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Abstract

Card shuffling is an interesting topic to explore because of its com-
plexity. Initially, card shuffling seems simple because it is ubitquitous.
The majority of people know how to shuffle a deck of cards but few
consider the math behind it. However, when it comes to analyzing the
elements of card shuffling, it incorporates linear algebra, group theory,
probability theory, and Markov Chains. When playing card games,
people use various techniques to keep others from having an unfair ad-
vantage, the most prevalent technique being cutting and randomizing
the deck. In this paper, we will investigate how well two models—the
standard model and Geometric Model—describe how humans shuf-
fle cards. We will find the optimal region of fast riffle shuffles for a
small deck and measure the randomization of a deck using variation
distance. To gain a better understanding of the Geometric Model of
card shuffling we will also examine the transition matrix that is formed
from the probabilities of transitioning from one deck to another. We
found the eigenvalues and eigenvectors for the transition matrix for
small decks.

1 Introduction

For centuries people have been playing card games. But, nobody at-
tempted to model how people shuffle cards until the 1950’s when Gilbert
and Shannon created the standard model of riffle shuffling. Another mathe-
matician, Reeds, came up with this model on his own a few years later and
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the standard model was known, from then on, as the Gilbert-Shannon Reeds
(GSR) Model. In 1988, Diaconis and Fill tested the GSR Model against real
data. They each shuffled 100 times and concluded that the model was a
good fit [4]. Diaconis wrote his most famous analysis on the GSR Model in
1992, where he discovered the minimal number of times to shuffle was 7 to
randomize the deck. This was reported in the New York Times later that
year [7].

In 2009, Diaconis suggested a new model to describe riffle shuffling. In
2013, Drouillard researched this in a model he called the Geometric Model.
This is a generalization of the standard model by including an extra param-
eter α, which measures the neatness of a shuffler.

Up until 2011, no data had been collected on human shuffling. Cope [3]
engineered an efficient way to gather data and had 45 people shuffle approx-
imately 50 times each. This data was used in our research to compare the
Geometric Model to the standard model, using Chi-Squared Goodness of Fit
tests. We determined that the Geometric Model fits approximately 3 times
as many shufflers as does the standard model.

Drouillard was able to find the eigenvalues of the Geometric Model for
small decks [6]. We expanded his research by exploring not just the eigen-
values with respect to α, but also the eigenvectors. While parsing through
the data, we discovered the signature eigenvector, which is a constant vector
recording the parity of permutations. We proved this is an eigenvector for
any size deck.

The Geometric Model, surpringly, was shown by Drouillard to contain
shuffles faster than the GSR Model. We used a Monte Carlo calculation to
characterize the region of fast shuffles for a 3 card deck and found approxi-
mately, 20% of shuffles fall into this region.

2 Background

2.1 Riffle Shuffle

We researched the Geometric Model of riffle shuffling in this project, it is
therefore important to understand the basics. Riffle shuffling is the process
of cutting a deck of cards into two piles and dropping the cards by alternating
between the left and right piles. A shuffle is represented as a series of 0’s and
1’s, where 1 stands for the cards from the bottom section of the deck and 0
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stands for the cards from the top section after the deck is cut. For example,
a six card shuffle could be (

0 1 0 0 1 1
)

This shuffle is read from left to right. In this example, assume the top section
is in the left hand and the bottom section is in the right hand. The first card
dropped is from the left hand, followed by one from the right hand, two from
the left hand, then the final two from the right hand.

A transition is when the cards switch between the left and right piles. In
this example there are three transitions, which take place after the first card,
second card, and fourth card are dropped.(

0 | 1 | 0 0 | 1 1
)

2.2 GSR Model

The vast majority of card shuffling research relies on the GSR Model, the
standard model for riffle shuffling. In this model, the assumptions are:

1. The probability that the deck is cut after k cards is
(
n
k

)
1
2n

, with a deck
of n cards

2. Cards are dropped one at a time from either the left or right hand

3. If there are L cards in the left hand and R cards in the right hand,
the probability that the next card is dropped from the left hand is L

