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Abstract

This paper is the sequel of the work done last year at the University
of Michigan during the REU program and whose report can be found
in [6]. First, We will present the degree bound problem and survey
some relevant background results. Then, we discuss the geometry of
subspace arrangements constructed via the regular representation of
the underlying group as a possible solution to the problem, and we
address some of the issues encountered along the way. Finally, we
present our main result.

1 Intoduction

Given a field K and a group representation ρ : G −→ GL(V ) of a group G
on a finite dimensional vector space V , we can extend the linear action of G
on V to a linear action on the K-algebra K[V ] of polynomial functions on
V called the coordinate ring of V . Invariant theory is concerned with the
following subalgebra of K[V ] called the invariant ring of G:

K[V ]G := {f ∈ K[V ] | gf = f ∀g ∈ G}

where, gf(v) = f(ρ(g)−1v), ∀g ∈ G, v ∈ V , and f ∈ K[V ].
We say we are in the nonmodular case invariant theory when the order

of the group G is invertible in the ground field K. For instance, such case
arises when the ground field K is an extension of the field of rational num-
bers Q. Of special interest in invariant theory research are the following
three questions: First, does the ring K[V ] have a finite algebra generating
set? Second, can we find priori bounds on the degrees of a minimal alge-
bra generating set of K[V ]G ? Finally, Can we design ”good” algorithms to
compute systems of algebra generators for the ring of invariants?
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The first question is closely related to D. Hilbert’s 14th problem (see [3]).
Meanwhile, the second question is in essence the Degree Bound Problem.

One of the foundational work done to address this problem was by the
prominent German mathematician E. Noether. For instance, in 1916 she
showed [8] that if the group G is finite then the invariant ring K[V ]G is
finitely generated as an algebra over the field K. Meaning, we can always
find finitely many invariants f1, ..., fs such that K[V ]G = K[f1, ..., fs].

We can now introduce the number β(ρ) := max{deg(fi), 1 ≤ i ≤ s},
where {f1, .., fs} is a minimal algebra generating set for K[V ]G. Hence, the
Degree Bound Problem can simply be reformulated as: Find bounds for
β(ρ). Another important result in positive characteristic [8] by E. Noether
known as the Noether’s Bound stipulates that the ring of invariants K[V ]G

is generated by invariants of degree at most |G|. Meaning, we always have
β(ρ) ≤ |G|.

Noether’s bound justifies the definition of the following number:

β(G) := max{β(ρ) | ρ finite dimensional representation of G}.

Example 1.1. Let Dn be the group of symmetry of the regular polygon
with n vertices, and let ρ be its two dimensional representation given by the
matrices:

ρ(r) =

(
cos(2πn ) − sin(2πn )
sin(2πn ) cos(2πn )

)
and ρ(s) =

(
1 0
0 −1

)
.

The ring of invariants R[x, y]Dn is generated as an R-algebra by the ho-
mogeneous invariant polynomials x2 + y2 and

∏n−1
i=0 (cos(2πin )x+ sin(2πin )y).

Hence, we have β(ρ) = n. However, we have:

β(Dn) = n+ 1.

Example 1.2. Let An be the alternating group on n ≥ 2 symbols, and let
ρ : An −→ GL(n,C) be its n-dimensional defining representation. One can
verify that all the n symmetric functions e1, ...en are invariant under the
action of the group An. Furthermore, the polynomial ∆n =

∏
1≤i≤j(xi−xj)

of degree
(
n
2

)
called the Vandermonde determinant is also invariant under

the action of the group An. In fact, we have C[x1, ...xn]An = C[e1, ..., en,∆n].
Hence, β(ρ) =

(
n
2

)
. This gives the following lower bound for β(An):

β(An) ≥
(
n

2

)
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2 Survey of Some Results

Noether’s bound β(ρ) ≤ |G| is one of the fundamental results for the degree
bound problem. In fact, it is now well established that the equality only
holds when the group G is cyclic. The proof [11] of this statement is encoded
in the following theorem:

Theorem 2.1. Let ρ : G −→ GL(V ) be a finite dimensional representation
of a finite and non-cyclic group G. Then, the ring of invariants K[V ]G

is generated by the homogeneous invariants of degree strictly less than |G|.
That means we have β(ρ) < |G|.

