Labeling Isometric and Almost Isometric
n-Point Configurations in R”

Michael Lu

July 2016

Abstract

Consider two n-point configurations X and Y in R” with the same
distance distribution and distinct distances. We begin with proposing
an algorithm that tries to find a bijection ¢ : X — Y such that X and
Y are congruent under 1, or determines that no such bijection exists.
Next, we discuss extending this algorithm to the case where X and Y
have small multiplicities of recurring distances, then to the case where
X and Y have “almost the same” distance distribution.

1 Introduction

1.1 Background

We are working towards the extension of the Procrustes Problem, which was
solved by Peter Schénemann [5].

Theorem 1.1 (Procrustes Problem). If we have

X=Az1,...,zn},Y ={y1,-- -, yn} Cc RP

such that

|y — x| = |ys —y4| fori,j=1,...,n. (1)
Then there exists T € O(D) and §j € RP such that y; = T(x;) + § for
i=1,...,n. O(D) refers to the orthogonal group in dimension D.

1.2 Previous Results

Particularly, we’re interested in extending the Procrustes by relaxing the
condition. There are two ways of approaching this relaxation:

LAz —ajl 2 i # 5y ={lyi —yil 1 i # 5}
2. |z —xj| = |y —y4| fori,j =1,...,n.

[1] and [4] studied the former relaxation with some constraints. In both of
their approaches, the first step is to find a suitable labeling of the points such
that the conditions of the Procrustes Problem are held under the labeling.
In other words, their goal is first to find a labeling, then find the 7' € O(D).
Overall, this relaxation transforms the Procrustes Problem into:

Problem 1.1 (Unlabeled Procrustes Problem). If we have
X={z1,.., 2.}, Y ={y1,...,yn} CRP
such that |v; — xj| = |Yz@s) = Yn(y| fori,j =1,...,n and © € Sym,,, then
does there exist m and T € O(D) and § € RP such that
Yr() = T(wi) + 9
fori=1,...,n?

[1] noticed that it is possible that no such 7 or T exists. [2] explores that
exact case.

The latter relaxation was studied in [3] and yielded the following result:

Theorem 1.2. Let {x1,...,z,} and {y1,...,yn} be two n-point configura-
tions in RP with distinct x;,1; respectively. Suppose

’yi —yj’

<1496, Vi#j.
|z — 2]

(1+6)7t <

For any € > 0, there exists § > 0 and a Euclidean motion ®y: x — Tx + xg
such that

\yi — (I)o(iL'Z')| < ediam {:L'l, ,:L'n}
fori=1,...,n.
We explore an alternative way of matching the points with the constraint
that the pairwise distances are distinct.

2 Matching Two n-Point Configurations with same
Distance Distribution

2.1 Preliminaries

Definition 2.1. If we have an n-point configuration A in a metric space
(M,d), we define

dist(A) := {d(p,q) | p # q € A}.

Definition 2.2. Let A be an n-point configuration in a metric space (M, d)
and p,q be points in A. The edge between p and q is the tuple

€pq = <{p, g}, d(p, Q))-

We denote ey 4[1] = {p, q} and e, 4[2] = d(p, q).

Note e, 4 = €gp-

Definition 2.3. Let A be an n-point configuration in a metric space (M, d),
the edge set of A is defined as

E(A) = {epq | p#q€ A}

Note if [A| = n, then |E(A)| = <g>
Definition 2.4. An n-point configuration, A C (M,d), has distinct dis-
tances if for every e, e’ € E(A), e[l] = €'[1] if and only if e[2] = €'[2].

Definition 2.5. If A = {a1,...,a,} C (M,d) is an n-point configuration,
the distance matrix of A, distmat(A), is the n X n matriz

(distmat(A));; = d(as, a;).

Note distmat(A) is an n X n symmetric matrix due to the definition of a
metric. Its diagonal entries are all zero.

Our labeling problem can be reformulated as:

Problem 2.1 (Reformulated Unlabeled Procrustes Problem). Let X and Y
n-point configurations such that they have distinct distances and dist(X) =
dist(Y). We want m € Sym,, such that |v; — xj| = [yx(i) — Yr(j)| for all
1,7 =1,...n if such a ® exists.

2.2 The Matching Algorithm

Algorithm 1 This Algorithm assumes the assumptions of Problem 2 and
returns a labeling 7, or returns NULL if no labeling exists.

