Labeling Isometric and Almost Isometric n-Point Configurations in \mathbb{R}^D

Michael Lu

July 2016

Abstract

Consider two *n*-point configurations X and Y in \mathbb{R}^D with the same distance distribution and distinct distances. We begin with proposing an algorithm that tries to find a bijection $\psi : X \to Y$ such that X and Y are congruent under ψ , or determines that no such bijection exists. Next, we discuss extending this algorithm to the case where X and Y have small multiplicities of recurring distances, then to the case where X and Y have "almost the same" distance distribution.

1 Introduction

1.1 Background

We are working towards the extension of the Procrustes Problem, which was solved by Peter Schönemann [5].

Theorem 1.1 (Procrustes Problem). If we have

$$X = \{x_1, \dots, x_n\}, Y = \{y_1, \dots, y_n\} \subset \mathbb{R}^D$$

such that

$$|x_i - x_j| = |y_i - y_j| \text{ for } i, j = 1, \dots, n.$$
(†)

Then there exists $T \in O(D)$ and $\bar{y} \in \mathbb{R}^D$ such that $y_i = T(x_i) + \bar{y}$ for i = 1, ..., n. O(D) refers to the orthogonal group in dimension D.

1.2 Previous Results

Particularly, we're interested in extending the Procrustes by relaxing the (†) condition. There are two ways of approaching this relaxation:

- 1. $\{|x_i x_j| : i \neq j\} = \{|y_i y_j| : i \neq j\};$
- 2. $|x_i x_j| \approx |y_i y_j|$ for i, j = 1, ..., n.

[1] and [4] studied the former relaxation with some constraints. In both of their approaches, the first step is to find a suitable labeling of the points such that the conditions of the Procrustes Problem are held under the labeling. In other words, their goal is first to find a labeling, then find the $T \in O(D)$. Overall, this relaxation transforms the Procrustes Problem into:

Problem 1.1 (Unlabeled Procrustes Problem). If we have

$$X = \{x_1, \dots, x_n\}, Y = \{y_1, \dots, y_n\} \subset \mathbb{R}^D$$

such that $|x_i - x_j| = |y_{\pi(i)} = y_{\pi(j)}|$ for i, j = 1, ..., n and $\pi \in \text{Sym}_n$, then does there exist π and $T \in O(D)$ and $\bar{y} \in \mathbb{R}^D$ such that

$$y_{\pi(i)} = T(x_i) + \bar{y}$$

for i = 1, ..., n?

[1] noticed that it is possible that no such π or T exists. [2] explores that exact case.

The latter relaxation was studied in [3] and yielded the following result:

Theorem 1.2. Let $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_n\}$ be two *n*-point configurations in \mathbb{R}^D with distinct x_i, y_i respectively. Suppose

$$(1+\delta)^{-1} \le \frac{|y_i - y_j|}{|x_i - x_j|} \le 1 + \delta, \, \forall i \ne j.$$

For any $\varepsilon > 0$, there exists $\delta > 0$ and a Euclidean motion $\Phi_0 : x \to Tx + x_0$ such that

$$|y_i - \Phi_0(x_i)| \le \varepsilon \operatorname{diam} \{x_1, \dots, x_n\}$$

for i = 1, ..., n.

We explore an alternative way of matching the points with the constraint that the pairwise distances are distinct.

2 Matching Two *n*-Point Configurations with same Distance Distribution

2.1 Preliminaries

Definition 2.1. If we have an n-point configuration A in a metric space (M, d), we define

$$\operatorname{dist}(A) := \{ d(p,q) \mid p \neq q \in A \}.$$

Definition 2.2. Let A be an n-point configuration in a metric space (M,d)and p, q be points in A. The edge between p and q is the tuple

$$e_{p,q} := \Big(\{p,q\}, d(p,q)\Big).$$

We denote $e_{p,q}[1] = \{p,q\}$ and $e_{p,q}[2] = d(p,q)$.

Note $e_{p,q} = e_{q,p}$.

Definition 2.3. Let A be an n-point configuration in a metric space (M, d), the edge set of A is defined as

$$E(A) := \{ e_{p,q} \mid p \neq q \in A \}.$$

Note if |A| = n, then $|E(A)| = \binom{n}{2}$.

Definition 2.4. An *n*-point configuration, $A \subset (M, d)$, has distinct distances if for every $e, e' \in E(A)$, e[1] = e'[1] if and only if e[2] = e'[2].

