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1 Introduction

1.1 Combinatorial Game in General

Our research falls into the category of combinatorial game theory. Combinato-
rial game theory studies sequential games with perfect information, which means
each player, when making any decision, is perfectly informed of all the events
that have previously occurred. Impartial games are part of the combinatorial
games in which allowable moves depend only on the positions and not on which
of the two players is currently moving. The game that we are studying is im-
partial and involves two players. One of the most famous examples of impartial
games is the game "Nim".

1.2 The "Nim" Game

"Nim" is a game in which there are arbitrary numbers of piles and each pile
has arbitrary numbers of beans. In each move, the player must remove at least
one bean and as many as the player wants as long as the beans come from
the same pile. There are two kinds of winning condition for Nim. The �rst
kind of condition stating that the player who takes the last bean wins is called
"Normal Play", while the other condition stating that the player who takes the
last bean loses and is called "Misere Play". Nim has been completely solved by
mathematicians under both Normal Play and Misere Play.

1.3 The Sprague-Grundy Theorem

The Sprague-Grundy Theorem states that every impartial game under the nor-
mal play convention is equivalent to a Nim. Therefore, studying impartial games
under Normal Play is no longer interesting to mathematicians. The game we
have been studying is a Nim-like game, but under Misere Play. In general,
Misere games are harder to solve compared to normal-played games and very
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few of them have been solved by mathematicians. The game that we have been
studying is more complicated than any solved Misere games.

Note: There are two kinds of understandings for the notion of "Normal Play"
and "Misere Play". Under �rst kind of understanding, "Normal Play" means
you win if you take the last bean of the game, and "Misere Play" means you
lose if you take the last bean of the game. Under second kind of understanding,
"Normal Play" means you lose if you cannot move, and "Misere Play" means
you win if you cannot move. These two ways of understanding are essentially
the same, but we will utilize both of them later on because it is better to use
di�erent understandings in di�erent contexts.

2 Our Game

2.1 Introduction and Terminology

General Information of our game:

• Settings: Two players, sequential play

• Objects: Beans

• Winning condition: Misere Play

• Allowable moves: Three kinds (speci�ed in section 2.2)

We will introduce some terminologies to make future explanations clearer.

1. We are concerned with the structure of individual positions. Therefore,
we also refer to an individual position in our combinatorial game by the
term "game" which is often denoted as G. We hope that the intended
meanings can always be understood from the contexts.

2. The "size" of a particular pile refers to the number of beans in that pile.

3. The "size" of the game refers to the total number of beans in all piles.

4. The "pile number" or "multiplicity" of a certain pile size is the number of
piles of that certain size in the game.

5. We state the winner or winning status of one game is N (next) if the
player who moves next wins under optimal play and P (previous) if the
player who moves next loses under optimal play.

2.2 Moves

In our game, we still have arbitrary number of piles while each pile has arbitrary
number of beans. Unlike Nim, three kinds of moves are allowed in our game:

• Remove one pile of beans
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• Remove one bean from a pile so that the size of the pile is reduced by 1

• Remove one bean from a pile so that this pile is broken down into two new
piles and the sum of the size of two new piles is the original size minus 1

For example, the game that starts with one pile of three beans can be moved
into the following games:

• No beans at all (move: 31 → 0)

• One pile of two beans (move: 31 → 21)

• Two piles each with one bean (move: 31 → 12)

2.3 Analysis

A family of games is a set of individual starting positions of this combinatorial
game, usually with many parameters representing the multiplicities of di�erent
pile sizes. We use dots and superscripts to denote families of game. For example,
the family of game that consists of i piles of size 2 and j piles of size 6 can be
denoted as 2i.6j (i and j are parameters here). Sometimes we can even use 2.6
to denote this family of game since when the superscript of a pile size is absent
we mean the multiplicities are parameters.

Our game is parameterized by Nr and we are trying to denote all of the
possible moves by vectors mi = (k1, k2, ..., kr) ∈ Zr. Let MG be the set of all
possible moves for a particular game G andM be the set of all possible moves
for all games.

For example, let r = 3 and (n1, n2, n3) denote the pile number of pile size
1, 2, 3. The moves are:

3→ 1, denoted as (1, 0,−1)
12 → 0, denoted as (−2, 0, 0)

Note that each player has to remove at least one bean in every move, there-
fore the size of the game is always decreasing. We know N wins when the game
size is reduced to 0. Therefore, we can always compute the results of games of
any size in a recursive method and the winner is either N or P.

Nr is the whole solution space of the game. We let X represent the set of N
game, and Y represent the set of P game. Obviously, the whole solution space
Nr is the disjoint union of N region X and P region Y.

