − d2e
iπ α

2 χΓ2
(t)) in the explicit

formula of τn. It is worthy to point out that the way to define h(t) is valid. It seems that the coefficients
d1 and d2e

iπν are non-constants depending on j and k. However, the periodicity of cotangent function
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Figure 2: Contours Γ1 and Γ2

will make d1 = c1(1+cot(πα
2 )i)+c2(1−cot(πα

2 )i). On the other hand, the periodicity of secant function
and exponential function will make d2e

iπν =
(
c2 csc(π

α
2 )i− c1 csc(π

α
2 )i

)
eiπ

α
2 . They are actually both

constants.
We should make another remark about power function 1

t1+
α
2
. When we use it, we assume −iπ <

arg(t) < iπ on contour Γ1 and 0 < arg(t) < 2πi on contour Γ2.

Lemma 3.2.1. Let I denote a subset of the set of indices and r denote its cardinal. One can observe
the following algebraic identity:

n∏
k=1

(c1χΓ1(tk) + c2χΓ2(tk)) =
∑

I⊂{1,...,n}
|I|=r

cr1c
n−r
2

∏
k∈I

χΓ1(tk)
∏
j∈Ic

χΓ2(tj)

Now we apply the lemma above to Theorem 2.8.1 with the redefined h(t) in order to convert the
formula into a big summation form and decouple the contours as following

τn(x) =
xn(n−1)

n!

∫
Γ1∪Γ2

. . .

∫
Γ1∪Γ2

∏
0≤j<k≤n−1

(tj − tk)
2

tjtk

n∏
l=1

e
x
2
(tl−

1
tl

)

2πit
α
2

+1

l

n∏
m=1

(d1χΓ1
(tm) − d2e

iπα
2 χΓ2

(tm))

n∏
q=1

dtq

=
xn(n−1)

n!

∫
Γ1∪Γ2

. . .

∫
Γ1∪Γ2

∏
0≤j<k≤n−1

(tj − tk)
2

tjtk

n∏
l=1

e
x
2
(tl−

1
tl

)

2πit
α
2

+1

l

 ∑
I⊂{1,...,n}

|I|=r

d
r
1d

n−r
2 (−e

iπα
2 )

n−r
∏
i∈I

χΓ1 (ti)
∏

j∈Ic

χΓ2 (tj)

 n∏
q=1

dtq

=
1

(2πi)n

∑
I⊂{1,...,n}

|I|=r

d
r
1d

n−r
2 (−e

iπα
2 )

n−r xn(n−1)

n!

∫
Γ1

. . .

∫
Γ1

∫
Γ2

. . .

∫
Γ2

√√√√√ ∏
j ̸=k

j,k∈I

(tj − tk)2

tjtk

∏
l∈I

e
x
2
(tl−

1
tl

)

t
α
2

+1

l

√√√√√ ∏
j ̸=k

j,k∈Ic

(tj − tk)2

tjtk

∏
l∈Ic

e
x
2
(tl−

1
tl

)

t
α
2

+1

l

√√√√√ ∏
j∈I
k∈Ic

(tj − tk)2

tjtk

√√√√√∏
j∈Ic

k∈I

(tj − tk)2

tjtk

∏
q∈I

dtq
∏

q∈Ic

dtq

For tk ∈ I, we use change of variable tk = 2sk
x . On the other hand, for tj ∈ Ic, we use change of
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variable tj =
1
2sjx. The formula above becomes

τn(x) =
1

(2πi)n

∑
I⊂{1,...,n}

|I|=r

d
r
1d

n−r
2 (−e

iπα
2 )

n−r xn(n−1)

n!

∫
Γ1

. . .

∫
Γ1

∫
Γ2

. . .

∫
Γ2

∏
j<k
j,k∈I

(sj − sk)
2

sjsk

∏
l∈I

esl (1 + O(x2))

2
α
2

+1s
α
2

+1

l x−α
2

−1

∏
j<k

j,k∈Ic

(sj − sk)
2

sjsk

∏
l∈Ic

e
− 1

sl (1 + O(x2))

( 1
2 )

α
2

+1s
α
2

+1

l x
α
2

+1

2
2r(n−r)

∏
j∈I
k∈Ic

(sj(1 + O(x2))2

x2sjsk


2

r
(
1

2
)
n−r

x
n−2r

∏
q∈I

dsq
∏

q∈Ic

dsq


Group all the 2-factors together and pull them out of the summation,

τn(x) =
2−αr+2r(n−r)+αn

2

(2πi)n

∑
I⊂{1,...,n}

|I|=r

d
r
1d

n−r
2 (−e

iπα
2 )

n−r xn(n−1)

n!

∫
Γ1

. . .

∫
Γ1

∫
Γ2

. . .

∫
Γ2

∏
j<k
j,k∈I

(sj − sk)
2

sjsk

∏
l∈I

esl (1 + O(x2))

s
α
2

+1

l x−α
2

−1

∏
j<k

j,k∈Ic

(sj − sk)
2

sjsk

∏
l∈Ic

e
− 1

sl (1 + O(x2))

s
α
2

+1

l x
α
2

+1

∏
j∈I
k∈Ic

(sj(1 + O(x2))2

x2sjsk

∏
q∈I

dsq
∏

q∈Ic

dsq

Next group all the powers of x together,

τn(x) =
2−αr+2r(n−r)+αn

2

(2πi)n

∑
I⊂{1,...,n}

|I|=r

d
r
1d

n−r
2 (−e

iπα
2 )

n−r xn(n−1)+αr−nα
2

−2r(n−r)

n!

∫
Γ1

. . .

∫
Γ1

∫
Γ2

. . .

