
Labeling Isometric and Almost Isometric

n-Point Configurations in RD

Michael Lu

July 2016

Abstract

Consider two n-point configurations X and Y in RD with the same
distance distribution and distinct distances. We begin with proposing
an algorithm that tries to find a bijection ψ : X → Y such that X and
Y are congruent under ψ, or determines that no such bijection exists.
Next, we discuss extending this algorithm to the case where X and Y
have small multiplicities of recurring distances, then to the case where
X and Y have “almost the same” distance distribution.

1 Introduction

1.1 Background

We are working towards the extension of the Procrustes Problem, which was
solved by Peter Schönemann [5].

Theorem 1.1 (Procrustes Problem). If we have

X = {x1, . . . , xn}, Y = {y1, . . . , yn} ⊂ RD

such that
|xi − xj | = |yi − yj | for i, j = 1, . . . , n. (†)

Then there exists T ∈ O(D) and ȳ ∈ RD such that yi = T (xi) + ȳ for
i = 1, . . . , n. O(D) refers to the orthogonal group in dimension D.

1

1.2 Previous Results

Particularly, we’re interested in extending the Procrustes by relaxing the (†)
condition. There are two ways of approaching this relaxation:

1. {|xi − xj | : i 6= j} = {|yi − yj | : i 6= j};

2. |xi − xj | ≈ |yi − yj | for i, j = 1, . . . , n.

[1] and [4] studied the former relaxation with some constraints. In both of
their approaches, the first step is to find a suitable labeling of the points such
that the conditions of the Procrustes Problem are held under the labeling.
In other words, their goal is first to find a labeling, then find the T ∈ O(D).
Overall, this relaxation transforms the Procrustes Problem into:

Problem 1.1 (Unlabeled Procrustes Problem). If we have

X = {x1, . . . , xn}, Y = {y1, . . . , yn} ⊂ RD

such that |xi − xj | = |yπ(i) = yπ(j)| for i, j = 1, . . . , n and π ∈ Symn, then

does there exist π and T ∈ O(D) and ȳ ∈ RD such that

yπ(i) = T (xi) + ȳ

for i = 1, . . . , n?

[1] noticed that it is possible that no such π or T exists. [2] explores that
exact case.

The latter relaxation was studied in [3] and yielded the following result:

Theorem 1.2. Let {x1, . . . , xn} and {y1, . . . , yn} be two n-point configura-
tions in RD with distinct xi, yi respectively. Suppose

(1 + δ)−1 ≤ |yi − yj |
|xi − xj |

≤ 1 + δ, ∀i 6= j.

For any ε > 0, there exists δ > 0 and a Euclidean motion Φ0 : x→ Tx+ x0
such that

|yi − Φ0(xi)| ≤ εdiam {x1, ..., xn}

for i = 1, . . . , n.

We explore an alternative way of matching the points with the constraint
that the pairwise distances are distinct.

2

2 Matching Two n-Point Configurations with same
Distance Distribution

2.1 Preliminaries

Definition 2.1. If we have an n-point configuration A in a metric space
(M,d), we define

dist(A) := {d(p, q) | p 6= q ∈ A}.

Definition 2.2. Let A be an n-point configuration in a metric space (M,d)
and p, q be points in A. The edge between p and q is the tuple

ep,q :=
(
{p, q}, d(p, q)

)
.

We denote ep,q[1] = {p, q} and ep,q[2] = d(p, q).

Note ep,q = eq,p.

Definition 2.3. Let A be an n-point configuration in a metric space (M,d),
the edge set of A is defined as

E(A) := {ep,q | p 6= q ∈ A}.

Note if |A| = n, then |E(A)| =
(
n
2

)
.

Definition 2.4. An n-point configuration, A ⊂ (M,d), has distinct dis-
tances if for every e, e′ ∈ E(A), e[1] = e′[1] if and only if e[2] = e′[2].

Definition 2.5. If A = {a1, . . . , an} ⊂ (M,d) is an n-point configuration,
the distance matrix of A, distmat(A), is the n× n matrix

(distmat(A))ij = d(ai, aj).

Note distmat(A) is an n × n symmetric matrix due to the definition of a
metric. Its diagonal entries are all zero.

Our labeling problem can be reformulated as:

Problem 2.1 (Reformulated Unlabeled Procrustes Problem). Let X and Y
n-point configurations such that they have distinct distances and dist(X) =
dist(Y). We want π ∈ Symn such that |xi − xj | = |yπ(i) − yπ(j)| for all
i, j = 1, . . . n if such a π exists.

3

2.2 The Matching Algorithm

Algorithm 1 This Algorithm assumes the assumptions of Problem 2 and
returns a labeling π, or returns null if no labeling exists.

