Labeling Isometric and Almost Isometric *n*-Point Configurations in \mathbb{R}^D

Michael Lu

July 2016

Abstract

Consider two *n*-point configurations X and Y in \mathbb{R}^D with the same distance distribution and distinct distances. We begin with proposing an algorithm that tries to find a bijection $\psi : X \to Y$ such that X and Y are congruent under ψ , or determines that no such bijection exists. Next, we discuss extending this algorithm to the case where X and Y have small multiplicities of recurring distances, then to the case where X and Y have "almost the same" distance distribution.

1 Introduction

1.1 Background

We are working towards the extension of the Procrustes Problem, which was solved by Peter Schönemann [\[5\]](#page-9-0).

Theorem 1.1 (Procrustes Problem). If we have

$$
X = \{x_1, \ldots, x_n\}, Y = \{y_1, \ldots, y_n\} \subset \mathbb{R}^D
$$

such that

$$
|x_i - x_j| = |y_i - y_j| \text{ for } i, j = 1, \dots, n. \tag{\dagger}
$$

Then there exists $T \in O(D)$ and $\bar{y} \in \mathbb{R}^D$ such that $y_i = T(x_i) + \bar{y}$ for $i = 1, \ldots, n$. $O(D)$ refers to the orthogonal group in dimension D .

1.2 Previous Results

Particularly, we're interested in extending the Procrustes by relaxing the ([†](#page-0-0)) condition. There are two ways of approaching this relaxation:

- 1. $\{|x_i x_j| : i \neq j\} = \{|y_i y_j| : i \neq j\};$
- 2. $|x_i x_j| \approx |y_i y_j|$ for $i, j = 1, ..., n$.

[\[1\]](#page-9-1) and [\[4\]](#page-9-2) studied the former relaxation with some constraints. In both of their approaches, the first step is to find a suitable labeling of the points such that the conditions of the Procrustes Problem are held under the labeling. In other words, their goal is first to find a labeling, then find the $T \in O(D)$. Overall, this relaxation transforms the Procrustes Problem into:

Problem 1.1 (Unlabeled Procrustes Problem). If we have

$$
X = \{x_1, \ldots, x_n\}, Y = \{y_1, \ldots, y_n\} \subset \mathbb{R}^D
$$

such that $|x_i - x_j| = |y_{\pi(i)} = y_{\pi(j)}|$ for $i, j = 1, ..., n$ and $\pi \in \text{Sym}_n$, then does there exist π and $T \in O(D)$ and $\bar{y} \in \mathbb{R}^D$ such that

$$
y_{\pi(i)} = T(x_i) + \bar{y}
$$

for $i = 1, \ldots, n$?

[\[1\]](#page-9-1) noticed that it is possible that no such π or T exists. [\[2\]](#page-9-3) explores that exact case.

The latter relaxation was studied in [\[3\]](#page-9-4) and yielded the following result:

Theorem 1.2. Let $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_n\}$ be two n-point configurations in \mathbb{R}^D with distinct x_i, y_i respectively. Suppose

$$
(1+\delta)^{-1} \le \frac{|y_i - y_j|}{|x_i - x_j|} \le 1 + \delta, \forall i \ne j.
$$

For any $\varepsilon > 0$, there exists $\delta > 0$ and a Euclidean motion $\Phi_0: x \to Tx + x_0$ such that

$$
|y_i - \Phi_0(x_i)| \le \varepsilon \text{diam}\{x_1, ..., x_n\}
$$

for $i = 1, \ldots, n$.

We explore an alternative way of matching the points with the constraint that the pairwise distances are distinct.

2 Matching Two n-Point Configurations with same Distance Distribution

2.1 Preliminaries

Definition 2.1. If we have an n-point configuration A in a metric space (M, d) , we define

$$
dist(A) := \{d(p, q) \mid p \neq q \in A\}.
$$

Definition 2.2. Let A be an n-point configuration in a metric space (M, d) and p, q be points in A. The **edge between** p **and** q is the tuple

$$
e_{p,q}:=\Big(\{p,q\},d(p,q)\Big).
$$

We denote $e_{p,q}[1] = \{p,q\}$ and $e_{p,q}[2] = d(p,q)$.

Note $e_{p,q} = e_{q,p}$.

Definition 2.3. Let A be an *n*-point configuration in a metric space (M, d) , the edge set of A is defined as

$$
E(A) := \{e_{p,q} \mid p \neq q \in A\}.
$$

Note if $|A| = n$, then $|E(A)| = \binom{n}{2}$ 2 **)**.