Definition 2.5. If $A = \{a_1, \ldots, a_n\} \subset (M, d)$ is an n-point configuration, the distance matrix of A, distmat(A), is the $n \times n$ matrix

$$(\operatorname{distmat}(A))_{ij} = d(a_i, a_j).$$

Note distmat(A) is an $n \times n$ symmetric matrix due to the definition of a metric. Its diagonal entries are all zero.

Our labeling problem can be reformulated as:

Problem 2.1 (Reformulated Unlabeled Procrustes Problem). Let X and Y n-point configurations such that they have distinct distances and dist(X) =dist(Y). We want $\pi \in$ Sym_n such that $|x_i - x_j| = |y_{\pi(i)} - y_{\pi(j)}|$ for all i, j = 1, ... n if such a π exists.

2.2 The Matching Algorithm

Algorithm 1 This Algorithm assumes the assumptions of **Problem 2** and returns a labeling π , or returns NULL if no labeling exists.

Require: $X, Y \subset \mathbb{R}^D$ have distinct distances, |X| = |Y|, dist(X) = dist(Y)1: function DISTINCT DISTANCE MATCHING (X, Y) $n \leftarrow |X| = |Y|$ 2: $\operatorname{distmat}(X) \leftarrow \operatorname{DISTMAT}(X)$ 3: $\operatorname{distmat}(Y) \leftarrow \operatorname{DISTMAT}(Y)$ 4: $E(X) \leftarrow \{e_{x_1, x_2} \mid x_1 \neq x_2 \in X\}$ 5: $E(Y) \leftarrow \{e_{y_1, y_2} \mid y_1 \neq y_2 \in Y\}$ 6: $\operatorname{SORT}(E(X),\prec), \operatorname{SORT}(E(Y),\prec)$ $\triangleright (e_1 \prec e_2 \Leftrightarrow e_1[2] < e_2[2])$ 7: $\varphi: E(X) \to E(Y)$ such that $E(X)[i] \mapsto E(Y)[i], \forall i \in \{1, \dots, \binom{n}{2}\}$ 8: $first_iteration = true$ 9: for $x' \in X$ do 10: $E_{x'} \leftarrow \{e_{x,x'} \mid x \neq x' \in X\}$ 11: $y' \leftarrow \bigcap_{e' \in \varphi(E_{x'})} e'[1]$ 12:if $y' = \emptyset$ then 13:return NULL 14: $\psi: X \to Y$ such that $x' \mapsto y'$ and $e[1] \setminus x' \mapsto \varphi(e)[1] \setminus y', \forall e \in E_{x'}$ 15: $\psi^* \leftarrow \psi$ 16: $if \ {\rm first_iteration} \ then$ 17:for $x \in X$ do 18:if $\psi^* \neq \psi$ then 19:return NULL 20: 21: $first_iteration = false$ ψ naturally induces a $\pi \in \operatorname{Sym}_n$ \triangleright (since ψ is bijective) 22:return π 23:

3 Matching Two *n*-Point Configurations with almost small multiplicities of Recurring Distances

In this section, we still assume that X and Y are still *n*-point configurations with the property dist(X) = dist(Y). However, we will slightly relax the constraint from the previous section that X and Y have distinct distances.

Definition 3.1. Let $A \in \mathbb{R}^D$ be an n-point configuration. We say that A has recurring distance $d \in \operatorname{dist}(A)$ if there exists $m \in \mathbb{N}$ such that m > 1 and $\{\underbrace{d, \ldots, d}_{m}\} \subseteq \operatorname{dist}(A)$. The maximal possible m is the multiplicity of d.

Informally, a recurring distance, d, is a value that appears more than once in dist(A) and its multiplicity is exactly how many d occur in dist(A).

Because $\operatorname{dist}(X) = \operatorname{dist}(Y)$, X and Y share the same number of recurring distances as well as the same multiplicities for every recurring distance. From now on, we will let $r \in \mathbb{N}$ denote how many recurring distances there are in X and Y.

We also give the following order on the recurring distances:

$$d_k$$
 denotes the k^{th} smallest recurring distance. (‡)

Notice that (‡) gives the following ordering:

$$d_1 < d_2 < \dots < d_{r-1} < d_r$$

Likewise, we let m_k denote the multiplicity of d_k for each $k \in \{1, \ldots, r\}$. For this section, we assume that each multiplicity is *small*, i.e. $m_k \ll n$ for all $k \in \{1, \ldots, r\}$.

