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Abstract

We discuss an algorithm for drawing the unit ball of the Thurston Norm on the second homology
of an oriented 3-manifold. We explore which unit balls are obtainable through this algorithm and
provide geometric interpretation. We also explore ways to enumerate the obtainable unit balls.
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Introduction

We are interested in 3-manifolds M with fundamental groups that admit (2,1)-presentations, i.e.

π1(M) = 〈x, y|r〉 (1)

We usually assume that these manifolds have two-dimensional first homology groups (b1(M) = 2).
These properties allow us to apply the results of [4] in order to provide an algorithm for drawing
the unit ball of the Thurston norm.

The Thurston norm generalizes the genus of a knot K ⊂ S3. Recall that every knot K bounds
an embedded surface in the knot complement S3 −K, the Siefert surface S(K). Of course, if a
knot bounds a single surface, it in fact bounds arbitrarily many surfaces of different genus. The
knot genus records the simplest possible Siefert surface, i.e. the Siefert surface of minimal genus.
For example, the unknot is the only knot with genus 0.

The Siefert surface represents a class in the homology group H2(S3 −K, ∂(S3 −K)). In fact
this same procedure works for any 3-manifold M . Given any element φ in H2(M,∂M), let

xM ([φ]) := min{−χ(S)|S ⊂M and [S] = φ}

Thurston showed that xM (φ) is a seminorm on H2(M,∂M,R). By Poincare duality, this also
gives a norm on H1(M,R). The Thurston Norm measures the ‘simplicity’ of surfaces representing
homology classes, and can tell us a lot about the geometry of a 3-manifold.

Friedl and Tillmann [4] provided a way to assign to a group G admitting 2-generator, 1-relator
presentation with non-empty, cyclically reduced relator and b1 = 2 a marked polytope in H1(G,Z)
that contains information about the group G. Polytopes in the first homology induce a norm on
the first cohomology, which determines the Thurston norm in the second homology with Poincare
Duality. We provide an algorithm for obtaining information about the Thurston norm of a 3-
manifold obtained by gluing a 2-handle along a separating simple closed curve on the surface a
genus 2 handlebody. Given this construction of the manifold, the algorithm thus applies to any
manifold with a fundamental group as in 1.

We aim to determine which polygons can be obtained through this algorithm, particularly
whether all polygons can be obtained and how (i.e. to which manifold they correspond).

1. Background

The three-manifolds we construct are obtained by gluing a 2-handle along a separating simple
closed curve on the surface of a genus 2 handlebody, i.e. identifying four consecutive faces of a
unit cube along an annular neighborhood of the separating simple closed curve. The property
that the curve is separating guarantees that b1 = 2 (see Section 1.2). To generate every simple
closed curve on T2#T2, the surface of the genus two handlebody, we use the mapping class group
(defined below) of T2#T2 to obtain every separating simple closed curve from transformations of
the separating simple closed curve [x, z] = xzx−1z−1 depicted on the top-left corner of Figure 5.

1.1. “Nice” way of generating Mod(S)

Definition 1.1.1. Let S be a surface and c a curve on S, and let U be an annular neighborhood
of c on S. Then U is homeomorphic to a cylinder. Let φ : U → S1 × I be this homeomorphism.
Define a map f : S1 × I → S1 × I with f : (eiθ, t) 7→ (ei(θ+2πt), t). The Right Dehn Twist about
c, denoted Tc, is a self-homeomorphism of S given by Tc = φ−1 ◦ f ◦φ on U and Tc = id everywhere
else on S. The Left Dehn Twist about c is T−1c .
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Figure 1: Right Dehn Twist about c on a Torus

For a surface Sg,p with genus g and p punctures, let Hom+(g, p) denote the group of all
orientation preserving homeomorphisms of Sg,p that fix the set of punctures, and let Hom0(g, p)
be the path-component of the indentity in Hom+(g, p), i.e. all elements of Hom+(g, p) homotopy
equivalent to the identity map. We can now define the Mapping Class Group (MCG) of Sg,p.

Definition 1.1.2. The Mapping Class Group of Sg,p is the group

Mod(Sg,p) = Hom+(g, p)/Hom0(g, p)

of homotopy classes of orientation preserving homeomorphisms of Sg,p that fix the set of punctures.

Fact 1.1.1. (Humphries 1979) For a surface Sg,0 of genus g, 2g+1 Dehn Twists generate Mod(Sg,0).

We are concerned with generating the mapping class group Mod(T2#T2) of a genus 2 torus
with no punctures. The 2g + 1 = 5 Dehn Twists that generate Mod(T2#T2) are Ta, Tb, Tc, Td, Te
for curves a, b, c, d, e as in Figure 2.