Finally, we would also like to point out that a game is N if and only if there
exists a move after which the winner will be P, and a game is P if and only if
all the moves lead to a N game. This observation is very important when it
comes to proving the empirical descriptions.
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3 The Empirical Description

Since we are interested in the winners of the game of a given size, we can begin
with some easy ones:

Let's write down some results for the game family 1n as an example:

10N
11 P
12N
13 P
14N
15 P
16N

Naturally, we will have a guess based on the data up to size 6 for the game
1n: The game is N if n is even; P if n is odd.

Then we can move on to the results of a little bit more complicated game
family 1n.2m:

20N 1.20 P 12.20N
21N 1.21N 12.21N
22 P 1.22N 12.22 P
23N 1.23N 12.23N
24 P 1.24N 12.24 P
25N 1.25N 12.25N

Based on limited data, we can observe the following patterns:
(1)The results of the �rst column is the same as the results of the third

column.
(2)The results of the �rst column is alternating after n is greater than 1.
(3)The results of the second column is the same after m is greater than 1.
Therefore, based on limited data, we can have a guess for the winning pat-

terns of game family 1n.2m :

• Guess:
1n.2m is N ⇐⇒
(1) n is even AND m = 0 or m is odd
OR (2) n is odd and m≥1

This empirical guess turns out to be very easy to prove! We will prove this in
Section 4.
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1n.2m is a game family parameterized by only 2 parameters n and m, but
it has already revealed the only two elements of our descriptions for much more
complicated game families: linear inequality conditions and parity conditions.

Therefore, we have a conjecture for any game family with r parameters:

• Conjecture:
The N region and P region in Nr are the unions and complements of
regions de�ned by �nitely many linear inequalities and parity conditions.

Note: A linear equality condition can be considered as two linear inequality
conditions, therefore linear equality conditions are also allowed to appear.

Since we have a conjecture now, we are going to describe all the game families
using linear inequalities and parity conditions. We wrote a computer program
to do that. The �rst step is always to divide a game family with r parameters
into 2r sub families of game, each with a �xed combination of parity. Then an
algorithm is used to solve the sub families of game. The outline of our algorithm
for solving a sub family of game that has a �xed combination of parity is as
follows:

1. Assume we are studying N region. Find inequalities such that all points
that fail the inequalities have the other winning status.

2. Determine how many boundaries we need to check on each inequality.

3. Check each boundary (when equalities hold in inequalities) and �nd the
equalities and inequalities that further describe the set of points of the
winning status.

4. If the description matches data, we are done. Otherwise, if the winning
region we are studying is N , return to step 1 and assume we are studying
P region. If we are already studying P region and the description does
not match the data, the algorithm fails.

The algorithm is implemented using C code, and details of the algorithm are
omitted because of the complexity. However, this algorithm proved to be quite
successful, on average more than 80% of the sub families of game can be correctly
solved solely by the computer program. To get the description of the rest of the
subgames, human e�orts are needed. However, we are con�dent that we will be
able get a complete empirical description of our game given su�cient time and
e�orts.

Now, in order to get a taste of what the description of the winning region
looks like, we are going to examine the following example. The game family we
are studying is 2.6.10.12.20.32. And the sub game family we are looking at is
parity (0,0,0,0,0,0). The previous notation means the multiplicity of size 2, 6,
10, 12, 20 and 32 are all restricted to be even. The set of points we are going
to describe is the set of points with winning status P.
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1. mult(2) +mult(6)−mult(12)−mult(20)−mult(32) ≥ 2

2. mult(2) +mult(10)−mult(12)−mult(20)−mult(32) ≥ 2

3. mult(12)−mult(20)−mult(32) ≤ 0

4. mult(2)+mult(20)−mult(12)−mult(32) > 0 OR (mult(2)+mult(20)−
mult(12)−mult(32) = 0 andmult(2) = 0)

Here mult(i) means the multiplicity of pile of size i. Any point satisfying the
above four rules is a P point, and failure of any rule leads to a N position. For
example, the point (2,2,2,0,0,0) which corresponds to the game 22.62.102 is a P
point because it satis�ed all the above four rules, while the point (2,0,0,0,0,2)
which corresponds to the game 22.322 is a N point because it fails the �rst rule.
Although the description is only an empirical one, we completely de�ned the set
of P points when the parity is �xed. Thus, as conjectured, the winning region
is de�ned by �nitely many linear inequalities and parity conditions.

4 The Theoretical Proofs

One of the most amazing parts of our work is that we can check the equivalency
of two in�nite set by implementing �nite check. We will prove the N and P
regions for game family 1.2.3.4 to give a taste of what the �nal proving work
will be like.