∫
Γ2

∏
j<k
j,k∈I

(sj − sk)
2

sjsk

∏
l∈I

e
sls

−α
2

−1

l

∏
j<k

j,k∈Ic

(sj − sk)
2

sjsk

∏
l∈Ic

e
− 1

sl s
−α

2
−1

l

∏
j∈I
k∈Ic

sj

sk

∏
q∈I

dsq
∏

q∈Ic

dsq

We also want to group all the products of variable s together and separate the integrals based on
different contours. We rewrite the following three parts,

∏
j<k
j,k∈I

(sj − sk)
2

sjsk
=
∏
j<k
j,k∈I

(sj − sk)
2
∏
j ̸=k

j,k∈I

1
√
sjsk

=
∏
j<k
j,k∈I

(sj − sk)
2
∏
l∈I

s
γ1
l

∏
j<k

j,k∈Ic

(sj − sk)
2

sjsk
=

∏
j<k

j,k∈Ic

(sj − sk)
2
∏
j ̸=k

j,k∈Ic

1
√
sjsk

=
∏
j<k

j,k∈Ic

(sj − sk)
2
∏
l∈Ic

s
γ2
l

∏
j∈I
k∈Ic

sj

sk
=
∏
l∈I

s
γ3
l

∏
l∈Ic

s
γ4
l

Then we try to find the powers γ1, γ2, γ3 and γ4. It is observed that

γ1 =
−2(r − 1)

2
= 1 − r

γ2 =
−2(n − r − 1)

2
= −n + r + 1

γ3 = n − r

γ4 = −r

It is worthy to illustrate how can get γ3 and γ4 here, which is tricky. Since we are splitting the product
with indices belonging to different sets, there is certain dependency between index k and j in terms of
the order like doing a double integral. The number of the s-factors can be visualized in the following
matrix {

sjα
skβ

}
1≤α≤r

1≤β≤n−r

=


sj1
sk1

sj1
sk2

sj1
sk3

· · ·
sj2
sk1

sj2
sk2

sj2
sk3

· · ·
...

...
...

. . .


It is obvious that horizontally, for each sjα ,there are (n− r) factors. Vertically, for each skβ

there are
−r factors.

Combine all the powers of sl together,

τn(x) =
2−αr+2r(n−r)+αn

2

(2πi)n

∑
I⊂{1,...,n}

|I|=r

d
r
1d

n−r
2 (−e

iπα
2 )

n−r xn(n−1)+αr−nα
2

−2r(n−r)

n!

∫
Γ1

. . .

∫
Γ1

∫
Γ2

. . .

∫
Γ2

∏
j<k
j,k∈I

(sj − sk)
2

∏
l∈I

e
sls

−α
2

−2r+n

l

∏
j<k

j,k∈Ic

(sj − sk)
2
∏
l∈Ic

e
− 1

sl s
−α

2
−n

l

∏
q∈I

dsq
∏

q∈Ic

dsq
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After some further algebraic manipulations, we eventually obtain the alternative form of τn.

Proposition 3.2.1. The alternative formula of τn(x) is given by

τn(x) =
2−αr+2r(n−r)+αn

2

(2πi)n

∑
I⊂{1,...,n}

|I|=r

dr1d
n−r
2 (−e

iπα
2 )n−r x

n(n−1)+αr−nα
2 −2r(n−r)

n!

∫
Γ1

. . .

∫
Γ1

∏
j<k
j,k∈I

(sj − sk)
2

∏
l∈I

esls
−α

2 −2r+n

l

∏
q∈I

dsq

∫
Γ2

. . .

∫
Γ2

∏
j<k

j,k∈Ic

(sj − sk)
2
∏
l∈Ic

e
− 1

sl s
−α

2 −n

l

∏
q∈Ic

dsq

Γ1 is contour of integration for Jν(x) and Γ2 is contour of integration for J−ν(x) after change of
variable ez = t

3.3 Asymptotic of τn(x)

The asymptotic of τn is the leading term of the alternative formula. To obtain that, we need to find
the smallest power in terms of r. Denote the power of the leading term of τn as p(r), then

p(r) = n(n− 1) + αr − nα

2
− 2r(n− r)

Take the derivative to find the critical point, we get

dp

dr
= α− 2n+ 4r = 0

and

rc(n, α) =
2n−Re(α)

4

Denote ||x|| as the closest integer near x. Choose rc = || 2n−Re(α)
4 || roughly, then the leading term is

τn(x) ∼
2−αrc+2rc(n−rc)+

αn
2

(2πi)n
n!

(n− rc)!rc!
drc1 dn−rc

2 (−e
iπα
2 )n−rc

xn(n−1)+αrc−nα
2 −2rc(n−rc)

n!

∫
Γ1

. . .

∫
Γ1

∏
j<k
j,k∈I

(sj − sk)
2

∏
l∈I

esls
−α

2 −2rc+n

l

∏
q∈I

dsq

∫
Γ2

. . .

∫
Γ2

∏
j<k

j,k∈Ic

(sj − sk)
2
∏
l∈Ic

e
− 1

sl s
−α

2 −n

l

∏
q∈Ic

dsq

when x → 0. oBy Andréief identity again, we have

τn(x) ∼
2−αrc+2rc(n−rc)+

αn
2

(2πi)n
drc1 dn−rc

2 (−e
iπα
2 )n−rcxn(n−1)+αrc−nα

2 −2rc(n−rc)

det



∫
Γ1

sk+jess−
α
2 −2rc+nds


rc−1

j,k=0

 det



∫
Γ2

sk+je−
1
s s−

α
2 −nds


n−rc−1

j,k=0


when x → 0.
Notice that the two determinants are Hankel determinants with w1(s) = ess−

α
2 −2rc+n and w2(s) =

e−
1
s s−

α
2 −n respectively. To evaluate them, we need to refer to the explicit formula of Hn and the

result in the literature. In Table 18.3.1 of [DLMF], we have the information about the normalizing
constant of Laguerre Polynomial with the weight w(x) in the form of e−xxα, where α > −1. We try
to use this information, so it motivates us to do some change of variables again in our case to make
the weight in the same form as the literature. Denote

Hrc−1 =

∫
Γ1

. . .

∫
Γ1

∏
j<k
j,k∈I

(sj − sk)
2
∏
l∈I

esls
−α

2 −2rc+n

l

∏
q∈I

dsq
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and

Hn−rc−1 =

∫
Γ2

. . .