Figure 2: Dehn Twists
about a, b, c, d, e generate
Mod(T2#T2)

Figure 3: Fundamental group
of T2#T2

Fact 1.1.2. Ta, Tb, Tc, Td, Te are given by the following formulae and are the identity elsewhere,
where w, x, y, z are the generators of π1(T2#T2) as in Figure 3.

3



Ta : x 7→ z−1x T−1a : x 7→ zx
Tb : z 7→ xz T−1b : z 7→ x−1x
Tc : x 7→ xwz−1 T−1c : x 7→ xzw−1

Tc : y 7→ ywz−1 T−1c : y 7→ yzw−1

Td : w 7→ y−1w T−1d : w 7→ yw
Te : y 7→ wy T−1e : y 7→ w−1y

1.2. The Thurston Norm

By an n-cell we will mean a space homeomorphic to the open n-ball Bn.

Definition 1.2.1. A cell complex or CW-complex is a Hausdorff space X along with a partition
P of X into n-cells such that for each n-cell cn there exists a continuous map f : Bn → X, called
the attaching map, such that Bn

o maps homeomorphically onto cn and f(∂Bn) ⊆
⋃m

1 c for c ∈ P
a k-cell with k < n.

Definition 1.2.2. The nth-chain group with real coefficients, denoted Cn(X), of a CW-
complex X is the real vector space with the n-cells of X as a basis. The nth-boundary map
∂n : Cn(X)→ Cn−1(X) of a CW-complex X is the linear map that takes each n-cell C in the basis
of cn to the sum (up to sign) of the basis elements corresponding to the (n-1)-cells in ∂C.

Definition 1.2.3. The ith-homology group with real coefficients of a CW-complex X is the
vector space

Hi(X) = ker ∂i/im ∂i+1

Fact 1.2.1. Hi(X) is a topological invariant of the space X.

Remark. There are analagously defined homology groups with coefficients in any ring R. In
particular, the integral homology groups are denoted Hi(X,Z).

From now on some definitions will be provided in a specific form that is as general as is needed
for the scope of this project.

Definition 1.2.4. Let S be a surface and P a partition of S as a CW-complex. Let V denote the
number of 0-cells or vertices in P , E denote the number of 1-cells or edges in P , and F denote the
number of 2-cells or faces in P . The Euler characteristic of S, denoted χ(S) is

χ(S) := V − E + F

The Euler characteristic is a topological invariant of S and does not depend on P . The Euler
characteristic of surfaces with equal genus and boundary components is the same and in fact, χ(Sg,p)
can be defined in terms of g and p as follows

χ(Sg,p) = 2− 2g − p

Definition 1.2.5. The nth-cochain group of a space X is defined as

Cn(X) := Hom(Cn(X), R)

for a ring R. An element of Cn(X,R) is called a n-cochain.

The boundary maps of the chains of X naturally induce coboundary maps between the cochains
of X in the same way that linear maps between vector spaces induce dual maps between dual vector
spaces. Thus, if the boundary map ∂i is represented by a matrix A, the corresponding co-boundary
map δi is represented by the transpose Aᵀ. Just as we defined homology, we can define cohomology
in exactly the way one would expect
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Definition 1.2.6. The ith cohomology of a space X is

Hi(X) = ker δi/im δi−1 = Hom(H1(X), F )

for some field F .

Definition 1.2.7. Suppose A ⊂ X is a CW-subcomplex of X. The relative chain groups Cn(X,A)
are generated by the n-cells in X − A. There are relative homology groups Hi(X,A) defined
analagously as for homology groups. A relative cycle can be thought of as a chain of cells in X −A
such that the boundary of this chain is contained in A. Relative cohomology groups are defined
similarly.

Theorem 1.2.1 (Poincarè duality). Suppose M is a finite CW-complex which is also an orientable
n-manifold. Then exists an isomorphism ψi between Ci and Cn−i(M,∂M) ∀i ≤ n which induces
an isomorphism Hi(M) ∼= Hn−i(M,∂M). More generally, this is true for any coefficient ring R.

Note that any closed orientable n-manifold admits a canonical element in Hn(M,Z). This is
usually called the fundamental class, and can be visualized as the chain which assigns the same
constant K to each n-cell. Note that any (n − 1)-cell is contained in exactly two n-cells, so by
choosing orientations correctly this is an n-cycle. A similar idea works to show that if M has
boundary there is a canonical element in Hn(M,∂M). In low dimensions it turns out that all the
homology groups can be thought of as fundamental classes.

Fact 1.2.2. Let M be a 3-manifold. Then every element in H2(M,∂M) is represented by the
fundamental class of an immersed surface S.