4.1 Our Conjecture

• Conjecture:
The N region and P region in Nr are the unions and complements of
regions de�ned by �nitely many linear inequalities and parity conditions.

4.2 Our Goal

We have obtained our guess for the actual N region and P region through
computer programs, and our goal is to prove our guess of the description of the
N and P regions are actually correct.

In other words, for a �xed number r , we are trying to �gure out whether
our guess for the solution space is actually the same as the real solution space:

Nr = Wactual

⊔
Lacutal

?
= Wguess

⊔
Lguess

Note:
⊔

is "disjoint union."
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4.3 Lemma

Starting from Section 4.3, the move mi begins to have two kinds of meanings.
One is vector, the other one is map. For the sake of understanding, we will
begin to use the map meaning from now on. For example, m(G) is the image of
game G under move m ∈MG , which is another game.

For the actual N and P region Wactual and Lactual, we have the following
properties:

(1)0 ∈Wactual

(2)∀x ∈Wactual, ∃m ∈Mx s.t.m(x) ∈ Lactual

(3)∀x ∈ Lactual, ∀m ∈Mx s.t.m(x) ∈Wactual

The intuition for the following properties is very simple:
(1) Point 0 is always in the N region because player N cannot move if there

is no bean at all.
(2) Since we are playing optimally, a point x is in the N region if there exists

one move to the P region. (It is enough if there is only one path to winning!)
(3) Still, since we are playing optimally, a point y is in the P region if all

moves lead to the N region. (If it is a P point, it means that player N will lose
this game whatever player N does!)

Here is our lemma:

• Suppose

Nr = X′
⊔

Y′

s.t.

(a) 0 ∈ X′

(b) ∀x ∈ X′,∃m1 ∈Mx s.t.m1(x) ∈ Y′

(c) ∀y ∈ Y′,∀mi ∈My if mi(y) ∈ Nr thenmi(y) ∈ X′

then obviously X = X′ and Y = Y′

Our lemma is basically stating that we can �nish the proof by checking the
above three properties.

4.4 Proof of the Solution Space of Game Family 1.2.3.4

Game family 1.2.3.4 is the notation for the game family that only contains pile
sizes 1~4. In other words, this kind of game has 4 free parameters n1, n2, n3, n4

to indicate the changing parameters of pile sizes 1~4. This kind of games can
also be denoted as 1n1 .2n2 .3n3 .4n4

After empirically observed the results of the game up to size 173, we decided
to break down our guess of the N region X′ and P region Y′ into many di�erent
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sub regions X ′i and Y ′i according to the parity of the multiplicity of the pile
sizes:

X′ =
⊔
i

X ′i

Y′ =
⊔
i

Y ′i

According to the lemma, this is enough to check:

(a) 0 ∈ X′

(b) ∀i, X ′i ⊆
⋃
j,k

m−1k (Y ′j )

(c) ∀i, mk(Y
′
j ) ⊆

⋃
j,k

X ′i

Note:
1.Since we have already considered point 0 in (a), we will not consider point

0 in (b). It will actually show contradiction if we consider point 0 in (b). The
intuition here is that we do not have any moves when there is no beans, and
therefore the game cannot be moved into any P regions, which means point 0
cannot be contained in any m−1(Yi).

Thus, we are actually checking

∀i, X ′i \ {0} ⊆
⋃
j,k

m−1k (Y ′j )

for (b).
Since there are already three proven rules: 12 → 0, 3 → 1 and 4 → 2

according to Prof.Snowden's previous work, we can reduce the game family
1.2.3.4 to 1≤1.2.

We are going to prove the validity of descriptions for N region and P region
for the game family G = 1n.2m with n ≤ 1.

We broke this game family down into four di�erent sub game families based
on the parity of parameters, and obtained our guess for the descriptions X ′i and
Y ′i from computer programs:

G =
⊔
i

Gi

G1 = 22n, X ′1 = {n = 0} , Y ′1 = {n ≥ 1}
G2 = 22n+1, X ′2 = {n ≥ 0} , Y ′2 = ∅
G3 = 1.22n, X ′3 = {n ≥ 1} , Y ′3 = {n = 0}

G4 = 1.22n+1, X ′4 = {n ≥ 0} , Y ′4 = ∅

Note: the computer program did not exclude point 0 when getting the de-
scriptions, so we need to manually exclude it when doing the proofs.
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All of the possible moves between these subgroups are listed:

m1 : G1 → G2
n→n−1

actualmove : 21 → 0

m2 : G1 → G4
n→n−1

actualmove : 21 → 11

m3 : G2 → G1
n→n

actualmove : 21 → 0

m4 : G2 → G3
n→n

actualmove : 21 → 11

m5 : G3 → G1
n→n

actualmove : 11 → 0

m6 : G3 → G2
n→n−1

actualmove : 21 → 11

m7 : G3 → G4
n→n−1

actualmove : 21 → 0

m8 : G4 → G1
n→n

actualmove : 21 → 11

m9 : G4 → G2
n→n

actualmove : 11 → 0

m10 : G4 → G3
n→n

actualmove : 21 → 0

Note:
1. For all moves that map from n to n− 1 , the default domain of n is n ≥ 1

because the multiplicity of the pile sizes have to be positive, or there will not
even exist a move like this.