∫
Γ2

∏
j<k

j,k∈Ic

(sj − sk)
2
∏
l∈Ic

e
− 1

sl s
−α

2 −n

l

∏
q∈Ic

dsq

In Hrc−1, we let s = s̃e−iπ, then the modulus and argument of the variable respectively becomes

|s| = |s̃|
arg(s) = arg(s̃)− π, 0 < arg(s̃) < 2π

Correspondingly, the contour Γ1 becomes Γ̃1 as shown in the picture below.

Figure 3: Contour of Γ̃1

Also notice that

s
−α

2 −2rc+n

l = e(−
α
2 −2rc+n) ln |sl|+(−α

2 −2rc+n)i arg(sl)

= e(−
α
2 −2rc+n) ln |s̃l|+(−α

2 −2rc+n)i(arg(s̃l)−π)

= s̃l
−α

2 −2rc+ne−iπ(−α
2 −2rc+n)

Here we use a simple identity for exponential function of complex variables

zα = eα ln |z|+iα arg(z), ∀z ∈ C

Then the first multi-integral eventually becomes

Hrc−1 =

∫
Γ̃1

. . .

∫
Γ̃1

∏
j<k
j,k∈I

(s̃j − s̃k)
2
∏
l∈I

e−s̃l s̃l
−α

2 −2rc+ne−iπ(−α
2 −2rc+n)

(−1)rc
∏
q∈I

ds̃q


= (−1)rc(e−iπ(−α

2 −2rc+n))rc
∫
Γ̃1

. . .

∫
Γ̃1

∏
j<k
j,k∈I

(s̃j − s̃k)
2
∏
l∈I

e−s̃l s̃l
−α

2 −2rc+n
∏
q∈I

ds̃q

Similarly, in Hn−rc−1, we let s = 1
s̃ ,then the modulus and argument of the variable respectively

becomes

|s| = 1

|s̃|
arg(s̃) = − arg(s),−2π < arg(s̃) < 0

Correspondingly, the contour Γ2 becomes Γ̃2 as shown in the picture below.
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Figure 4: Contour of Γ̃2

Then the second multi-integral eventually becomes

Hn−rc−1 =

∫
Γ̃2

. . .

∫
Γ̃2

∏
j<k

j,k∈Ic

(
1

s̃j
− 1

s̃k
)2

∏
l∈Ic

e−s̃l s̃l
α
2 +n

(−1)n−rc s̃q
−2(n−rc)

∏
q∈Ic

ds̃q


= (−1)n−rc

∫
Γ̃2

. . .

∫
Γ̃2

∏
j<k

j,k∈Ic

(
s̃j − s̃k
s̃j s̃k

)2 ∏
l∈Ic

e−s̃l s̃l
α
2 +n−2

∏
q∈Ic

ds̃q

= (−1)n−rc

∫
Γ̃2

. . .

∫
Γ̃2

∏
j<k

j,k∈Ic

(s̃j − s̃k)
2
∏
l∈Ic

s̃l
−2(n−rc−1)

∏
l∈Ic

e−s̃l s̃l
α
2 +n−2

∏
q∈Ic

ds̃q

= (−1)n−rc

∫
Γ̃2

. . .

∫
Γ̃2

∏
j<k

j,k∈Ic

(s̃j − s̃k)
2
∏
l∈Ic

e−s̃l s̃l
α
2 +2rc−n

∏
q∈Ic

ds̃q

Here we use the same technique as the derivation in section 3.2

∏
j<k

j,k∈Ic

(
s̃j − s̃k
s̃j s̃k

)2

=
∏
j<k

j,k∈Ic

(s̃j − s̃k)
2

∏
j ̸=k

j,k∈Ic

1

s̃j s̃k
=

∏
j<k

j,k∈Ic

(s̃j − s̃k)
2
∏
l∈Ic

s̃l
−2(n−rc−1)

Now, the weights turn into the same form as the literature as our expect: w1(s̃) = e−s̃l s̃l
−α

2 −2rc+n

and w2(s̃) = e−s̃l s̃l
α
2 +2rc−n. Furthermore, notice that the contours Γ̃1 and Γ̃2 in our cases are loops,

but in the literature, the contour is the positive real line. To make them match, we need to introduce
the following theorems.

Theorem 3.3.1. For the generalized Laguerre polynomials with weight w(s) = e−ssγ , the orthogonality
condition is

∞∫
0

Pn(s)s
je−ssγds = 0

with 0 ≤ j ≤ n− 1, Re(γ) > −1, Pn(x) is monic.
The corresponding normalizing constant is given by

hn(γ) =

∞∫
0

Pn(s)s
ne−ssγds = Γ(n+ γ + 1)n!
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Claim 3.3.1. By theorem of uniqueness of analytic continuation,we can extend the contour in previous
theorem to a loop Γ̃1 on the complex plane. For the generalized Laguerre polynomials with weight
w(s) = e−ssγ , the orthogonality condition after the extension is

∞∫
0

Pn(s)s
je−ssγds =

1

1− e2πiγ

∫
Γ̃1

Pn(s)s
je−ssγds = 0

with 0 ≤ j ≤ n− 1, Re(γ) > −1 and not an integer, Pn(x) is monic.
The corresponding normalizing constant is given by

hn(γ) =

∞∫
0

Pn(s)s
ne−ssγds =

1

1− e2πiγ

∫
Γ̃1

Pn(s)s
ne−ssγds = Γ(n+ γ + 1)n!

Since the range of argument in the second multi-integral is different from the first one, we should
fix Claim 3.3.1 as following:

Claim 3.3.2. By theorem of uniqueness of analytic continuation,we can extend the contour in previous
theorem to a loop Γ̃2 on the complex plane. For the generalized Laguerre polynomials with weight
w(s) = e−ssγ , the orthogonality condition after the extension is

∞∫
0

Pn(s)s
je−ssγds =

1

1− e−2πiγ

∫
Γ̃2

Pn(s)s
je−ssγds = 0

with 0 ≤ j ≤ n− 1, Re(γ) > −1 and not an integer, Pn(x) is monic.
The corresponding normalizing constant is given by

hn(γ) =

∞∫
0

Pn(s)s
ne−ssγds =

1

1− e−2πiγ

∫
Γ̃2

Pn(s)s
ne−ssγds = Γ(n+ γ + 1)n!