Now, by definition and by 1.2.1 we know that for a 3-manifold M

Hom(H1(M),R) =H1(M) ∼= H2(M,∂M)

H1(M) ∼= H2(M,∂M)

For each loop ci in the basis of H1(M), the corresponding basis element φi in H1(M) is such that

φi(ck) =

{
1 i = k

0 i 6= k

and each ci can be uniquely assigned an element of H2(M,∂M) represented by a surface Si.

1.3. Previous relevant results

We introduce some previous results that are relevant to our work.

Definition 1.3.1 (Friedl and Tillmann). A (2,1)-presentation 〈x, y | r〉 for a group G is said to be
a nice presentation if r is a nonempty, cyclically reduced word and if b1(G) = 2.

Lemma 1.3.1 (Friedl and Tillmann). Let G be a group admitting a nice (2,1)-presentation and
φ : G→ Z an epimorphism. There exists a nice (2,1)-presentation 〈x, y | r〉 for G with φ(x) = 0,
φ(y) = 1 that gives rise to the same polytope as the original presentation.

A fibered 3-manifold M admits the structure of a fiber bundle over S1, i.e. there is a bundle

S →M → S1

where S is some surface. A cohomology class in H1(M) is fibered if it is the pullback of the
fundamental class of S1.
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Theorem 1.3.2 (Thurston). Let N be a 3–manifold. There exists a unique symmetric marked
polytope PN in H1(N ;R) such that for any φ ∈ H1(N ;R) = Hom(π1(N),R) we have

xN (φ) = max{φ(p)− φ(q) | p, q ∈ PN}

Furthermore, φ is fibered if and only if it pairs maximally with a marked vertex.

2. The Algorithm

We start with a separating simple closed curve on the surface of a genus 2 handlebody. Particularly,
we start with the curve γ0 = xzx−1z−1. This curve is chosen so as to guarantee b1 = 2 in the
resulting manifold, and details on why this holds can be found in Section 2.3. By Fact 1.1.2
we know a series of Dehn Twists applied to γ0 can generate any separating simple closed curve,
along which we can then paste a 2-handle to get a 3-manifold. The inputs to the algorithm are
then n-words in Ta, Tb, Tc, Td, Te for any n, which encode any possible 3-manifold admitting a nice
(2, 1)-presentation for its fundamental group. Denoting by γk the word in w, x, y, z after the first k
Dehn Twist applications to γ0, the relator for the fundamental group of the resulting 3-manifold is
obtained by simply dropping the w’s and z’s from γn (because they are non-trivial in π1(T2#T2)
but trivial in π1 of the handlebody) and cyclically reducing the resulting word in x, y. We will call
r(γn) the cyclically reduced relator corresponding to γn and WT (x, y) (a word in xy) the equivalent
of γn in the fundamental group of MT (i.e. the result of “dropping” w, z from γn).

We will let T be the input word in Ta, Tb, Tc, Td, Te and their inverses, n be the length of T ,
so that γn = T (γ0). MT will denote the manifold resulting from pasting a 2-handle along γn,
π1(MT ) = 〈x, y | r〉 with r being the xy components of γn. We will use π1(MT ) to construct a
marked polytope in H1(MT ) as follows [4] and as shown in Figure 4:

1. Trace out a walk on the plane by reading r(γn) from left to right, starting at (0, 0) and adding
(ε, 0) for any xε and (0, ε) for any yε. Mark all points in the walk that were crossed only once.

2. Take the convex hull C of these points, preserving the markings of vertex points and let VC
denote its set of vertices.

3. For n,m ∈ Z, place a point on (n + 1
2 ,m + 1

2 ) whenever each of the points in Sm,n =
{(m,n), (m+ 1, n), (m,n+ 1), (m+ 1, n+ 1)} is either inside C or in VC . Mark (n+ 1

2 ,m+ 1
2 )

if S ∩ VC is fully marked. Let the set of all such (n+ 1
2 ,m+ 1

2 ) be K.

4. Take the convex hull of K, preserving markings. The resulting polygon PT is the output
polygon.

2.1. Meaning of PT and deriving the Thurston unit ball

The algorithm described in the previous subsection determines the Thurston norm by the following
theorem.

Theorem 2.1.1. [3] Let M be an irreducible 3-manifold that admits a cyclically reduced (2, 1)-
presentation π = 〈x, y | r〉. Let PT be constructed as in the algorithm above. Then

PN
.
= PT

where PN is as in Theorem 1.3.2 and
.
= means equal up to translation.
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unmarked vertex
marked vertex

2 and 3 4 5

(1) take the path determined by the relation r

Figure 4: [4] Construction of PT from π1(M)

Figure 5: The Algorithm: (1) Apply T to γ0 = [x, z] to get γn (2) Paste a
2-handle along γn to get MT (3) Construct the polytope associated to r(γn),
the relator of π1(MT ).