2. There is no maps like G1 → G3 or G2 → G4 because there is no moves
like adding a pile of 1.

3. For m6 and m8, we used the rule 12 → 0 for simpli�cation.

Part I

Obviously, 0 ∈ X ′1 ⊆ X′.

Part II

W.T.S.
∀i, X ′i ⊆

⋃
∀m:Gi→Gj

j 6=i

m−1(Y ′j )

Note: m's are all of the 10 kinds of moves listed above.
(1) X ′1 = {n = 0}
(2) X ′2 = {n ≥ 0}

m−13 (Y ′1) = m−13 (n ≥ 1) = {n ≥ 1}
m−14 (Y ′3) = m−13 (n = 0) = {n = 0}

Therefore, X ′2 = {n ≥ 0} ⊆ {n ≥ 1} ∪ {n = 0} = m−13 (Y ′1) ∪m−14 (Y ′3)
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(3) X ′3 = {n ≥ 1}

m−15 (Y ′1) = m−15 (n ≥ 1) = {n ≥ 1}
m−16 (Y ′2) = m−16 (∅) = ∅
m−17 (Y ′4) = m−17 (∅) = ∅

Therefore, X ′3 = {n ≥ 1} ⊆ {n ≥ 1} = m−15 (Y ′1) ∪m−16 (Y ′2) ∪m−17 (Y ′4)
(4) X ′4 = {n ≥ 0}

m−18 (Y ′1) = m−18 (n ≥ 1) = {n ≥ 1}
m−19 (Y ′2) = m−19 (∅) = ∅
m−110 (Y

′
3) = m−110 (n = 0) = {n = 0}

Therefore, X ′4 = {n ≥ 0} ⊆ {n ≥ 1} ∪ {n = 0} = m−18 (Y ′1) ∪ m−19 (Y ′2) ∪
m−110 (Y

′
4)

In conclusion, ∀i, j = 1 ∼ 4 and j 6= i, X ′i ⊆
⋃

∀m:Gi→Gj

m−1(Y ′j )

Part III

W.T.S
∀i, j = 1 ∼ 4 and j 6= i,

⋃
∀m:Gi→Gj

m(Y ′j ) ⊆
⋃

X ′i

(1) Y ′1 = {n ≥ 1}

m1(Y
′
1) = m1(n ≥ 1) = {n ≥ 0} ⊆ X ′2

m2(Y
′
1) = m2(n ≥ 1) = {n ≥ 0} ⊆ X ′4

Therefore, i = 1,∀j = 1 ∼ 4 and j 6= i,
⋃

∀m:Gi→Gj

m(Y ′j ) ⊆
⋃

X ′i

(2) Y ′2 = ∅
Since the image of ∅ is always ∅ and ∅is always contained in any another set,

i = 2,∀j = 1 ∼ 4 and j 6= i,
⋃

∀m:Gi→Gj

m(Y ′j ) ⊆
⋃
X ′i

(3) Y ′3 = {n = 0}

m5(Y
′
3) = m5(n = 0) = {n = 0} ⊆ X ′1

Therefore, i = 3,∀j = 1 ∼ 4 and j 6= i,
⋃

∀m:Gi→Gj

m(Y ′j ) ⊆
⋃

X ′i

Note: moves m6 and m7 don't exist here because n ≥ 1 is required for these
two moves.

(4) Y ′4 = ∅
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Since the image of ∅ is always ∅ and ∅ is always contained in any another
set, i = 3,∀j = 1 ∼ 4 and j 6= i,

⋃
∀m:Gi→Gj

m(Y ′j ) ⊆
⋃

X ′i

In conclusion, ∀i, j = 1 ∼ 4 and j 6= i,
⋃

∀m:Gi→Gj

m(Y ′j ) ⊆
⋃

X ′i

Finally, combing Part I~III, we have proven that our guess of the description is
indeed the real N and P regions.

5 Ongoing Work

At present, we are trying to get our empirical description of game 1.2.3.4.5.6.7.8.
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