Remark: One may notice that the formula of normalizing constant in Theorem 3.3.1 is slightly
different from the one in the literature. That is because in [DLMF](18.2.7), the orthogonal polynomial
pn(x) is defined as:

pn(x) = knx
n + k̃nx

n−1 +
˜̃
knx

n−1 + . . .

where kn is not always 1. However, Pn(x) introduced in Definition 2.9.1 is monic (i.e. kn = 1). Hence
we need to make some change here. By [DLMF](18.2.1), we know the orthogonality condition is the
following:

b∫
a

pn(x)pm(x)w(x)dx = h̃n(γ)δnm

where w(x) is the weight and δnm is the Kronecker Delta. It is also known that Pn(x) =
pn(x)
kn

, so the
orthogonality condition for Pn(x) becomes

b∫
a

Pn(x)Pm(x)w(x)dx =
1

k2n
h̃n(γ)δnm

According to [DLMF] Table 18.3.1, we know

h̃n(γ) =
Γ(n+ γ + 1)

n!

kn =
(−1)n

n!
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Thus in our case,

hn(γ) =
h̃n(γ)

k2n
=

Γ(n+ γ + 1)

n!
(n!)2 = Γ(n+ γ + 1)n!

With the aid of the two claims above, we need to rewrite our multi-integrals again in terms of line
contour. The first one becomes

Hrc−1 = (−1)rc(e−iπ(−α
2 −2rc+n))rc(e2πi(−

α
2 −2rc+n) − 1)rc

∞∫
0

. . .

∞∫
0

∏
j<k
j,k∈I

(s̃j − s̃k)
2
∏
l∈I

e−s̃l s̃l
−α

2 −2rc+n
∏
q∈I

ds̃q

= (−1)rc(2i sin((−α

2
− 2rc + n)π))rcHL

rc−1

where HL
rc−1 denotes the Hankel Determinant associated with Laguerre polynomial.

On the other hand, the second one becomes

Hn−rc−1 = (−1)n−rc

∫
Γ̃2

. . .

∫
Γ̃2

∏
j<k

j,k∈Ic

(s̃j − s̃k)
2
∏
l∈Ic

e−s̃l s̃l
α
2 +2rc−n

∏
q∈Ic

ds̃q

= (−1)n−rc(1− e−2πi(α
2 +2rc−n))n−rc

∞∫
0

. . .

∞∫
0

∏
j<k

j,k∈Ic

(s̃j − s̃k)
2
∏
l∈Ic

e−s̃l s̃l
α
2 +2rc−n

∏
q∈Ic

ds̃q

= (−1)n−rc(e−πi(α
2 +2rc−n))n−rc(2i sin((

α

2
+ 2rc − n)π))n−rcHL

n−rc−1

= (−1)n−rc(e−πiα
2 )n−rc(e−πi(2rc−n)(n−rc))(2i sin((

α

2
+ 2rc − n)π))n−rcHL

n−rc−1

= (−1)n−rc(e−πiα
2 )n−rce−πi2rc(n−rc)e−πin(n−rc)(2i sin((

α

2
+ 2rc − n)π))n−rcHL

n−rc−1

= (−1)n−rc(e−πiα
2 )n−rc(−1)−n(n−rc)(2i sin((

α

2
+ 2rc − n)π))n−rcHL

n−rc−1

= (−1)(1−n)(n−rc)(e−πiα
2 )n−rc(2i sin((

α

2
+ 2rc − n)π))n−rcHL

n−rc−1

where HL
n−rc−1 denotes the Hankel Determinant associated with Laguerre polynomial.

Up to this point, we can easily compute HL
rc−1 and HL

n−rc−1 by Proposition 2.9.2 and Theorem 3.3.1.
We obtain that

HL
rc−1 =

rc−1∏
j=0

hj(−
α

2
− 2rc + n) =

rc−1∏
j=0

Γ(j − α

2
− 2rc + n+ 1)j!

HL
n−rc−1 =

n−rc−1∏
j=0

hj(
α

2
+ 2rc − n) =

n−rc−1∏
j=0

Γ(j +
α

2
+ 2rc − n+ 1)j!

Moreover, we try to give a precise formula for rc using piecewise functions.

Proposition 3.3.1. The piecewise function for the critical point rc is given by

rc(α, n) =


0 if α > 2n− 2

n− j if − 2n+ 4j − 2 < α < −2n+ 4j + 2 and j = 1, 2, . . . , n− 1

n if α < −2n+ 2

Proof. Since 0 ≤ r ≤ n and r ∈ Z, so p(r) only takes values on that discrete set. It is clear that p(r) is
a upward parabola and it takes minimum value at rmin(n, α) =

2n−α
4 . We will discuss different cases

of relative positions between rmin and rc. If rmin ≤ 0, then rc = 0. If rmin ≥ n, then rc = n. Let
0 ≤ j ≤ n and j ≤ rmin ≤ j + 1. If k ≤ rmin ≤ j + 1

2 , then rc = j. If j + 1
2 ≤ rmin ≤ j + 1, then

rc = j + 1. From the figure, we can formulate the discussion above mathematically as following:

• rc(α, n) = 0 when 2n−α
4 < 1

2
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• rc(α, n) = n− j when n− 2j+1
2 < 2n−α

4 < n− 2j−1
2 and j = 1, 2, . . . , n− 1

• rc(α, n) = n when 2n−α
4 > n− 1

2

Hence, the piecewise function for the critical point rc can be written as

rc(α, n) =


n if α

2 < 1− n

n− j if 2j − 1− n < α
2 < 2j + 1− n and k = 1, 2, . . . , n− 1

0 if α
2 > n− 1

Remark: Floor functions gives a more compact form for rc(α, n). ∀ 0 ≤ k ≤ n, we know rc = k if
and only if k − 1

2 ≤ n
2 − α

4 ≤ k + 1
2 so k ≤ n

2 − α
4 + 1

2 ≤ k + 1. This makes sure 0 < ⌊n
2 − α

4 + 1
2⌋ < n.