Therefore, PT is the polynomial dual to the unit ball of the Thurston norm and it encodes
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exactly the same information. Let φ ∈ H1(MT ) then kerφ ⊂ H1(MT ) has dimension one and is a
line on our superposition of H1 on the plane. Let (kerφ)⊥ denote the orthogonal complement of
kerφ. The unit norm of φ is then “the thickness of P in the direction of (kerφ)⊥ as measured by
φ”. That is,

xM (φ) = max{φ(p)− φ(q) | p, q ∈ (kerφ)⊥ ∩ P}

as shown in Figure 6.

Figure 6: xM (φ) = φ(p)− φ(q)

2.2. Sample Outputs

We implemented this algorithm in Python and the pyqtgraph graphics library, and below are some
sample inputs and outputs to our software.

T = T 3
dT

3
b Tc

π1(MT ) = 〈x, y | y−3x3y3x−3〉
T = T−1b T−1d TcT

−1
d Tc

〈x, y | xyxy2xyx−1y−1x−1y−2x−1y−1〉
T = T 2

dT
2
b T

2
c

〈x, y | y−2x−2y−2x2y2x2y2x−2〉

2.3. b1 = 1 case

One can easily tell whether b1 = 1 from the relator fo the fundamental group. Let r =
xε1yδ1 . . . xεkyδk then if

∑k
i=1 ε1 = 0 and

∑k
i=1 δ1 = 0, r represents a separating closed curve and

bounds two genus 1 surfaces, making it trivial in the homology. If on the other hand
∑k
i=1 ε1 6= 0

or
∑k
i=1 δ1 6= 0 then b1 = 1.
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Assume π = 〈x, y | r〉 is the fundamental group of M and b1 = 1. We apply Lemma 1.3.1 to get
a presentationn π = 〈x, y | r〉 such that φ(x) = 0, φ(y) = 1 and draw the corresponding polytope as
in the b1 = 2 case. When calculating Thurston norms as in Section 2.1, the fact that φ(y) = 0 just
means we can “ignore” the horizontal direction and only care about the vertical thickness of our
polytope. Perhaps this will become clearer by example, refer to Appendix A.2.

3. Results

We now show the existence of some polygons that can appear as dual polygons to the unit ball of
the Thurston norm of certain 3-manifolds. We say a polygon P is obtainable if there is a 3-manifold
M with π1(M) = 〈x, y|r〉 and PM

.
= P .

Lemma 3.0.1. Every fully marked rectangle is obtainable.

Proof. We first prove inductively that

T−nd Tmb Tc(xzx
−1z−1) = xynwz−1x−mxmzxmzw−1y−nx−1z−1x−m (2)

with Td, Tb, Tc as in Fact 1.1.2. Equation 2 clearly holds for n = m = 1. Inducting on n,

T
−(n+1)
d Tmb Tc(xzx

−1z−1) = Td(xy
nwz−1x−mxmzxmzw−1y−nx−1z−1x−m)

= xyn Td(w) z−1x−mxmzxmz Td(w
−1) y−nx−1z−1x−m

= xyn+1wz−1x−mxmzxmzw−1y−(n+1)x−1z−1x−m

as desired. Next, inducting on m,

T−nd Tm+1
b c(xzx−1z−1) = Tb(T

−n
d Tmb Tc(xzx

−1z−1))

= xynw Tb(z
−1) x−mxm Tb(z) x

m Tb(z) w
−1y−nx−1 Tb(z

−1) x−m

= xynwz−1x−(m+1)xm+1zxm+1zw−1y−nx−1z−1x−(m+1)

as desired, where the first equality is true since b and d clearly commute.

Now, we claim that T = T
−(h+1)
d Tw+1

b Tc generates a rectangle of height h and width w
with edges parallel to the axes. By 2 we know that the fundamental group of MT has relator
r = yh+1x−(w+1)xw+1xw+1y−(h+1)x−(w+1) which cyclically reduces to

r = yh+1xw+1y−(h+1)y−(w+1)

it is easy to see that the walk obtained from this relator never crosses the same point more than
one, thus it is fully marked, and that the convex hull C of the walk is a rectangle of width w + 1
and height h+ 1 and that the resulting polygon P is thus a fully marked rectangle of width w and
height h.

Corollary 3.0.1.1. Every fully marked interval on the x or y axes is obtainable.

Proof. Intervals are rectangles of height or width zero. Vertical intervals of length m can be obtained

by T = T
−(m+1)
d TbTc and horizontal intervals of length m can be obtained by T = T−1d Tm+1

b Tc.