Require: X,Y C R have distinct distances, | X| = |Y|, dist(X) = dist(Y")
1: function DISTINCTDISTANCEMATCHING(X,Y)

—_ = =
M 22

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

n <« | X|=|Y|
distmat(X) < DISTMAT(X)
distmat(Y’) <— DISTMAT(Y")
E(X) — {633175172 | T 7& T2 € X}
EY) «{eyp lyn #y2 €Y}
SORT(E(X), <), SORT(E(Y), <) > (e1 < e2 < e1[2] < e2]2])
¢ E(X) = E(Y) such that E(X)[i] = E(Y)[i], Vi€ {1,...,(3)}
first_iteration = true
for 2/ € X do
E + {exjx/ ’ x 75 ' € X}
y <+ N A
e'ep(E,r)
if ¥/ = @ then
return NULL
¥ : X — Y such that 2’ — ¢ and e[1]\ 2’ — @(e)[1]\V/, Ve € E,
(MR
if first_iteration then
for x € X do
if ¥* # 1 then
return NULL
first_iteration = false
¥ naturally induces a 7 € Sym,, > (since v is bijective)
return 7

3 Matching Two n-Point Configurations with al-
most small multiplicities of Recurring Distances

In this section, we still assume that X and Y are still n-point configurations
with the property dist(X) = dist(Y). However, we will slightly relax the
constraint from the previous section that X and Y have distinct distances.

Definition 3.1. Let A € RP be an n-point configuration. We say that A

has recurring distance d € dist(A) if there exists m € N such that m > 1

and {d,...,d} C dist(A). The mazimal possible m is the multiplicity of d.
——

m

Informally, a recurring distance, d, is a value that appears more than once
in dist(A) and its multiplicity is exactly how many d occur in dist(A).

Because dist(X) = dist(Y), X and Y share the same number of recurring
distances as well as the same multiplicities for every recurring distance.
From now on, we will let 7 € N denote how many recurring distances there
are in X and Y.

We also give the following order on the recurring distances:
dy, denotes the k'™ smallest recurring distance. (1)
Notice that gives the following ordering;:
dy <dy <---<dpr_1 <d,.

Likewise, we let my denote the multiplicity of dj for each k € {1,...,r}.
For this section, we assume that each multiplicity is small, i.e. m; < n for
all ke {1,...,r}.

Example 3.1. Let’s take A C R” with the following with the following
hypothetical distance distribution:

dist(A4) = {1,2,2,2,2,3,4,4,4,5,5,6}.

Notice the numbers 2,4, and 5 are recurring.
So the number of recurring distance in A is 3.
We also see di = 2, do = 4, and dy = 5.
Finally, m; = 4, mg = 3, mz = 2.

Next, we consider the edges with these recurring distances.

Definition 3.2. Let A € RP be an n-point configuration with v recurring
distances. For each k € {1,...,ra}, we define the set Eq, (A) C E(A) such
that

Eq (A) = {e € E(A) | e[2] = di}.

We also define the ordered set R(A) such that

R(A)[K] = By (A), Yk € {1,...,ra}.

In our two n-point configuration case concerning X and Y, it follows from
definition that:

o |[R(X)| =[R(Y)| = 7;
o |Ey (X)|=|Eq,(Y)| =my for each k € {1,...,7}.

Notice that for each k € {1,...,7}, Eq, (X) is bijective to Eg, (Y) under a
total of my! labelings. In other words, any o}, € Sym,,, induces a bijection,
o+ B, (X) = Eq,(Y). Given R(X) and R(Y'), we can define a bijection
¢: E(X)— E(Y) such that

ey where e;[2] = e,[2] if e[2] is a nonrecurring distance
plez) = :

vk (ez), for k where e, € Eg,(X) if e[2] is a recurring distance

T
Notice that there are total of [] (mg!) different ¢.
k=1

Algorithm 2 This Algorithm assumes X and Y are n-point configura-
tions such that X and Y possess small recurring distance multiplicities and
dist(X) = dist(Y). It returns a labeling m, or returns NULL if no such
labeling exists.

Require: X,Y C RP with small multiplicities of recurring distances,
| X| = Y], dist(X) = dist(Y)

1: function DISTINCTDISTANCEMATCHING2(X,Y)

2 n+ | X|=1Y]

3 distmat(X) < DISTMAT(X)

4: distmat(Y") < DISTMAT(Y)