Let n− j = k, then range of the cases in between becomes n− 2k− 1 < α
2 < n− 2k+1. When k = 0,

we get the rightmost endpoint n− 1. When k = n, we get the leftmost endpoint 1− n. That is

rc(α, n) =


n if α

2 < 1− n

⌊n
2 − α

4 + 1
2⌋ if 1− n < α

2 < n− 1

0 if α
2 > n− 1

Finally we reach the conclusion.

Theorem 3.3.2 (Pan-Prokhorov). The asymptotic as x → 0 of τn(x) for the case of Painlevé-III
equation in the case of ε = 1 and α

2 /∈ Z is given by

τn(x) ∼
2−αrc+2rc(n−rc)+

αn
2

(2πi)n
drc1 dn−rc

2 (−e
iπα
2 )n−rcxn(n−1)+αrc−nα

2 −2rc(n−rc)Hrc−1Hn−rc−1

where

d1 = c1(1 + cot(π
α

2
)i) + c2(1− cot(π

α

2
)i),

d2 = c2 csc(π
α

2
)i− c1 csc(π

α

2
)i,

c1, c2 ∈ C,

rc(α, n) =


0 if α > 2n− 2

n− j if − 2n+ 4j − 2 < α < −2n+ 4j + 2 and j = 1, 2, . . . , n− 1

n if α < −2n+ 2

,

Hrc−1 = (−1)rc(2i sin((−α

2
− 2rc + n)π))rc

rc−1∏
j=0

Γ(j − α

2
− 2rc + n+ 1)j!,

Hn−rc−1 = (−1)(1−n)(n−rc)(e−πiα
2 )n−rc(2i sin((

α

2
+ 2rc − n)π))n−rc

n−rc−1∏
j=0

Γ(j +
α

2
+ 2rc − n+ 1)j!

3.4 Asymptotic of qn(x)

To simplify our computation, we are going to rewrite the formula in Theorem 3.3.2. It is necessary to
introduce the notation for Barnes G-function G(z). G(z) satisfies the following property:

G(z + 1) = Γ(z)G(z), with normalization G(1) = 1, ∀z ∈ C (37)

We also need to introduce the following lemmas:

Lemma 3.4.1. For Gamma function Γ(z) and Barnes G-function G(z), the following relation holds:

n∏
j=0

Γ(j + 1) =
G(n+ 2)

G(1)
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Proof. The proof is relatively easy, which just use (37) recursively.

n∏
j=0

Γ(j + 1) =
Γ(n+ 1)Γ(n) . . .Γ(1)G(1)

G(1)
=

Γ(n+ 1)Γ(n) . . .Γ(2)G(2)

G(1)
= . . . =

Γ(n+ 1)G(n+ 1)

G(1)
=

G(n+ 2)

G(1)

Lemma 3.4.2. The Hankel determinants associated with Laguerre polynomial in terms of Barnes
G-function are given by

HL
rc−1 =

G(rc + 1)G(−α
2 + n− rc + 1)

G(−α
2 + n− 2rc + 1)

HL
n−rc−1 =

G(n− rc + 1)G(rc +
α
2 + 1)

G(α2 − n+ 2rc + 1)

Proof. Applying Lemma 3.4.1, we can rewrite the Hankel determinants in section 3.4 in terms of G(x)
as following:

HL
rc−1 =

rc−1∏
j=0

Γ(j − α

2
− 2rc + n+ 1)j!

=

rc−1∏
j=0

j!

rc−1∏
j=0

Γ(j − α

2
− 2rc + n+ 1)

=

rc−1∏
j=0

Γ(j + 1)

rc−1∏
j=0

Γ(j − α

2
− 2rc + n+ 1)

=
G(rc + 1)G(−α

2 + n− rc + 1)

G(−α
2 + n− 2rc + 1)

Similarly, we have

HL
n−rc−1 =

n−rc−1∏
j=0

Γ(j +
α

2
+ 2rc − n+ 1)j!

=

n−rc−1∏
j=0

j!

n−rc−1∏
j=0

Γ(j +
α

2
+ 2rc − n+ 1)

=

n−rc−1∏
j=0

Γ(j + 1)

n−rc−1∏
j=0

Γ(j +
α

2
+ 2rc − n+ 1)

=
G(n− rc + 1)G(rc +

α
2 + 1)

G(α2 − n+ 2rc + 1)

To deduce the asymptotic of qn(x), we need to use our main result (3.3.2) and (27). We have
to shift the index of Tau function n and its dependent parameter α. However, all the parameters in
our main result depends on them. Specifically, d1, d2 are purely written in terms of α. On the other
hand, rc is written in terms of both n and α. Hrc−1 and Hn−rc−1 depend on all of rc, n and α,
which is much more complicated. Because of periodicity, it is easy to see that: d1(α− 2) = d1(α) and
d2(α− 2) = −d2(α). Thus it is obvious that rc plays a central role in such dependency relations. We
need to reexamine rc carefully and try to suggest a piecewise function for it in terms of n and α.
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3.4.1 Piecewise function for the exponent of leading term e(α)

From Proposition 3.3.1, we can modify the following formulae of rc with shifted indices and parameters

rc(α, n+ 1) =


0 if α > 2n

n− j + 1 if − 2n+ 4j − 4 < α < −2n+ 4j and j = 1, 2, . . . , n

n+ 1 if α < −2n

rc(α− 2, n) =


0 if α > 2n

n− j if − 2n+ 4j < α < −2n+ 4j + 4 and j = 1, 2, . . . , n− 1

n if α < −2n+ 4

rc(α− 2, n+ 1) =


0 if α > 2n+ 2

n− j + 1 if − 2n+ 4j − 2 < α < −2n+ 4j + 2 and j = 1, 2, . . . , n− 1

n+ 1 if α < −2n+ 2

Proposition 3.4.1. The piecewise function for the exponent of leading term e is given by

e(α) =


1 if α > 2 + 2n

α+ 2n− 4j − 1 if − 2n+ 4j < α < −2n+ 4j + 2 and j = 0, 1, . . . , n

−α− 2n+ 4j − 1 if − 2n+ 4j − 2 < α < −2n+ 4j and j = 1, 2, . . . , n

−1 if α < −2n

Proof. We just simply plug Proposition 3.3.1 and modified formulae of rc with shifted indices and
parameters into 27 to compute the exponent of leading terms of qn(x).
If α > 2 + 2n, then we need to choose:

rc(α, n) = rc(α, n+ 1) = rc(α− 2, n) = rc(α− 2, n+ 1) = 0

By 27, we obtain that:

qn(x) ∼ (some coefficients)
x(n+1)n− (n+1)(α−2)