Lemma 3.0.2. Given a Polygon P , the polygon P ′ obtained by reflecting P about the x or y axis is
obtainable.
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Figure 7: In order to mirror a polygon along the y axis, we want an automor-
phism of T2#T2–that we can append to the input word T–which sends x to
x−1 but keeps y fixed. Pictured above is one such map. It keeps the right side
(the y side) of the genus 2 torus fixed, and rotates the left side (the x side) by
180◦, applying a half Dehn twist in the middle annulus around c so that the
boundaries of each shape will agree when “pasting” the torus back together.

Proof. Let T denote a word in Ta, Tb, Tc, Td, Te such that the polygon corresponding to MT is P
and let cn denote the word in w, x, y, z such that T (xzx−1z−1) = cn. We define a “mirroring” map
(Figure 7) as follows

(Tb ◦ Ta)3 :x 7→ z−1x−1

z 7→ z−1[x,−1 ]z−1

Then, by taking (Tb ◦Ta)3(cn), each z gets replaced by z−1[x−1, z−1] which is also trivial in π1(MT )
and does not affect WT . Each x gets replaced by z−1x−1z which is x−1 in π1(MT ) and thus
W(Tb◦Ta)3◦T (x, y) = WT (x−1, y). Then, the polytope P ′ arising from (Tb ◦ Ta)3 ◦ T is the mirror
image along the y-axis of P . The proof for mirroring along the x axis is analogous but uses Td, Te
instead.

Lemma 3.0.3. Let n denote the maximum horizontal distance between two points at any step of the
walk and m denote the maximum vertical distance. If n + m ≥ 2k + 4 then the marked polygon
corresponding to this fundamental group cannot be contained within a k by k box in H1

Proof. Notice that all the angles in the convex hull C of a walk on the integer lattice will be ≥ 90◦,
since the cyclically reduced condition on r implies every xε1 is followed by either an xε1 or a yε2 for
ε1, ε2 ∈ {0, 1}. Then, ∀(x, y) ∈ VC ,∃(x′, y′) ∈ PT such that | x− x′ |= 0.5 and | y − y′ |= 0.5.

Then, if there are two points (x0, y0), (x1, y1) ∈ VC with x1−x0 ≥ k+2 then there are two points
((x′0, y

′
0), (x′1, y

′
1) ∈ PT such that x′1 − x′0 ≥ k + 1. Similarly if y1 − y0 ≥ k + 2 then y′1 − y′0 ≥ k + 1.

Let (x0, y0), (x0 + n, y′0) ∈ VC maximize horizontal distance and (x1, y1), (x′1, y1 + m) ∈ VC
maximize vertical distance, then if m+ n ≥ 2k + 4, either n ≥ k + 2 or m ≥ k + 2 or both.

3.1. Complicated Thurston Norms

Lemma 3.1.1. For all i ∈ Z+, T = T−1b (T−1d Tc)
i+1 gives rise to a polytope PT with 4i vertices.

Proof. Denote Ti = T−1b (T−1d Tc)
i+1 and notice that Ti+1 = TsTi where Ts = T−1b T−1d TcTb. We will

also define two related sequences of words on the fundamental group of T2#T2

A1 = ywz−1x An+1 = BnAn (3)

B1 = y2wz−1x Bn+1 = BnBnAn (4)

10



A1 B1

Figure 8: Each An, Bn block determines a walk in the plane rooted at the
endpoint of the block that precedes it in the word

By Fact 1.1.2, it is easy to see that

Ts(A1) = y2wz−1x ywz−1x x−1zw−1y−1x−1x ywz−1x = y2wz−1x ywz−1x = B1A1 = A2

Ts(B1) = y2wz−1x y2wz−1x ywz−1x x−1zw−1y−1x−1x ywz−1x = B1B1A1 = B2

Additionally, Ts(Ak) = Ak+1 and Ts(Bk) = Bk+1 =⇒ Ts(Ak+1) = Ts(BkAk) = Ts(Bk)Ts(Ak) =
Bk+1Ak+1 = Ak+2 and Ts(Bk+1) = Ts(Bk)Ts(Bk)Ts(Ak) = Bk+1Bk+1Ak+1 = Bk+2 thus by
induction

An+1 = Ts(An), Bn+1 = Ts(Bn) (5)

Furthermore, each An, Bn is a word in w, x, y, z which in turn represents a walk on the plane. We
can obtain the height and width of said walk by noting w(A1) = 1 = f0, h(A1) = 1 = f1, w(B1) =
1 = f1, h(B1) = 2 = f2 and w(Ai+1) = w(Bi) +w(Ai), w(Bi+1) = w(Bi) +w(Bi) +w(Ai) and thus

w(An) = f2n−2

h(An) = f2n−1

w(Bn) = f2n−1

h(Bn) = f2n

where fk denotes the kth number in the sequence f0 = 1, f1 = 1, fk = fk−1 + fk−2, w(W ) denotes
the width of the walk on the plane corresponding to the word W and h(W ) denotes the height of
the walk on the plane corresponding to a the word W .