Definition 2.4. An n-point configuration, $A \subset (M, d)$, has distinct dis**tances** if for every $e, e' \in E(A), e[1] = e'[1]$ if and only if $e[2] = e'[2]$.

Definition 2.5. If $A = \{a_1, \ldots, a_n\} \subset (M, d)$ is an n-point configuration, the **distance matrix of** A, distmat(A), is the $n \times n$ matrix

$$
(\text{distant}(A))_{ij} = d(a_i, a_j).
$$

Note distmat(A) is an $n \times n$ symmetric matrix due to the definition of a metric. Its diagonal entries are all zero.

Our labeling problem can be reformulated as:

Problem 2.1 (Reformulated Unlabeled Procrustes Problem). Let X and Y n-point configurations such that they have distinct distances and $dist(X) =$ dist(Y). We want $\pi \in \text{Sym}_n$ such that $|x_i - x_j| = |y_{\pi(i)} - y_{\pi(j)}|$ for all $i, j = 1, \ldots n$ if such a π exists.

2.2 The Matching Algorithm

Algorithm 1 This Algorithm assumes the assumptions of Problem 2 and returns a labeling π , or returns null if no labeling exists.

Require: $X, Y \subset \mathbb{R}^D$ have distinct distances, $|X| = |Y|$, $dist(X) = dist(Y)$ 1: function DISTINCTDISTANCEMATCHING (X, Y) 2: $n \leftarrow |X| = |Y|$ 3: distmat $(X) \leftarrow$ DISTMAT (X) 4: distmat(Y) \leftarrow DISTMAT(Y) 5: $E(X) \leftarrow \{e_{x_1,x_2} \mid x_1 \neq x_2 \in X\}$ 6: $E(Y) \leftarrow \{e_{y_1,y_2} \mid y_1 \neq y_2 \in Y\}$ 7: $SORT(E(X), \prec), SORT(E(Y), \prec)$ \triangleright $(e_1 \prec e_2 \Leftrightarrow e_1[2] \prec e_2[2])$ 8: $\varphi: E(X) \to E(Y)$ such that $E(X)[i] \mapsto E(Y)[i], \forall i \in \{1, \ldots, {n \choose 2}\}$ $\binom{n}{2}$ 9: first_iteration $=$ true 10: for $x' \in X$ do 11: $E_{x'} \leftarrow \{e_{x,x'} \mid x \neq x' \in X\}$ $12:$ $\prime \leftarrow \cap$ $e'\epsilon\varphi(E_{x'})$ $e'[1]$ 13: if $y' = \emptyset$ then 14: **return** NULL 15: $\psi: X \to Y$ such that $x' \mapsto y'$ and $e[1] \setminus x' \mapsto \varphi(e)[1] \setminus y'$, $\forall e \in E_{x'}$ 16: $\psi^* \leftarrow \psi$ 17: if first iteration then 18: for $x \in X$ do 19: **if** $\psi^* \neq \psi$ then 20: **return** NULL 21: first iteration $=$ false 22: ψ naturally induces $a \pi \in \text{Sym}_n$ \triangleright (since ψ is bijective) 23: return π

3 Matching Two n-Point Configurations with almost small multiplicities of Recurring Distances

In this section, we still assume that X and Y are still n-point configurations with the property $dist(X) = dist(Y)$. However, we will slightly relax the constraint from the previous section that X and Y have distinct distances.

Definition 3.1. Let $A \in \mathbb{R}^D$ be an n-point configuration. We say that A has **recurring distance** $d \in \text{dist}(A)$ if there exists $m \in \mathbb{N}$ such that $m > 1$ and $\{d, \ldots, d\}$ \overline{m} $\{\}\subseteq \text{dist}(A)$. The maximal possible m is the **multiplicity** of d.

Informally, a recurring distance, d , is a value that appears more than once in dist(A) and its multiplicity is exactly how many d occur in dist(A).

Because dist(X) = dist(Y), X and Y share the same number of recurring distances as well as the same multiplicities for every recurring distance. From now on, we will let $r \in \mathbb{N}$ denote how many recurring distances there are in X and Y .