L+R

and likewise for the right hand, R
L+R

Under the GSR Model, all shuffles are equally likely. In an experiment
performed in 1988, Fill and Diaconis each shuffled a deck of cards 100 times
and recorded the results [4]. The subjects had different packet size distri-
butions - subject 1 had a packet size of 1 62% of the time while subject 2
had packet size of 1 80% of the time. In other words, both subjects were
“neater” than the model, which predicts about half of all packets will have
size 1. Diaconis wrote his most famous paper with Bayer in 1992 [1]. They
were able to find explicit formulas for how quickly a deck of distinct cards
randomizes under the GSR Model.
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2.3 Geometric Model

In 2009, Diaconis suggested a generalization of the GSR Model that would
account for some shufflers being neater than others [5]. In 2013, Drouillard
named it the Geometric Model [6]. There are three parameters in the Geo-
metric Model:

• n is the total number of cards

• β is the probability that the first card dropped in a shuffle is from the
top section of the deck after the deck is cut

• α is the probability of switching hands, i.e., the probability of a tran-
sition at any point

So, α is a measure of “neatness” of the shuffler:

• “messy” shufflers drop fewer and larger packets, and have small α’s

• “neat” shufflers drop more and smaller packets, and have large α’s

The Geometic Model becomes the GSR Model if α = 1
2
.

The probability of obtaining a particular shuffle under the Geometric
Model is

βi(1− β)1−iαj(1− α)n−j−1

where j = number of transitions, and

i =

{
1 if the first card is dropped from the bottom section of the deck
0 otherwise

In our research, we assumed β = 1
2
. With this assumption, the probability

of obtaining a particular shuffle simplifies to

1

2
αj(1− α)n−j−1

Drouillard’s biggest discovery was how neatness affects the speed that a deck
approaches uniform distribution. When looking at the eigenvalues of the
transition matrix, it is apparent that the second highest eigenvalue controls
the speed a deck approaches uniform distribution. Drouillard determined
that for small decks, (3 ≤ n ≤ 9) the deck approaches uniform the fastest
when α is between 0.5 and approximately 0.8 [6].
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2.4 Transition Matrix

The transition matrix is an n! × n! matrix which is formed from the
probabilities of transitioning from one deck to another. This is best explained
with an example. For every deck, there are 2n shuffles. For a deck of 3 cards,
the shuffles are

Shuffles
000
001
010
011
100
101
110
111

Each shuffle has a corresponding permutation. A permutation is a way of
rearranging the ordering of a deck of cards. There are n! permutations for
every deck. For shuffle

(
0 1 1

)
, the corresponding permutation can be

revealed by constructing a table with 4 columns:

• In column 1, write the identity permutation
(
1, 2, 3, . . . , n

)
• In column 2, write down the shuffle starting with the 0’s on the top,

then following with the 1’s

• In column 3, write down the shuffle with the right most bit on the top
and the leftmost bit on the bottom. So for shuffle

(
0 1 1

)
, first write

down 1, followed by 1, and end with 0

• Match the topmost 0 from column 2, to the topmost 0 from column 3.
Continue this way by drawing arrows to the second topmost 0 and so
on. Follow this procedure for all the 1’s

• From here, one can see that the 1 in column 1 moved to row 3 in column
4. The 2 in column 1 moved to row 1 in column 4, and the 3 moved to
row 2 in column 4. Column 4 is then the corresponding permutation,
which is

(
2 3 1

)
in this example
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1 0

2 1

3 1

1 2

1 3

0 1

A
A
A
A
AU

�
���

�
���

This excercise can be completed for each shuffle to get the following:

Shuffle Permutation
000 123
001 312
010 132
011 231
100 123
101 213
110 123
111 123

Using the Geometric Model, we can solve for the probabilities for each shuffle
in terms of α.

Shuffle Permutation Probability

000 123 1
2
(1− α)2

001 312 1
2
(1− α)α

010 132 1
2
α2

011 231 1
2
(1− α)α

100 123 1
2
(1− α)α

101 213 1
2
α2

110 123 1
2
(1− α)α

111 123 1
2
(1− α)2
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By finding the probability that each permutation occurs, we can calculate
the permutation’s probability with respect to α.