We claim that
Ti([x, z]) = xA1A2 . . . AiBiBi−1 . . . B1ywσi (6)

where σi = Ti(x
−1z−1) is the walk symmetric to xA1A2 . . . AiBiBi−1 . . . B1yw = Ti(xz). This is

clearly true for i = 1 and follows inductively from 5 and the fact that Ts(x) = xA1, Ts(yw) = B1yw.
Now let A : (1, 0), (f0, f1), (f2, f3), . . . (f2i−2, f2i−1) be a sequence of i+ 1 elements of Z2 and

B : (f2i−1, f2i), (f2i−3, f2i−2), . . . (f1, f2), (0, 1) be another such sequence, and let (AB), the sequence
of length 2i+ 2 in Z2 obtained from appending B to A, define a sequence of points as follows:

p0 = (AB)0 = (1, 0) pn = pn−1 + (AB)n (7)

and define a sequence of segments {ln}n by the sequence of line segments between consecutive
points in {pn}n

l0 = (0, 0), p0 ln = pn−1pn (8)

These lines have slopes 0, f1f0 ,
f3
f2
, . . . , f2i−1

f2i−2
, f2i
f2i−1

, f2i−2

f2i−3
, . . . , f2f1 , vertical.

We want to prove that {pn}n lie on Ti(xz) = xA1A2 . . . AiBiBi−1 . . . B1yw and that they bound
Ti(xz) on the right. Then the point sequence {pn}n where pi is symmetric to pi lies on σi and
bounds it to the left.
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A1

B1

A1

A2

σi

Figure 9: Ti([x, z]) = xA1A2 . . . AiBiBi−1 . . . B1ywσi

It is clear that p0 lies on Ti(xz) = x . . ., and p1 = p0 + (f0, f1) as well because A1 has width f0
and height f1. Similarly, ∀k ≤ i, if pk−1 is the last point in xA1 . . . Ak−1 then pk is clearly the last
point in xA1 . . . Ak−1Ak because (w(Ak), h(Ak)) = (f2n−2, f2n−1) = (AB)k. Thus p0, p1, . . . , pi lie
on Ti(xz).

Now, pi+1 lies at the end of the path xA1A2 . . . AiBi because pi lies at the end of the sub-
path xA1A2 . . . Ai and pi+1 = pi + (AB)i+1 = pi + (w(Bi), h(Bi)). ∀k | i + 2 ≤ k ≤ 2i
if pk−1 lies at the end of path xA1A2 . . . AiBi . . . B2i+1−(k−1) then pk lies at the end of path
xA1A2 . . . AiBi . . . B2i+1−(k−1)B2i+1−k since pk = pk−1+(AB)k = pk−1+(w(B2i+1−k), h(B2i+1−k)).
Lastly p2i+1 = p2i + (0, 1) clearly lies in xA1A2 . . . AiBiBi−1 . . . B1yw since p2i is the endpoint of
xA1A2 . . . AiBiBi−1 . . . B1.

On a block Ak, it is easy to see that line connecting the endpoints q0, q1 of Ak bounds all points in
Ak to the right. Taking a point q in Ak = Bk−1Ak−1 but not at the endpoints, q is either the junction
point of Ak = Bk−1, Ak−1 or it is not. If it is then q0 = (x, y) =⇒ q = (x+w(Bk−1), y+h(Bk−1)) =
(x+ f2k−3, y + f2k−2) and q1 = (x+w(Ak), y + h(Ak)) = (x+ f2k−2, y + f2k−1) and you can check
that q0, q, q1 are oriented clockwise. If q is not the junction point of Ak = Bk−1, Ak−1, let q2 be
this junction point and apply a simiplar argument to q0, q, q2 or q2, q, q1 as appropiate. A similar
argument shows that a line on the endpoints of a Bk block bounds all points in Bk to the right.
Thus {ln}n bounds Ti(xz) to the right. Furthermore, the sequence of lines {ln}n is of increasing
slope (this follows from the identities fk+1fk+2fkfk+3 = (−1)k+1 and f2k −fk−1fk+1 = (−1)k which
can easily be proved inductively).