5: E(X)H{exl,xg |5L‘1 7é$2 EX}

6 E(Y) ey g lyn #y2 €Y}

7 SORT(E(X), <), SORT(E(Y), <) > (e1 < e2 & e1[2] < e2[2])

8 for each []},_,(mg!) permutations of the recurring distances do

9 Take the corresponding bijection ¢ : E(X) — E(Y) where

B(X)[i] = {E(Y) [i] | for nonrec.urrin.g distances
or(E(X)[i]), for k where e, € E4,(X) for recurring distances
10: first_iteration = true
11: for 2/ € X do
12: Ep <« {epw |z #2 € X}
13: v+ N €1
e'€p(E,)
14: if y/ = @ then
15: break to next iteration of outer loop
/ /
16: 1 : X — Y such that {x —Y
ell]\ 2’ = p(e)[1] \ ¢/, Vee€ E.
17: P*
18: if first_iteration then
19: for z € X do
20: if ¥* # 1 then
21: break to next iteration of outer loop
22: first_iteration = false
23: ¥ naturally induces a 7 € Sym,, > (since © is bijective)
24: return 7
25: return NULL

4 Matching Two n-Point Configurations with “Almost-
Same Distance Distribution”

From [3] we have the following definition for “Almost-Same Distance Distri-
bution”:

Definition 4.1. We say that X and Y have almost-same distance dis-
tribution, denoted dist(X) ~ dist(Y'), if for each dx;; € dist(X), there

exists exactly one dyy ; € dist(Y) such that (1 —€) < dff’i < (I+¢€) for
V)

some e.

This condition, if met, would induce a very natural edge bijection. Then
we can apply Algorithm 1. The following is an algorithm that checks this
condition:

Algorithm 3 This Algorithm checks the condition of Definition 9.
Require: X,Y c RP
1: function ALMOSTSAMEDISTANCE(X,Y)

2: E(X) %{eth |x1 #LUQ EX}
3: E(Y) ey |1 #y2 €Y}
4: for ex € E(X) do
5: dx(ex) := argminlex[2] — ey [2]|
ey €Y
for ey € E(Y) do
Oy (ey) := argmin|ey [2] — ex[2]]
ex€eX
8: for ex € E(X) do
9: if ex 7é q)y(q)x(ex)) then
10: return FALSE
11: for ey € E(Y) do
12: if ey 75 (I)X(q)y(ey)) then
13: return FALSE
14: return Oy

5 Performance

We assume D is fixed and constant. We also assume that the sorting algo-
rithm used sorts k items in O(klogk) time.

5.1 Algorithm 1

LINE 2 through LINE 6 each take On? time. The sorting on LINE 7 takes
O(n?logn?) = O(n?logn) time. The loop on LINE 10 takes O(n?) time.

Algorithm 1 takes O(n?logn) time.

5.2 Algorithm 2

Algorithm 2 is similar to Algorithm 1 but iterates the loop on LINE 10
T

to a maximum of [] (my!) iterations.
k=1

.
Algorithm 2 takes O <n2 logn + n? H(mk‘)> time.
k=1

5.3 Algorithm 3

We know that |[E(X)| = |[E(Y)| = (3) = O(n?). So the bulk of the work of
this algorithm is done in the loops on LINE 6 and LINE 8. They both take
O(n?) edges and compares each edge with the other O(n?) edges, both of
which take O(n?) time.

Algorithm 3 takes O(n?) time.

Acknowledgements

I would like to thank Professor David Speyer for his crucial help and guiding
remarks. I would like to thank Dr. Steven Damelin for catalyzing this
REU project. I would like to thank Neophytos Charalambides and Cyrus
Anderson for various insightful discussions, as well as for several poignant
and cherished conversations. I would like to extend my thanks Sean Kelly
for his help and invaluable efforts. Lastly, I would also like to thank the
University of Michigan Math Department and the NSF for making this REU
possible.

References

[1] M. Boutin and G. Kemper. On reconstructing n-point configurations
from the distribution of distances or areas. Adv. Appl. Math, 32:709—
735, 2004.

[2] N. Charalambides. Isometries and Equivalences Between Point Config-
urations, Extended to e-diffeomorphism. 2016.

[3] S. B. Damelin and C. Fefferman. Extensions, interpolation and matching
in RP. November 2014.

[4] D. Jimenez and Petrova G. On matching point configurations. Con-
structive Theory of Functions, pages 141-154, 2014.

[5] Peter H. Schonemann. A generalized solution of the orthogonal pro-
crustes problem. Psychometrika, 31(1):1-10, 1966.

10

	Introduction
	Background
	Previous Results

	Matching Two n-Point Configurations with same Distance Distribution
	Preliminaries
	The Matching Algorithm

	Matching Two n-Point Configurations with almost small multiplicities of Recurring Distances
	Matching Two n-Point Configurations with ``Almost-Same Distance Distribution"
	Performance
	Algorithm 1
	Algorithm 2
	Algorithm 3