Using Weyl’s theorem, B.Schmid [11] was able to establish that β(G) =
β(ρreg), where ρreg represents the regular of the group G. It turns out
that this result is very useful in practice when computing β(G) explicitly.
Furthermore, combining this result with Noether’s bound we deduce that
the regular representation ρreg of the group G realizes the worst case analysis
in solving the degree bound problem. Meaning that if we can find bounds
for the regular representation of G, we can be confident that we have found
bounds for any representation of G; at least in the nonmodular case.

Definition 2.2. Let b1, ..., bs be nonzero elements of a group G (written
additively). The equation b1 + ... + bs = 0 is said to be non-shortable if it
has the property that for every nonempty strict subset {i1, ..., is} ( {1, ...s},
we have bi1 + ...+ bis 6= 0.

Theorem 2.3 (B.Schmid). Let G be a finite abelian group, then β(G) equals
the maximal length of a non-shortable equation in G.

Example 2.4. In Z3 the equation 1 + 1 + 1 = 0 is non-shortable. However,
any equation b1 + b2 + b3 + b4 = 0, where bi ∈ {1, 2} is shortable.This is why:
At least one of the bi’s, let’s call it br must equal 1. Otherwise, the sum of
bi’s will fail to be zero. Likewise, at least one of the bi’s, let’s say bs must
equal 2. We then have br+bs = 0, and the result follows. A similar argument
can be used to check that the maximal length of a non-shortable equation in
Z3 is actually 3. Hence, by Theorem 2.4 we must have β(Z3) = 3. This
result was predictable since Z3 is cyclic.

In Z3 × Z3, the equation (0, 1) + (0, 1) + (1, 0) + (1, 0) + (1, 1) = (0, 0)
is non-shortable. In fact, we have β(Z3 × Z3) = 5. This is consistent with
Theorem 2.1.

We want to conclude this paragraph with some of the classical results
known. The proof of some of those can be found in [11].
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Proposition 2.5. We have the following:

1. If G is the dihedral group Dn of order 2n then β(Dn) = n+ 1.

2. If G = Zpr1 × ... × Zprs , where p is a prime number then we have
β(G) = 1 +

∑s
i=1(p

ri − 1).

3. β(S2) = 2, β(A3) = 3, β(S3) = 4 β(A4) = 6, and β(S4) = 10.

3 Subspace Arrangements Explored

In [6] we introduced the geometric argument of subspace arrangements as
a possible way to address the degree bound problem. More specifically, we
focused on the variety

B :=
⋃
g∈G

g∆(V )

where V is a finite dimensional K-vector space, and ∆ : V −→ V × V is
the diagonal morphism. Moreover, the action of the group G on V × V is
defined by g(v, v) = (v, gv).

The following two theorems were the motivation to start thinking about
the degree bound problem from a geometric stand point, because together
they translate the degree bound problem from the ring of invariants K[V ]G

to a degree bound problem on the ideal I(B) of the variety B.

Theorem 3.1 (H. Derksen). Let I be the ideal of K[V ] generated by all
homogeneous invariants of positive degree. We can further reasonably as-
sume that I = (h1, ..., hs) where all the hi, 1 ≤ i ≤ s are homogeneous, then
K[V ]G = K[R(h1), ...,R(hs)], where R is the averaging Reynolds operator
defined by:

R : K[V ] −→ K[V ]G

h 7−→ 1

|G|
∑
g∈G

gh.

Theorem 3.2. Suppose the ideal I(B) ⊂ K[V ⊕ V ] of the variety B is
generated by the homogeneous polynomials f1(x, y), ..., fr(x, y), then the ideal
I in Derksen’s theorem is given by I = (f1(x, 0), ..., fr(x, 0)).

We presented a simple geometric intuition that lead us to define the
following alpha number:

α(ρreg) := max {](L ∩Breg) | L affine line in V ⊕ V such that L * Breg}
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where ρreg is the regular representation of G, Breg is the subspace arrange-
ment associated with ρreg, and ](L ∩ Breg) stands for the number of point
of intersection between L and Breg. We had the following proposition that
we hoped would give us a lower bound for β(G):

Proposition 3.3. β(ρreg) ≥ α(ρreg).

One of our goals this year was to examine how good of a lower bound
α(ρreg) could be. So, we decided to investigate this question through explicit
examples whose β(ρreg) are known.