Then {pn}n lies on σi and bounds σi to the left as desired, thus the set of vertices of the convex
hull of Ti([x, ]) is VC = {pn} ∪ {pn} (because they bound Ti([x, ]) and are convex by our slope
argument) which has 4i+ 4 elements. Then the resulting polygon PTi has (4i+ 4)− 4 vertices, as
shown in Figure 10.

Lemma 3.1.2. For all i ∈ Z+, T = T−2b (T−1d Tc)
i+1 gives rise to a polytope PT with 4i+ 2 vertices.

Proof. With Ti, Ak, Bk as in the proof of Lemma 3.1.1, by Fact 1.1.2 composition of T−1b with Ti
simply increases the width of A1, B1 by 1, thus it doubles the width of Ak, Bk. Exactly the same
argument as above applies to obtain the convex hull of 4i+ 4 vertices shown in Figure 12 for the
walk shown in Figure 11 and as seen in Figure 12, this yields a polygon of 4i+ 2 vertices.
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Figure 10
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Figure 11
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Figure 12

Corollary 3.1.2.1. Given k ∈ Z+, a polygon with 2k vertices is obtainable.

Proof. This follows directly from Lemma 3.1.1 and Lemma 3.1.2. For odd k, one such polygon PT is

given by T = T−2b (T−1d Tc)
k+1
2 . For even k, one such polygon is given by T = T−1b (T−1d Tc)

k+2
2 .

4. Future Directions

4.1. Enumerating and Detecting Simple Closed Curves

There are several reasons why predicting or generalizing the relator (and thus the polygon) that
will arise from a certain sequence of Dehn Twists applied to [x, z] is quite difficult.

Fact 4.1.1. Two Dehn twists Tγ1 , Tγ2 commute if and only if the two curves γ1, γ2 admit non-
intersecting representatives.

Because any consecutive pair of Dehn Twists in our list Ta, Tb, Tc, Td, Te of generators of
Mod(T2#T2) don’t commute, there does not seem to be a canonical transformation induced on
PT by composing Tγ ◦ T for γ = a, b, c, d, e, since whatever transformation on r and thus on PT
depends on the previous Dehn twists present in T .

One reasonable approach for trying to prove the obtainability of all polygons following
Lemma 3.0.3 is confining the search range to polygons within an m × n box and trying to
bound the length of T as a word in Ta, Tb, Tc, Td, Te. Reducing the word domain for an n×m box
to a finite one could lead to good “inductive” proofs of the obtainability of polygons (by inducting
on its total “dimension” m+ n).
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Fact 4.1.2. Let H denote the genus 2 handlebody. Mod(H) < Mod(∂H) = Mod(T2#T2)

Some elements of Mod(T2#T2) are also in the Mapping Class Group of the two-handlebody.
In particular, Ta, Tc, Te ∈ Mod(H) and thus PTγ◦T

.
= PT for γ = a, b, c. That is, within a word

T = Tγn . . . Tγ2Tγ1 there could be any length of “trivial” subwords. This makes bounding word size
a lot more difficult.

This motivated us to look at other ways to enumerate separating simple closed curves without
using the Mapping Class Group, and using expressions on the Fundamental Group directly. For
instance, [2] provides a way of listing all simple closed curves on a once puncutred torus and [1]
provides an algorithm for detecting whether a curve on a surface admits a simple representative.

4.2. The Code

We intend to make the code for drawing the Thurston unit balls available online. We could also
use this computational tool to add information to web archives such as The Knot Atlas, or maybe
incorporate the code to existing topology software.
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A. Interpretation

A.1. The Interval Case

Let’s look at what information we can gather from the following output case (Figure 13). The walk

Figure 13

on Z2 that yields this interval is encoded by the relator xymx−1y−m. One way to make a manifold
with the fundamental group 〈x, y | xymx−1y−m〉 is by identifying the orange curves and the blue
curves in Figure 14.

Notice that the orange and blue curves on the surface of the solid torus trace out an annulus,
which is homeomorphic to a cyllinder. Thus, restricting our attention to the interaction between
this annulus and the cyllinder we are identifying onto it, we can see that x and ym form loops on a
torus and thus commute (Figure 15).

Now that we have a 3-manifold M with the appropiate fundamental group π1(M) = 〈x, y |
xymx−1y−m〉, we can derive some information about it from the polygon in Figure 13. Namely,
that if φ ∈ H1(M,Z) is the element of the first cohomology that sends x 7→ 1 and y 7→ 0 (first basis
element of the cohomology) and ψ ∈ H1(M,Z) is the element of the first cohomology that sends
x 7→ 0 and y 7→ 1 (second basis element of the cohomology), then their thurston norms are given by

xM (φ) = 0

xM (ψ) = m− 1

because the biggest “thickness” of the polygon in the direction of x is 0 and in the direction of y is
m− 1. Then, the simplest dual surface to the loop x has Euler characteristic 0, so we can find a
surface of Euler characteristic 0 (could be a torus, an annulus, a Möbius strip, . . . ) embedded in
M . The simplest dual surface to the loop y has Euler characteristic m− 1, so we can find a surface
S with χ(S) = 1−m embedded in M .