2 xn(n−1)−nα
2

x(n+1)n− (n+1)α
2 xn(n−1)−n(α−2)

2

∼ (some coefficients) x

Similarly, if −2n+ 4j < α < −2n+ 4j + 2 and j = 0, 1, . . . , n, then we need to choose:

rc(α, n) = n− j

rc(α, n+ 1) = n− j

rc(α− 2, n) = n− j

rc(α− 2, n+ 1) = n+ 1− j

We obtain that:

qn(x) ∼ (some coefficients)
x(n+1)n+(α−2)(n+1−j)− (n+1)(α−2)

2 −2(n+1−j)jxn(n−1)+α(n−j)−nα
2 −2(n−j)j

x(n+1)n+α(n−j)− (n+1)α
2 −2(n−j)(j+1)xn(n−1)+(α−2)(n−j)−n(α−2)

2 −2(n−j)j

∼ (some coefficients) xα−1+2n−4j

If −2n+ 4j − 2 < α < −2n+ 4j and j = 1, 2, . . . , n, then we need to choose:

rc(α, n) = n− j

rc(α, n+ 1) = n+ 1− j

rc(α− 2, n) = n+ 1− j

rc(α− 2, n+ 1) = n+ 1− j
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We obtain that:

qn(x) ∼ (some coefficients)
x(n+1)n+(α−2)(n+1−j)− (n+1)(α−2)

2 −2(n+1−j)jxn(n−1)+α(n−j)−nα
2 −2(n−j)j

x(n+1)n+α(n+1−j)− (n+1)α
2 −2(n+1−j)jxn(n−1)+(α−2)(n−j+1)−n(α−2)

2 −2(n−j+1)(j−1)

∼ (some coefficients) x−α−1−2n+4j

If α < −2n, then we need to choose:

rc(α, n) = n

rc(α, n+ 1) = n+ 1

rc(α− 2, n) = n

rc(α− 2, n+ 1) = n+ 1

We obtain that:

qn(x) ∼ (some coefficients)
x(n+1)n+(α−2)(n+1)− (n+1)(α−2)

2 xn(n−1)+αn−nα
2

x(n+1)n+α(n+1)− (n+1)α
2 xn(n−1)+(α−2)n−n(α−2)

2

∼ (some coefficients) x−1

3.4.2 Piecewise formulae for asympototic of qn(x)

In this part, we will compute the coefficients shown in the previous section case by case. For con-
venience, firstly we need to rewrite the formulae of rc in terms of the same ranges as Proposition
3.4.1.

Lemma 3.4.3. The piecewise function for the critical point rc compatible with the same ranges in
Proposition 3.4.1 is given by

rc(α, n) =


0 if α > 2 + 2n

n− j if − 2n+ 4j < α < −2n+ 4j + 2 and j = 0, 1, . . . , n

n− j if − 2n+ 4j − 2 < α < −2n+ 4j and j = 1, 2, . . . , n

n if α < −2n

rc(α, n+ 1) =


0 if α > 2 + 2n

n− j if − 2n+ 4j < α < −2n+ 4j + 2 and j = 0, 1, . . . , n

n− j + 1 if − 2n+ 4j − 2 < α < −2n+ 4j and j = 1, 2, . . . , n

n if α < −2n

rc(α− 2, n) =


0 if α > 2 + 2n

n− j + 1 if − 2n+ 4j < α < −2n+ 4j + 2 and j = 0, 1, . . . , n

n− j + 1 if − 2n+ 4j − 2 < α < −2n+ 4j and j = 1, 2, . . . , n

n if α < −2n

rc(α− 2, n+ 1) =


0 if α > 2 + 2n

n− j + 1 if − 2n+ 4j < α < −2n+ 4j + 2 and j = 0, 1, . . . , n

n− j + 1 if − 2n+ 4j − 2 < α < −2n+ 4j and j = 1, 2, . . . , n

n+ 1 if α < −2n

Now we can use Theorem 3.3.2, Lemma 3.4.2, 3.4.3 and 27 to derive the piecewise formulae of
asymptotic of qn(x).
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Theorem 3.4.1. The piecewise formulae of asymptotic as x → 0 of qn(x) for Painlevé-III equation
in the case of ε = 1 and α

2 /∈ Z, is given by

qn(x) ∼



1
2n+2−α

x if α > 2 + 2n

(−1)n
(

d1
d2

)[(
Γ(−α

2
−n+2j+1)

Γ(α
2
+n−2j)

)2 Γ(n−j+α
2
)Γ(n−j+1)

Γ(−α
2
+j+1)Γ(j+1)

]
(x
2
)α+2n−4j−1 if − 2n+ 4j < α < −2n+ 4j + 2

and j = 0, 1, . . . , n

(
d2
d1

)[(
Γ(α

2
+n−2j+1)

Γ(−α
2
−n+2j)

)2 Γ(−α
2
+j+1)Γ(j)

Γ(n+α
2
−j+1)Γ(n−j+1)

]
( 2
x
)2n−4j+α+1 if − 2n+ 4j − 2 < α < −2n+ 4j

and j = 1, 2, . . . , n

−α+2n
x

if α < −2n

Proof. Let’s denote the coefficients of the asymptotic of τn(x, α) as c(n, α). If α > 2 + 2n, then we
have:

c(n, α) =
2

nα
2

(2πi)n
dn2 (−e

iπα
2 )n(1)(−1)(1−n)n(e−

iπα
2 )n(2i sin((

α

2
− n)π))n

G(n+ 1)G(α
2
+ 1)