We also give the following order on the recurring distances:

$$
d_k
$$
 denotes the k^{th} smallest recurring distance. (\ddagger)

Notice that ([‡](#page-4-0)) gives the following ordering:

$$
d_1 < d_2 < \cdots < d_{r-1} < d_r.
$$

Likewise, we let m_k denote the multiplicity of d_k for each $k \in \{1, \ldots, r\}$. For this section, we assume that each multiplicity is small, i.e. $m_k \ll n$ for all $k \in \{1, ..., r\}.$

Example 3.1. Let's take $A \subset \mathbb{R}^D$ with the following with the following hypothetical distance distribution:

$$
dist(A) = \{1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 6\}.
$$

Notice the numbers 2,4, and 5 are recurring. So the number of recurring distance in A is 3. We also see $d_1 = 2, d_2 = 4,$ and $d_2 = 5$. Finally, $m_1 = 4$, $m_2 = 3$, $m_3 = 2$.

Next, we consider the edges with these recurring distances.

Definition 3.2. Let $A \in \mathbb{R}^D$ be an n-point configuration with r_A recurring distances. For each $k \in \{1, ..., r_A\}$, we define the set $E_{d_k}(A) \subseteq E(A)$ such that

$$
E_{d_k}(A) = \{ e \in E(A) \mid e[2] = d_k \}.
$$

We also define the ordered set $R(A)$ such that

$$
R(A)[k] = E_{d_k}(A), \ \forall k \in \{1, \ldots, r_A\}.
$$

In our two *n*-point configuration case concerning X and Y , it follows from definition that:

- $|R(X)| = |R(Y)| = r;$
- $|E_{d_x}(X)| = |E_{d_k}(Y)| = m_k$ for each $k \in \{1, ..., r\}.$

Notice that for each $k \in \{1, \ldots, r\}$, $E_{d_x}(X)$ is bijective to $E_{d_k}(Y)$ under a total of $m_k!$ labelings. In other words, any $\sigma_k \in \text{Sym}_{m_k}$ induces a bijection, $\varphi_k : E_{d_x}(X) \to E_{d_k}(Y)$. Given $R(X)$ and $R(Y)$, we can define a bijection $\varphi: E(X) \to E(Y)$ such that

$$
\varphi(e_x) = \begin{cases} e_y \text{ where } e_x[2] = e_y[2] & \text{if } e[2] \text{ is a nonrecuring distance} \\ \varphi_k(e_x), \text{ for } k \text{ where } e_x \in E_{d_x}(X) & \text{if } e[2] \text{ is a recurring distance} \end{cases}.
$$

Notice that there are total of $\prod_{r=1}^{r}$ $k=1$ $(m_k!)$ different φ . **Algorithm 2** This Algorithm assumes X and Y are *n*-point configurations such that X and Y possess small recurring distance multiplicities and $dist(X) = dist(Y)$. It returns a labeling π , or returns NULL if no such labeling exists.

Require: $X, Y \subset \mathbb{R}^D$ with small multiplicities of recurring distances, $|X| = |Y|$, dist $(X) = \text{dist}(Y)$

1: function DISTINCTDISTANCEMATCHING2 (X, Y) 2: $n \leftarrow |X| = |Y|$ 3: distmat(X) ← DISTMAT(X) 4: distmat(Y) \leftarrow DISTMAT(Y) 5: $E(X) \leftarrow \{e_{x_1,x_2} \mid x_1 \neq x_2 \in X\}$ 6: $E(Y) \leftarrow \{e_{y_1, y_2} \mid y_1 \neq y_2 \in Y\}$ 7: $SORT(E(X), \prec), SORT(E(Y), \prec)$ \triangleright $(e_1 \prec e_2 \Leftrightarrow e_1[2] \prec e_2[2])$ 8: **for** each $\prod_{k=1}^{r} (m_k!)$ permutations of the recurring distances **do** 9: Take the corresponding bijection $\varphi : E(X) \to E(Y)$ where $E(X)[i] \mapsto$ $\int E(Y)[i]$ for nonrecurring distances $\varphi_k(E(X)[i]),$ for k where $e_x \in E_{d_x}(X)$ for recurring distances 10: first iteration $=$ true 11: for $x' \in X$ do 12: $E_{x'} \leftarrow \{e_{x,x'} \mid x \neq x' \in X\}$ $13:$ $\prime \leftarrow \cap$ $e' \in \varphi(E_{x'})$ $e'[1]$ 14: **if** $y' = \emptyset$ then 15: break to next iteration of outer loop 16: $\psi: X \to Y$ such that $\begin{cases} x' \mapsto y' \end{cases}$ $e[1] \setminus x' \mapsto \varphi(e)[1] \setminus y', \quad \forall e \in E_{x'}$ 17: ψ $\psi^* \leftarrow \psi$ 18: **if** first iteration **then** 19: for $x \in X$ do 20: if $\psi^* \neq \psi$ then 21: break to next iteration of outer loop 22: first_iteration $=$ false 23: ψ naturally induces $a \pi \in \text{Sym}_n$ \triangleright (since ψ is bijective) 24: return π 25: return NULL