Permutation Probability

123 1− α
132 1

2
α2

213 1
2
α2

231 α−α2

2

312 α−α2

2

321 0

The transition matrix is then easily obtained. Along the left column are decks
and across the top are decks. The transition matrix gives the probability of
transition from one deck to another after one shuffle.



123 132 213 231 312 321

123 1− α 1
2
α2 1

2
α2 (α−α2)

2
(α−α2)

2
0

132
1
2
α2 1− α (α−α2)

2
0 1

2
α2 (α−α2)

2

213
1
2
α2 (α−α2)

2
1− α 1

2
α2 0 (α−α2)

2

231
(α−α2)

2
0 1

2
α2 1− α (α−α2)

2
1
2
α2

312e
(α−α2)

2
1
2
α2 0 (α−α2)

2
1− α 1

2
α2

321 0 (α−α2)
2

(α−α2)
2

1
2
α2 1

2
α2 1− α



3 Results

3.1 Accuracy of the Model

Cope collected data by having 45 test subjects shuffle approximately 50
times each [3]. Each shuffle was recorded as a string of 52 0’s and 1’s,
where 0’s represent cards dropped from the top section and 1’s represent
cards dropped from the bottom section of the deck. Using this data, we
determined a best fit α value for each test subject, where α denotes the
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transition probability. The best fit α is calculated by

Number of Observed Transitions

51 ·m
where m is the number of times the subject shuffles and there are 51 possible
transitions per shuffle.

We used the best fit α to create a distribution for the predicted num-
ber of times the subject shuffled with k transitions, where k is the count of
transitions per shuffle, ranging from 0 to 51. This follows a binomial distri-
bution with parameters m and α. The predicted number of times the subject
shuffles with k transitions is(

51

k

)
αk(1− α)51−km.

We used a Chi-Squared Goodness of Fit test to assess the accuracy of the
observed distribution compared to the predicted distribution for each test
subject. The test statistic for this test is

χ2 =
51∑
k=0

(Ok − Ek)2

Ek

with degrees of freedom equal to m− 1. We found p values for each subject.
The p value indicates the probability of obtaining a Chi-Squared value at
least as high as the observed Chi-Squared value for the test subject. For
example, test subject 31 had a Chi-Squared value of 39.5846. The corre-
sponding p value is 0.87704, with 51 degrees of freedom, . This signifies that
the probability of calculating a Chi-Squared value greater than or equal to
39.5846 is 0.87704.

Upon examining the p value for each test subject, we found that 29 of
the 45 test subjects had results that were statistically significant at a 5%
significance level. This means, the p values for these 29 subjects are less
than 0.05. A low p value indicates that the predicted distribution for the
number of transitions is not a good fit for the distribution of the observed
number of transitions. These test results suggest that the Geometric Model
is accurate in describing the shuffling patterns for 16 of the 45 test subjects.

Figure 1 shows the data from a subject with a high p value. Subject 43
has a p value of 0.9999. The histogram shows that the observed distribution
closely follows the predicted distribution.
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Figure 1: Subject 43

In contrast, Subject 48 has a p value that is 0.0000. Figure 2 shows that
the observed distribution differs drastically from the predicted distribution.
This subject shuffled once with 11 transitions and once with 43 transitions.
These high and low counts heavily increase the Chi-Squared values, which
brings the p value closer to 0.

The GSR Model assumes that there is an equal probability of dropping
cards from both the left and right hands. This is equivalent to using an α
equal to 0.5. We conducted the same Chi-Squared Goodness of Fit test for
each subject using the assumed α of 0.5. In this case, the predicted number
of times the subject shuffled with k transitions is(

51

k

)
m

251
.

The p values from this test of the GSR Model indicate that 40 of the 45 test
subjects have results that were statistically significant at the 5% significance
level. Hence, the GSR Model predicts a distribution that fits the observed
distribution for 5 of the 45 test subjects. These 5 subjects’ shuffling patterns
are also good fits for the Geometric Model, and they all have best fit α values
close to 0.5.
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Figure 2: Subject 48

3.2 Exploring a Subspace

The GSR Model is called the “maximum entropy model” because it pos-
tulates that all shuffles are equally likely. Therefore, it seemed likely that
among all ways to riffle shuffle, GSR randomizes the deck the fastest. How-
ever, the results from Drouillard’s model showed that was not the case. In
fact, the deck randomizes faster if the shuffler is a little neater than the GSR
Model, which assumes a constant α = 0.5 [6].