G(α
2
− n+ 1)

c(n, α− 2) =
2

n(α−2)
2

(2πi)n
dn2 (−1)n(−e

iπ(α−2)
2 )n(1)(−1)(1−n)n(e−

iπ(α−2)
2 )n(2i sin(

α− 2

2
− n)π)n

G(n+ 1)G(α
2
)

G(α
2
− n)

c(n+ 1, α) =
2

(n+1)α
2

(2πi)n+1
dn+1
2 (−e

iπα
2 )n+1(1)(−1)(1+n)(−n)(e−

iπα
2 )n+1(2i sin(

α

2
− n− 1)π)n+1

G(n+ 2)G(α
2
+ 1)

G(α
2
− n)

c(n+ 1, α− 2) =
2

(n+1)(α−2)
2

(2πi)n+1
dn+1
2 (−1)n+1(−e

iπ(α−2)
2 )n+1(1)(−1)(1+n)(−n)(e−

iπ(α−2)
2 )n+1(2i sin(

α− 2

2
− n− 1)π)n+1

G(n+ 2)G(α
2
)

G(α
2
− n− 1)

It follows that:

qn(x) ∼
c(n+ 1, α− 2)c(n, α)

c(n+ 1, α)c(n, α− 2)
x

∼
(−1)G(α

2
− n)G(α

2
− n)

2G(α
2
− n− 1)G(α

2
− n+ 1)

x

∼
(−1)Γ(α

2
− n− 1)

2Γ(α
2
− n)

x

∼
1

2n+ 2− α
x

If −2n+ 4j < α < −2n+ 4j + 2 and j = 0, 1, . . . , n, then we have:

c(n, α) =
2−α(n−j)+2(n−j)j+nα

2

(2πi)n
dn−j
1 dn2 (−e

iπα
2 )j(−1)n−j(2i sin((−

α

2
− n+ 2j)π))n−j

G(n− j + 1)G(−α
2
+ j + 1)

G(−α
2
− n+ 2j + 1)

(−1)(1−n)j(e−
iπα
2 )j(2i sin((

α

2
− 2j + n)π))j

G(j + 1)G(n− j + α
2
+ 1)

G(α
2
+ n− 2j + 1)
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c(n, α− 2) =
2−(α−2)(n−j)+2(n−j)j+

n(α−2)
2

(2πi)n
dn−j
1 (−d2)

j(−e
iπ(α−2)

2 )j(−1)n−j(2i sin((−
α

2
− n+ 1)π))n−j

G(n− j + 1)G(−α
2
+ j + 2)

G(−α
2
− n+ 2j + 2)

(−1)(1−n)j(e−
iπ(α−2)

2 )j(2i sin((
α

2
− 2j + n− 1)π))j

G(j + 1)G(n− j + α
2
)

G(α
2
+ n− 2j)

c(n+ 1, α) =
2α(n−j)+2(n−j)(j+1)+

(n+1)α
2

(2πi)n+1
dn−j
1 dj+1

2 (−e
iπα
2 )j+1(−1)n−j(2i sin((−

α

2
− n+ 2j + 1)π))n−j

G(n− j + 1)G(−α
2
+ j + 2)

G(−α
2
− n+ 2j + 2)

(−1)−(j+1)n(e−
iπα
2 )j+1(2i sin((

α

2
− 2j + n− 1)π))j+1

G(j + 2)G(n− j + α
2
+ 1)

G(α
2
+ n− 2j)

c(n+ 1, α− 2) =
2−(α−2)(n−j+1)+2(n−j+1)j+

(n+1)(α−2)
2

(2πi)n+1
dn−j+1
1 (−d2)

j(−e
iπ(α−2)

2 )j(−1)n−j+1(2i sin((−
α

2
− n+ 2j)π))n−j+1

G(n− j + 2)G(−α
2
+ j + 2)

G(−α
2
− n+ 2j + 1)

(−1)−nj(e−
iπ(α−2)

2 )j(2i sin((
α

2
− 2j + n)π))j

G(j + 1)G(n− j + α
2
+ 1)

G(α
2
+ n− 2j + 1)

It follows that:

qn(x) ∼
c(n + 1, α − 2)c(n, α)

c(n + 1, α)c(n, α − 2)
x
α+2n−4j−1

∼ 2
4j−2n−α+1

(−1)
n

(
d1

d2

)
(G(α

2 + n − 2j))2G(−α
2 + j + 1)(G(−α

2 − n + 2j + 2))2G(α
2 + n − j + 1)G(n − j + 2)G(j + 1)

(G(α
2 + n − 2j + 1))2G(−α

2 + j + 2)(G(−α
2 − n + 2j + 1))2G(α

2 + n − j)G(n − j + 1)G(j + 2)
x
α+2n−4j−1

∼ (−1)
n

(
d1

d2

)[(
Γ(−α

2 − n + 2j + 1)

Γ(α
2 + n − 2j)

)2
Γ(n − j + α

2 )Γ(n − j + 1)

Γ(−α
2 + j + 1)Γ(j + 1)

](
x

2

)α+2n−4j−1

If −2n+ 4j − 2 < α < −2n+ 4j and j = 1, 2, . . . , n, then we have:

c(n, α) =
2−α(n−j)+2(n−j)j+nα

2

(2πi)n
dn−j
1 dn2 (−e

iπα
2 )j(−1)n−j(2i sin((−

α

2
− n+ 2j)π))n−j

G(n− j + 1)G(−α
2
+ j + 1)

G(−α
2
− n+ 2j + 1)

(−1)(1−n)j(e−
iπα
2 )j(2i sin((

α

2
− 2j + n)π))j

G(j + 1)G(n− j + α
2
+ 1)

G(α
2
+ n− 2j + 1)

c(n, α− 2) =
2−(α−2)(n−j+1)+2(n−j+1)(j−1)+

n(α−2)
2

(2πi)n
dn−j+1
1 (−d2)

j−1(−e
iπ(α−2)

2 )j−1(−1)n−j+1(2i sin((−
α

2
− n+ 2j − 1)π))n−j+1

G(n− j + 2)G(−α
2
+ j + 1)