Require: X,Y ⊂ RD have distinct distances, |X| = |Y |, dist(X) = dist(Y)
1: function DistinctDistanceMatching(X,Y)
2: n← |X| = |Y |
3: distmat(X)← distmat(X)
4: distmat(Y)← distmat(Y)
5: E(X)← {ex1,x2 | x1 6= x2 ∈ X}
6: E(Y)← {ey1,y2 | y1 6= y2 ∈ Y }
7: Sort(E(X),≺), Sort(E(Y),≺) . (e1 ≺ e2 ⇔ e1[2] < e2[2])
8: ϕ : E(X)→ E(Y) such that E(X)[i] 7→ E(Y)[i], ∀i ∈ {1, . . . ,

(
n
2

)
}

9: first iteration = true
10: for x′ ∈ X do
11: Ex′ ← {ex,x′ | x 6= x′ ∈ X}
12: y′ ←

⋂
e′∈ϕ(Ex′)

e′[1]

13: if y′ = ∅ then
14: return null
15: ψ : X → Y such that x′ 7→ y′ and e[1]\x′ 7→ ϕ(e)[1]\y′, ∀e ∈ Ex′
16: ψ∗ ← ψ
17: if first iteration then
18: for x ∈ X do
19: if ψ∗ 6= ψ then
20: return null
21: first iteration = false
22: ψ naturally induces a π ∈ Symn . (since ψ is bijective)
23: return π

4

3 Matching Two n-Point Configurations with al-
most small multiplicities of Recurring Distances

In this section, we still assume that X and Y are still n-point configurations
with the property dist(X) = dist(Y). However, we will slightly relax the
constraint from the previous section that X and Y have distinct distances.

Definition 3.1. Let A ∈ RD be an n-point configuration. We say that A
has recurring distance d ∈ dist(A) if there exists m ∈ N such that m > 1
and {d, . . . , d︸ ︷︷ ︸

m

} ⊆ dist(A). The maximal possible m is the multiplicity of d.

Informally, a recurring distance, d, is a value that appears more than once
in dist(A) and its multiplicity is exactly how many d occur in dist(A).

Because dist(X) = dist(Y), X and Y share the same number of recurring
distances as well as the same multiplicities for every recurring distance.
From now on, we will let r ∈ N denote how many recurring distances there
are in X and Y .

We also give the following order on the recurring distances:

dk denotes the kth smallest recurring distance. (‡)

Notice that (‡) gives the following ordering:

d1 < d2 < · · · < dr−1 < dr.

Likewise, we let mk denote the multiplicity of dk for each k ∈ {1, . . . , r}.
For this section, we assume that each multiplicity is small, i.e. mk � n for
all k ∈ {1, . . . , r}.

Example 3.1. Let’s take A ⊂ RD with the following with the following
hypothetical distance distribution:

dist(A) = {1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 6}.

Notice the numbers 2,4, and 5 are recurring.
So the number of recurring distance in A is 3.
We also see d1 = 2, d2 = 4, and d2 = 5.
Finally, m1 = 4, m2 = 3, m3 = 2.

Next, we consider the edges with these recurring distances.

5

Definition 3.2. Let A ∈ RD be an n-point configuration with rA recurring
distances. For each k ∈ {1, . . . , rA}, we define the set Edk(A) ⊆ E(A) such
that

Edk(A) = {e ∈ E(A) | e[2] = dk}.

We also define the ordered set R(A) such that

R(A)[k] = Edk(A), ∀k ∈ {1, . . . , rA}.

In our two n-point configuration case concerning X and Y , it follows from
definition that:

• |R(X)| = |R(Y)| = r;

• |Edx(X)| = |Edk(Y)| = mk for each k ∈ {1, . . . , r}.

Notice that for each k ∈ {1, . . . , r}, Edx(X) is bijective to Edk(Y) under a
total of mk! labelings. In other words, any σk ∈ Symmk

induces a bijection,
ϕk : Edx(X) → Edk(Y). Given R(X) and R(Y), we can define a bijection
ϕ : E(X)→ E(Y) such that

ϕ(ex) =

{
ey where ex[2] = ey[2] if e[2] is a nonrecurring distance

ϕk(ex), for k where ex ∈ Edx(X) if e[2] is a recurring distance
.

Notice that there are total of
r∏

k=1

(mk!) different ϕ.

6

Algorithm 2 This Algorithm assumes X and Y are n-point configura-
tions such that X and Y possess small recurring distance multiplicities and
dist(X) = dist(Y). It returns a labeling π, or returns null if no such
labeling exists.