In the case where m = 2, these embedded surfaces are not too hard to visualize. Our manifold
M is formed by pasting the pieces in Figure 14 along like-colored curve, with the orange and blue
curves winding around the surface of the solid torus only twice. Before pasting, a dual surface to y
looks like a disc (Figure 16), and we want to visualize how this disc extends when we attach the
cylinder to the torus. The dual surface of y has its boundary on the boundary of M . When attaching
the cylinder, the annulus between the orange and blue curves is removed from the boundary (thus
we can remove two pieces from the circle) and the traced parts on the cylinder get added to the
boundary (thus we can add two bumps to the circle) as in Figure 17. But the cylinder is not solid
and has a hole in the middle, which is also part of the boundary, so we can add two punctures to
our bumps.
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Figure 14: The orange and blue curves, separated by a distance of ε, wind
around y m times on the surface of the solid torus. x is the loop that traverses
C × I (the thickened cylinder) and closes up in the ε-region bounded by the
blue and orange curves on the surface of the solid torus.

Figure 15: ym and x lie on a torus and thus commute
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Figure 16: Dual surface
to y in the solid torus

Figure 17: Extending to the dual
surface of y in 〈x, y | xy2x−1y−2〉

This surface should be dual to y in M . The surface is homotopy equivalent to two wedged
circles, so the Euler characteristic is −1. The fact that the Thurston norm is 1 (which we gathered
from the output of the algorithm) assures that we cannot do any better: this is the simplest surface
dual to y.

A.2. b1 = 1 example

Suppose we have a group G with a presentation π′ = 〈x, y | xy3x2y−3x−1yx−1〉. This group has
b1 = 1. To apply Lemma 1.3.1 we construct the following epimorphism φ : G→ Z

φ : x 7→ −1

y 7→ 1

In general, if the relator of a (2,1) group presentation with b1 = 1 is of the form xε1yδ1 . . . xεkyδk

and we let p =
∑k
i=1 εi and q =

∑k
i=1 δi we can define an epimorphism from the group to Z by

ψ : x 7→ q

gcd(p, q)

y 7→ −p
gcd(p, q)

In their proof of Lemma 1.3.1, Friedl and Tillmann describe an algorithm for converting π′ to the
right presentation, which we apply here directly. Letting r = xy3x2y−3x−1yx−1 be the relator of π′

1. Pick minφ(x), φ(y) = φ(x) and let c = yxε where ε =

{
1 if φ(x), φ(y) differ in sign

−1 otherwise

2. Replace y with cx−ε = cx−1 in r and let the result be s

s = x(cx−1)3x2(xc−1)3x−1cx−1x−1 substitute

= cx−1cx−1cx2c−1xc−1xc−1x−1cx−1 cyclically reduce

3. The desired presentation for G is π = 〈a, c | ca−1ca−1ca2c−1ac−1ac−1a−1ca−1〉
Now we draw the polygon associated to this presentation π and derive information about the
Thurston norm exactly the same way as in Section 2.1, but since φ(c) = 0, xM (φc) = max{φ(p)−
φ(q) | p, q ∈ (kerφc)

⊥ ∩ P} = 0 because (kerφc)
⊥ = 0, and any thickness of P in the c direction

can thus be “ignored”.

18



References

[1] J. Birman and C. Series. An algorithm for simple curves on surfaces. J. London Math. Soc.,
29(2):331–342, 1984.

[2] P. Buser and K.-D. Semmler. The geometry and spectrum of the one holed torus. Comment.
Math. Helvetici, 63:259–274, 1988.

[3] S. Friedl, K. Schreve, and S. Tillmann. Thurston norm via Fox calculus. ArXiv e-prints, July
2015.

[4] Stefan Friedl and Stephan Tillmann. Two-generator one-relator groups and marked polytopes.
arXiv preprint arXiv:1501.03489, 2015.

[5] Martin Kassabov. Generating mapping class groups by involutions. arXiv preprint
math/0311455, 2003.

19


	Background
	``Nice'' way of generating Mod(S)
	The Thurston Norm
	Previous relevant results

	The Algorithm
	Meaning of PT and deriving the Thurston unit ball
	Sample Outputs
	b1=1 case

	Results
	Complicated Thurston Norms

	Future Directions
	Enumerating and Detecting Simple Closed Curves
	The Code

	Appendix Interpretation
	The Interval Case
	b1=1 example