G(−α
2
− n+ 2j)

(−1)(1−n)(j−1)(e−
iπ(α−2)

2 )j−1(2i sin((
α

2
− 2j + n+ 1)π))j−1

G(j)G(n− j + α
2
+ 1)

G(α
2
+ n− 2j + 2)

c(n+ 1, α) =
2α(n−j+1)+2(n−j+1)j+

(n+1)α
2

(2πi)n+1
dn−j+1
1 dj2(−e

iπα
2 )j(−1)n−j+1(2i sin((−

α

2
− n+ 2j − 2)π))n−j+1

G(n− j + 2)G(−α
2
+ j + 1)

G(−α
2
− n+ 2j)

(−1)−jn(e−
iπα
2 )j(2i sin((

α

2
− 2j + n+ 2)π))j

G(j + 1)G(n− j + α
2
+ 2)

G(α
2
+ n− 2j + 2)

c(n+ 1, α− 2) =
2−(α−2)(n−j+1)+2(n−j+1)j+

(n+1)(α−2)
2

(2πi)n+1
dn−j+1
1 (−d2)

j(−e
iπ(α−2)

2 )j(−1)n−j+1(2i sin((−
α

2
− n+ 2j)π))n−j+1

G(n− j + 2)G(−α
2
+ j + 2)

G(−α
2
− n+ 2j + 1)

(−1)−nj(e−
iπ(α−2)

2 )j(2i sin((
α

2
− 2j + n)π))j

G(j + 1)G(n− j + α
2
+ 1)

G(α
2
+ n− 2j + 1)
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It follows that:

qn(x) ∼
c(n + 1, α − 2)c(n, α)

c(n + 1, α)c(n, α − 2)
x
−2n+4j−α−1

∼ 2
2n−4j+α+1

(
d2

d1

)
(G(−α

2 − n + 2j))2G(−α
2 + j + 2)(G(−α

2 − n + 2j + 2))2G(α
2 + n − j + 1)G(n − j + 1)G(j + 1)

(G(α
2 + n − 2j + 1))2G(−α

2 + j + 1)(G(−α
2 − n + 2j + 1))2G(α

2 + n − j + 2)G(n − j + 2)G(j)
x
−2n+4j−α−1

∼
(

d2

d1

)[(
Γ(α

2 + n − 2j + 1)

Γ(−α
2 − n + 2j)

)2
Γ(−α

2 + j + 1)Γ(j)

Γ(n + α
2 − j + 1)Γ(n − j + 1)

](
2

x

)2n−4j+α+1

If α < −2n, then we have:

c(n, α) =
2−

nα
2

(2πi)n
dn1 (−e

iπα
2 )n(1)(−1)n(2i sin((−

α

2
− n)π))n

G(n+ 1)G(−α
2
+ 1)

G(−α
2
− n+ 1)

c(n, α− 2) =
2−

n(α−2)
2

(2πi)n
dn1 (−1)n(1)(−1)n(2i sin((−

α

2
+ 1− n)π))n

G(n+ 1)G(−α
2
+ 2)

G(−α
2
− n+ 2)

c(n+ 1, α) =
2−

(n+1)α
2

(2πi)n+1
dn+1
1 (1)(−1)n+1(2i sin((−

α

2
− n− 2)π))n+1

G(n+ 2)G(−α
2
+ 1)

G(−α
2
− n)

c(n+ 1, α− 2) =
2−

(n+1)(α−2)
2

(2πi)n+1
dn+1
1 (1)(−1)n+1(2i sin((−

α

2
− n− 1)π))n+1

G(n+ 2)G(−α
2
+ 2)

G(−α
2
− n+ 1)

It follows that:

qn(x) ∼
c(n+ 1, α− 2)c(n, α)

c(n+ 1, α)c(n, α− 2)
x−1

∼
(−2)G(α

2
+ 2− n)G(−α

2
− n)

G(−α
2
− n+ 1)G(−α

2
− n+ 1)

x−1

∼
(−2)Γ(−α

2
− n+ 1)

Γ(−α
2
− n)

x−1

∼ −
α+ 2n

x

Remark: One can check the result by examine the base case when n = 0. By Theorem 3.4.1, we
obtain the formulae of q0(x):

q0(x) ∼



x
2−α if α > 2

d1

d2
xα−121−α Γ(1−α

2 )

Γ(α
2 ) if 0 < α < 2

−α
x if α < 0
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On the other hand, it is known that the asymptotic behavior of Jν as x → 0 follows:

Jν(x) ∼
1

Γ(ν + 1)

(x
2

)ν

By 36 and 27, we can directly compute q0(x) in the following way:

q0(x) =
τ1(α− 2, x)

τ1(α, x)

=
d1Jα

2 −1(x) + d2J−α
2 +1(x)

d1Jα
2
(x) + d2J−α

2
(x)

∼
d1

1
Γ(α

2 )

(
x
2

)α
2 −1

+ d2
1

Γ(2−α
2 )

(
x
2

)−α
2 +1

d1
1

Γ(1+α
2 )

(
x
2

)α
2 + d2

1
Γ(1−α

2 )

(
x
2

)−α
2

∼



d2
1

Γ(2−α
2

) (
x
2 )

−α
2

+1

d2
1

Γ(1−α
2

) (
x
2 )

−α
2

if α > 2

d1
1

Γ(α
2

) (
x
2 )

α
2

−1

d2
1

Γ(1−α
2

) (
x
2 )

−α
2

if 0 < α < 2

d1
1

Γ(α
2

) (
x
2 )

α
2

−1

d1
1

Γ(1+α
2

) (
x
2 )

α
2

if α < 0

∼



x
2−α if α > 2

d1

d2
xα−121−α Γ(1−α

2 )

Γ(α
2 ) if 0 < α < 2

−α
x if α < 0

Hence our result can recover the formulae of asymptotic of q0(x) derived directly from 36

3.5 Inspiration for future study

For the time limit, in this paper we can’t touch all the related problems. There are still several
interesting directions for the readers who are interested in such topic to consider. We list them below:

• consider the case ε = −1

• consider the large x asymptotics
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