Example 3.1. Let's take $A \subset \mathbb{R}^D$ with the following with the following hypothetical distance distribution:

$$dist(A) = \{1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 6\}.$$

Notice the numbers 2,4, and 5 are recurring. So the number of recurring distance in A is 3. We also see $d_1 = 2$, $d_2 = 4$, and $d_2 = 5$. Finally, $m_1 = 4$, $m_2 = 3$, $m_3 = 2$.

Next, we consider the edges with these recurring distances.

Definition 3.2. Let $A \in \mathbb{R}^D$ be an n-point configuration with r_A recurring distances. For each $k \in \{1, \ldots, r_A\}$, we define the set $E_{d_k}(A) \subseteq E(A)$ such that

$$E_{d_k}(A) = \{ e \in E(A) \mid e[2] = d_k \}.$$

We also define the ordered set R(A) such that

$$R(A)[k] = E_{d_k}(A), \ \forall k \in \{1, \dots, r_A\}.$$

In our two *n*-point configuration case concerning X and Y, it follows from definition that:

- |R(X)| = |R(Y)| = r;
- $|E_{d_x}(X)| = |E_{d_k}(Y)| = m_k$ for each $k \in \{1, \dots, r\}$.

Notice that for each $k \in \{1, \ldots, r\}$, $E_{d_x}(X)$ is bijective to $E_{d_k}(Y)$ under a total of $m_k!$ labelings. In other words, any $\sigma_k \in \text{Sym}_{m_k}$ induces a bijection, $\varphi_k : E_{d_x}(X) \to E_{d_k}(Y)$. Given R(X) and R(Y), we can define a bijection $\varphi : E(X) \to E(Y)$ such that

$$\varphi(e_x) = \begin{cases} e_y \text{ where } e_x[2] = e_y[2] & \text{if } e[2] \text{ is a nonrecurring distance} \\ \varphi_k(e_x), \text{ for } k \text{ where } e_x \in E_{d_x}(X) & \text{if } e[2] \text{ is a recurring distance} \end{cases}$$

Notice that there are total of $\prod_{k=1}^{r} (m_k!)$ different φ .

Algorithm 2 This Algorithm assumes X and Y are *n*-point configurations such that X and Y possess small recurring distance multiplicities and dist(X) = dist(Y). It returns a labeling π , or returns NULL if no such labeling exists.

Require: $X, Y \subset \mathbb{R}^D$ with small multiplicities of recurring distances, |X| = |Y|, dist(X) = dist(Y)

- 1: **function** DISTINCTDISTANCEMATCHING2(X, Y) 2: $n \leftarrow |X| = |Y|$ 3: distmat(X) \leftarrow DISTMAT(X) 4: distmat(Y) \leftarrow DISTMAT(Y) 5: $E(X) \leftarrow \{e_{x_1,x_2} \mid x_1 \neq x_2 \in X\}$
- 6: $E(Y) \leftarrow \{e_{y_1, y_2} \mid y_1 \neq y_2 \in Y\}$
- 7: SORT $(E(X), \prec)$, SORT $(E(Y), \prec)$ \triangleright $(e_1 \prec e_2 \Leftrightarrow e_1[2] < e_2[2])$
- 8: for each $\prod_{k=1}^{r} (m_k!)$ permutations of the recurring distances do
- 9: Take the corresponding bijection $\varphi : E(X) \to E(Y)$ where

$$E(X)[i] \mapsto \begin{cases} E(Y)[i] & \text{for nonrecurring distances} \\ \varphi_k(E(X)[i]), \text{ for } k \text{ where } e_x \in E_{d_x}(X) & \text{for recurring distances} \end{cases}$$

 $first_iteration = true$ 10: for $x' \in X$ do 11: $\begin{array}{l} E_{x'} \leftarrow \{e_{x,x'} \mid x \neq x' \in X\} \\ y' \leftarrow \bigcap_{e' \in \varphi(E_{x'})} e'[1] \end{array}$ 12:13:if $y' = \emptyset$ then 14: break to next iteration of outer loop 15: $\psi: X \to Y \text{ such that } \begin{cases} x' \mapsto y' \\ e[1] \setminus x' \mapsto \varphi(e)[1] \setminus y', \quad \forall e \in E_{x'} \end{cases}$ 16: $\psi^* \leftarrow \psi$ 17:if first_iteration then 18:for $x \in X$ do 19:if $\psi^* \neq \psi$ then 20:21:break to next iteration of outer loop 22: $first_iteration = false$ ψ naturally induces a $\pi \in \operatorname{Sym}_n$ \triangleright (since ψ is bijective) 23:return π 24: return NULL 25:

4 Matching Two *n*-Point Configurations with "Almost-Same Distance Distribution"

From [3] we have the following definition for "Almost-Same Distance Distribution":

Definition 4.1. We say that X and Y have almost-same distance distribution, denoted dist(X) \approx dist(Y), if for each $dx_{i,j} \in$ dist(X), there exists exactly one $dy_{i',j'} \in$ dist(Y) such that $(1 - \epsilon) < \frac{dx_{i,j}}{dy_{i',j'}} < (1 + \epsilon)$ for some ϵ .

This condition, if met, would induce a very natural edge bijection. Then we can apply **Algorithm 1**. The following is an algorithm that checks this condition:

Algorithm 3 This Algorithm checks the condition of **Definition 9**.

Require: $X, Y \subset \mathbb{R}^D$ 1: function ALMOSTSAMEDISTANCE(X, Y) $E(X) \leftarrow \{e_{x_1, x_2} \mid x_1 \neq x_2 \in X\}$ 2: $E(Y) \leftarrow \{e_{y_1,y_2} \mid y_1 \neq y_2 \in Y\}$ 3: for $e_X \in E(X)$ do 4: $\Phi_X(e_X) := \operatorname{argmin}|e_X[2] - e_Y[2]|$ 5: $e_Y \in Y$ for $e_Y \in E(Y)$ do 6: $\Phi_Y(e_Y) := \operatorname{argmin}|e_Y[2] - e_X[2]|$ 7: $e_X \in X$ 8: for $e_X \in E(X)$ do if $e_X \neq \Phi_Y(\Phi_X(e_X))$ then 9: return FALSE 10: for $e_Y \in E(Y)$ do 11: if $e_Y \neq \Phi_X(\Phi_Y(e_Y))$ then 12:13:return FALSE 14: return Φ_X

5 Performance

We assume D is fixed and constant. We also assume that the sorting algorithm used sorts k items in $\mathcal{O}(k \log k)$ time.

5.1 Algorithm 1

LINE 2 through LINE 6 each take On^2 time. The sorting on LINE 7 takes $O(n^2 \log n^2) = O(n^2 \log n)$ time. The loop on LINE 10 takes $O(n^2)$ time.

Algorithm 1 takes $\mathcal{O}(n^2 \log n)$ time.

5.2 Algorithm 2

Algorithm 2 is similar to Algorithm 1 but iterates the loop on LINE 10 to a maximum of $\prod_{k=1}^{r} (m_k!)$ iterations.

Algorithm 2 takes
$$\mathcal{O}\left(n^2 \log n + n^2 \prod_{k=1}^r (m_k!)\right)$$
 time.

5.3 Algorithm 3

We know that $|E(X)| = |E(Y)| = \binom{n}{2} = \mathcal{O}(n^2)$. So the bulk of the work of this algorithm is done in the loops on LINE 6 and LINE 8. They both take $\mathcal{O}(n^2)$ edges and compares each edge with the other $\mathcal{O}(n^2)$ edges, both of which take $\mathcal{O}(n^4)$ time.

Algorithm 3 takes $\mathcal{O}(n^4)$ time.

Acknowledgements

I would like to thank Professor David Speyer for his crucial help and guiding remarks. I would like to thank Dr. Steven Damelin for catalyzing this REU project. I would like to thank Neophytos Charalambides and Cyrus Anderson for various insightful discussions, as well as for several poignant and cherished conversations. I would like to extend my thanks Sean Kelly for his help and invaluable efforts. Lastly, I would also like to thank the University of Michigan Math Department and the NSF for making this REU possible.

References

- M. Boutin and G. Kemper. On reconstructing n-point configurations from the distribution of distances or areas. Adv. Appl. Math, 32:709– 735, 2004.
- [2] N. Charalambides. Isometries and Equivalences Between Point Configurations, Extended to ε -diffeomorphism. 2016.
- [3] S. B. Damelin and C. Fefferman. Extensions, interpolation and matching in R^D. November 2014.
- [4] D. Jimenez and Petrova G. On matching point configurations. Constructive Theory of Functions, pages 141–154, 2014.
- [5] Peter H. Schönemann. A generalized solution of the orthogonal procrustes problem. *Psychometrika*, 31(1):1–10, 1966.