For instance, it turns out that the argument works well for Z2 × Z2 as
the computation carry in [6] show. In this case we got a lower bound of 3
which is very good considering that β(Z2×Z2) = 3. However, the argument
doesn’t work that well for Z3×Z3 where we failed to even get a lower bound
of 4 considering that β(Z3 × Z3) = 5.

It is important to mention that the computation involved to calculate the
lower bound given by the alpha number can quickly become intractable as
the group order increases. For example, in the Z3×Z3 case we worked with
the following representation which is equivalent to its regular representation
and is afforded by the matrices:

ρ(σ) = [e1 e2 e3 ζe4 ζe5 ζe6 ζ
2e7 ζ

2e8 ζ
2e9] ∈ GL(9,C)

and
ρ(τ) = [e1 ζe2 ζ

2e3 e4 ζe5 ζ
2e6 e7 ζe8 ζ

2e9] ∈ GL(9,C)

where ek represents the k-th standard vector of C9 for 1 ≤ k ≤ 9, σ and τ
are the group generators, and ζ represents the primitive 3rd root of unity.
That is ζ satisfies the equation: ζ2 + ζ + 1 = 0.

Aiming for a lower of 4 simply means intersecting the affine line in C18

given by L(t) = (a1 + tb1, ..., a18 + tb18) with 4 distinct subspaces in the
variety B. This amounts to solving

(
9
4

)
= 126 systems of 9 · 4 = 36 non-

linear equations in 18 + 18 + 4 + 1 = 41 unknowns. The equations can be
made linear by fixing a value for ζ. In that case the number of unknowns
decreases by 1. In either case, we were not successful in finding non-trivial
solutions!

4 The Symmetric Group Sn

After wresting for some time with the computation outlined at the end of the
preceding paragraph, we decided to try something different. So, we shifted
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our attention to the symmetric group in n symbols Sn. Before we can state
the main result, let us recall some background in representation theory.

1. If V and W are two representations of a group G, then we have

Hom(V,W )G ∼= (V ∗ ⊗W )G

.

2. If V is irreducible, and W = V d1
1 ⊕ ...⊕V dr

r , where Vi is irreducible for
1 ≤ i ≤ r, then a corollary of Schur’s lemma implies thatHom(V,W )G 6=
0 if and only if V ∼= Vi, for some i.

Combining the two points above, we deduce that:

C[V ⊕W ]Gd,1 6= {0} if and only if W ⊂ C[V ]d

where C[V ⊕W ]d,1 is the subspace of homogeneous polynomials of mul-
tidegree (d, 1) in the bigraded ring C[V ⊕W ].

Lemma 4.1. Let V be the standard representation of the symmetric group
Sn, and let W be its sign representation. The following holds:

W ⊂ C[V ]d implies d ≥
(
n

2

)
.

Proof. Suppose 0 6= f ∈ W ⊂ C[V ]d, and let σ be the transposition (i, j)
with i < j. Then we have σf = f(X1, ..., Xj , ...Xi, ..., Xn) = −f(X1, ..., Xi, ...Xj , ..., Xn).
This implies that Xi −Xj divides f . Since the polynomial Xi −Xi is irre-
ducible, and the pair (i, j) was chosen arbitrarily, we can therefore conclude
that

∏
i<j(Xi −Xj) divides f . Hence, deg(f) = d ≥

(
n
2

)
.

Proposition 4.2. β(Sn) ≥ 1 +
(
n
2

)
.

Proof. Consider the polynomial f =
∏
i<j(Xi − Xj)Y ∈ C[V ⊕ W ]Sn

(n2),1
,

and suppose that there exists a polynomial P and invariants fi, 1 ≤ i ≤ r
such that f = P (f1, ...fr), where multideg(fi) < 1 +

(
n
2

)
for all i. We can

write f =
∑r

i=1(gihi), where gi and hi are non-constant polynomials and
multideg(gi) + multideg(hi) = (

(
n
2

)
, 1). It is clear that one of the gi’s or hi’s

must have multidegree (e, 1) for some integer e <
(
n
2

)
. Let’s call it gs. We

then have: multideg(gs) = (e, 1) and multideg(hs) = (
(
n
2

)
− e, 0). However,

since 0 6= gs ∈ C[V ⊕W ]Sn
e,1, Schur’s lemma implies that W ⊂ C[V]. Thus,

we must have e ≥
(
n
2

)
by Lemma 4.1. Hence the contradiction.
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