Require: X,Y ⊂ RD with small multiplicities of recurring distances,
|X| = |Y |, dist(X) = dist(Y)

1: function DistinctDistanceMatching2(X,Y)
2: n← |X| = |Y |
3: distmat(X)← distmat(X)
4: distmat(Y)← distmat(Y)
5: E(X)← {ex1,x2 | x1 6= x2 ∈ X}
6: E(Y)← {ey1,y2 | y1 6= y2 ∈ Y }
7: Sort(E(X),≺), Sort(E(Y),≺) . (e1 ≺ e2 ⇔ e1[2] < e2[2])
8: for each

∏r
k=1(mk!) permutations of the recurring distances do

9: Take the corresponding bijection ϕ : E(X)→ E(Y) where

E(X)[i] 7→

{
E(Y)[i] for nonrecurring distances

ϕk(E(X)[i]), for k where ex ∈ Edx(X) for recurring distances

10: first iteration = true
11: for x′ ∈ X do
12: Ex′ ← {ex,x′ | x 6= x′ ∈ X}
13: y′ ←

⋂
e′∈ϕ(Ex′)

e′[1]

14: if y′ = ∅ then
15: break to next iteration of outer loop

16: ψ : X → Y such that

{
x′ 7→ y′

e[1] \ x′ 7→ ϕ(e)[1] \ y′, ∀e ∈ Ex′
17: ψ∗ ← ψ
18: if first iteration then
19: for x ∈ X do
20: if ψ∗ 6= ψ then
21: break to next iteration of outer loop

22: first iteration = false
23: ψ naturally induces a π ∈ Symn . (since ψ is bijective)
24: return π
25: return null

7

4 Matching Two n-Point Configurations with “Almost-
Same Distance Distribution”

From [3] we have the following definition for “Almost-Same Distance Distri-
bution”:
Definition 4.1. We say that X and Y have almost-same distance dis-
tribution, denoted dist(X) ≈ dist(Y), if for each dxi,j ∈ dist(X), there

exists exactly one dyi′,j′ ∈ dist(Y) such that (1 − ε) < dxi,j
dyi′,j′

< (1 + ε) for
some ε.

This condition, if met, would induce a very natural edge bijection. Then
we can apply Algorithm 1. The following is an algorithm that checks this
condition:

Algorithm 3 This Algorithm checks the condition of Definition 9.

Require: X,Y ⊂ RD
1: function AlmostSameDistance(X,Y)
2: E(X)← {ex1,x2 | x1 6= x2 ∈ X}
3: E(Y)← {ey1,y2 | y1 6= y2 ∈ Y }
4: for eX ∈ E(X) do
5: ΦX(eX) := argmin

eY ∈Y
|eX [2]− eY [2]|

6: for eY ∈ E(Y) do
7: ΦY (eY) := argmin

eX∈X
|eY [2]− eX [2]|

8: for eX ∈ E(X) do
9: if eX 6= ΦY (ΦX(eX)) then

10: return false
11: for eY ∈ E(Y) do
12: if eY 6= ΦX(ΦY (eY)) then
13: return false
14: return ΦX

8

5 Performance

We assume D is fixed and constant. We also assume that the sorting algo-
rithm used sorts k items in O(k log k) time.

5.1 Algorithm 1

line 2 through line 6 each take On2 time. The sorting on line 7 takes
O(n2 log n2) = O(n2 log n) time. The loop on line 10 takes O(n2) time.

Algorithm 1 takes O(n2 log n) time.

5.2 Algorithm 2

Algorithm 2 is similar to Algorithm 1 but iterates the loop on line 10

to a maximum of
r∏

k=1

(mk!) iterations.

Algorithm 2 takes O

(
n2 log n+ n2

r∏
k=1

(mk!)

)
time.

5.3 Algorithm 3

We know that |E(X)| = |E(Y)| =
(
n
2

)
= O(n2). So the bulk of the work of

this algorithm is done in the loops on line 6 and line 8. They both take
O(n2) edges and compares each edge with the other O(n2) edges, both of
which take O(n4) time.

Algorithm 3 takes O(n4) time.

9

Acknowledgements

I would like to thank Professor David Speyer for his crucial help and guiding
remarks. I would like to thank Dr. Steven Damelin for catalyzing this
REU project. I would like to thank Neophytos Charalambides and Cyrus
Anderson for various insightful discussions, as well as for several poignant
and cherished conversations. I would like to extend my thanks Sean Kelly
for his help and invaluable efforts. Lastly, I would also like to thank the
University of Michigan Math Department and the NSF for making this REU
possible.

References

[1] M. Boutin and G. Kemper. On reconstructing n-point configurations
from the distribution of distances or areas. Adv. Appl. Math, 32:709–
735, 2004.

[2] N. Charalambides. Isometries and Equivalences Between Point Config-
urations, Extended to ε-diffeomorphism. 2016.

[3] S. B. Damelin and C. Fefferman. Extensions, interpolation and matching
in RD. November 2014.

[4] D. Jimenez and Petrova G. On matching point configurations. Con-
structive Theory of Functions, pages 141–154, 2014.

[5] Peter H. Schönemann. A generalized solution of the orthogonal pro-
crustes problem. Psychometrika, 31(1):1–10, 1966.

10

	Introduction
	Background
	Previous Results

	Matching Two n-Point Configurations with same Distance Distribution
	Preliminaries
	The Matching Algorithm

	Matching Two n-Point Configurations with almost small multiplicities of Recurring Distances
	Matching Two n-Point Configurations with ``Almost-Same Distance Distribution"
	Performance
	Algorithm 1
	Algorithm 2
	Algorithm 3