4 Matching Two n-Point Configurations with "Almost-Same Distance Distribution"

From [\[3\]](#page-9-4) we have the following definition for "Almost-Same Distance Distribution":

Definition 4.1. We say that X and Y have **almost-same distance distribution**, denoted dist(X) \approx dist(Y), if for each $dx_{i,j} \in$ dist(X), there exists exactly one $dy_{i',j'} \in \text{dist}(Y)$ such that $(1 - \epsilon) < \frac{dx_{i,j}}{du_{i,j}}$ $\frac{ax_{i,j}}{dy_{i',j'}} < (1+\epsilon)$ for some ϵ .

This condition, if met, would induce a very natural edge bijection. Then we can apply Algorithm 1. The following is an algorithm that checks this condition:

Algorithm 3 This Algorithm checks the condition of Definition 9.

Require: $X, Y \subset \mathbb{R}^D$ 1: function $\text{ALMOSTSAMEDISTANCE}(X, Y)$ 2: $E(X) \leftarrow \{e_{x_1,x_2} \mid x_1 \neq x_2 \in X\}$ 3: $E(Y) \leftarrow \{e_{y_1, y_2} \mid y_1 \neq y_2 \in Y\}$ 4: for $e_X \in E(X)$ do 5: $\Phi_X(e_X) := \text{argmin} |e_X[2] - e_Y[2]|$ $e_Y \in Y$ 6: for $e_Y \in E(Y)$ do 7: $\Phi_Y(e_Y) := \text{argmin} |e_Y[2] - e_X[2]|$ $e_X \in X$ 8: for $e_X \in E(X)$ do 9: if $e_X \neq \Phi_Y(\Phi_X(e_X))$ then 10: **return** FALSE 11: for $e_Y \in E(Y)$ do 12: if $e_Y \neq \Phi_X(\Phi_Y(e_Y))$ then 13: **return** FALSE 14: return Φ_X

5 Performance

We assume D is fixed and constant. We also assume that the sorting algorithm used sorts k items in $\mathcal{O}(k \log k)$ time.

5.1 Algorithm 1

LINE 2 through LINE 6 each take $\mathcal{O}n^2$ time. The sorting on LINE 7 takes $\mathcal{O}(n^2 \log n^2) = \mathcal{O}(n^2 \log n)$ time. The loop on LINE 10 takes $\mathcal{O}(n^2)$ time.

Algorithm 1 takes $\mathcal{O}(n^2 \log n)$ time.

5.2 Algorithm 2

 $k=1$

Algorithm 2 is similar to Algorithm 1 but iterates the loop on line 10 to a maximum of \prod $(m_k!)$ iterations.

Algorithm 2 takes
$$
\mathcal{O}\left(n^2 \log n + n^2 \prod_{k=1}^r (m_k!) \right)
$$
 time.

5.3 Algorithm 3

We know that $|E(X)| = |E(Y)| = \binom{n}{2}$ $\binom{n}{2} = \mathcal{O}(n^2)$. So the bulk of the work of this algorithm is done in the loops on line 6 and line 8. They both take $\mathcal{O}(n^2)$ edges and compares each edge with the other $\mathcal{O}(n^2)$ edges, both of which take $\mathcal{O}(n^4)$ time.

Algorithm 3 takes $\mathcal{O}(n^4)$ time.

Acknowledgements

I would like to thank Professor David Speyer for his crucial help and guiding remarks. I would like to thank Dr. Steven Damelin for catalyzing this REU project. I would like to thank Neophytos Charalambides and Cyrus Anderson for various insightful discussions, as well as for several poignant and cherished conversations. I would like to extend my thanks Sean Kelly for his help and invaluable efforts. Lastly, I would also like to thank the University of Michigan Math Department and the NSF for making this REU possible.

References

- [1] M. Boutin and G. Kemper. On reconstructing n-point configurations from the distribution of distances or areas. Adv. Appl. Math, 32:709– 735, 2004.
- [2] N. Charalambides. Isometries and Equivalences Between Point Configurations, Extended to ε -diffeomorphism. 2016.
- [3] S. B. Damelin and C. Fefferman. Extensions, interpolation and matching in R^D . November 2014.
- [4] D. Jimenez and Petrova G. On matching point configurations. Constructive Theory of Functions, pages 141–154, 2014.
- [5] Peter H. Schönemann. A generalized solution of the orthogonal procrustes problem. Psychometrika, 31(1):1–10, 1966.