When shuffling cards, the goal is to end with a completely random deck, in
other words, every possible ordering is equally likely. In order to understand
this, we will need a measure of how fast the deck randomizes. We use the
total variation distance, or TVD, to measure how close a deck is to being
randomized. The observed long run pattern of the TVD shows how quickly
a deck randomizes. Let

TV D =
1

2

∑
π∈Sn

| P(π)− U(π) |

where U(π) = 1
n!

is the probability of obtaining π assuming perfect mixing
and P(π) is the current probability of permutation π. From Drouillard’s re-
sults, as the number of shuffles gets sufficiently large, the TVD approaches an
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exponential decay function, in which the base of the exponential determines
how quickly the TVD decays. In other words, it determines how efficient our
shuffle is.

1

Figure 3: Variation distance from uniform distribution of a 52 card deck after
log2(a) GSR shuffles.

Figure 3 is the TVD of a 52 card deck after log(a) shuffles [2]. We see
that the first few shuffles do not have a big effect on the variation distance
to uniform, but eventually, the variation distance decays exponentially un-
der the GSR Model, and the base of the exponential is 1

2
. This value of

1
2

also happens to be the second highest eigenvalue for the GSR transition
matrix. The transition matrices always have an eigenvalue of 1, and all other
eigenvalues have size ≤ 1.

When a transition matrix has a full set of eigenvectors, any initial distri-
bution can be written in terms of that basis. In the long run, only the part
corresponding to eigenvalue 1 will survive. Let us look at this pattern.

Suppose we have a full set of eigenvectors

v1, v2, v3, . . . , vn

with respective eigenvalues λ1, λ2, . . . , λN satisfying

1 = λ1 > |λ2| > |λ3| ≥ . . . ≥ |λN |.

We can write an distribution v in terms of the eigenbasis

v = α1v1 + . . .+ αNvN .
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and then

vAk =
N∑
i=1

αiviA
k

=
N∑
i=1

λki αivi

= α1v1 + λk2α2v2 +
N∑
i=3

λki αivi.

Eventually, everything will approach 0 except α1v1. So, that is the equi-
librium distribution, which for any reasonable card shuffling method is the
uniform distribution[8]. Furthermore, λk2α2v2 dominates all subsequent terms
as k gets large, because of the size of λ2. It follows that TVD should be ap-
proximately proportional to λk2 for large k.

So, we expect to see exponential decay in variation distance, and the base
of the exponential should be the second highest eigenvalue. It is unclear how
this result generalizes to non-diagonalizable transition matrices. However, it
does seem to be true in the case of shuffling small decks, as shown in the
graphs from Drouillard (Figure 4).

2

Figure 4: Absolute value of eigenvalues and TVD decay rate for n = 3 under
the Geometric Model.

The question arises, what distribution on riffle shuffles will mix the deck
the fastest? In order to explore the space of fast shuffling methods for a deck
of size n = 3, we performed a Monte Carlo calculation. We used the random
number generator in Mathematica to pick random points on the simplex
p1 + . . . + p8 = 1 since there are 2n shuffles of n cards. Figure 5 is a sample
of the data.
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Figure 5: Sample data for n = 3 cards

The first number represents the second highest eigenvalue of the transition
matrix corresponding to the distribution. The set of eight numbers following
the second higest eigenvalue is the distribution on shuffles.

Among 10, 000 models, the minimum rate of the shuffle is about 0.11399.
A lower eigenvalue correlates with a faster speed of a deck approaching uni-
form distribution. Below is a table of the fastest model of 10, 000 shuffles.

Shuffle 000 001 010 011 100 101 110 111
Model 0.0068 0.0254 0.1764 0.3056 0.1252 0.2666 0.0315 0.0625

Below is a table of the averages of all fast models (that is, models whose
second highest eigenvalue is ≤ 1

2
. These averages estimate the center of the

region of fast models.

Shuffle 000 001 010 011 100 101 110 111
Model 0.0816 0.1631 0.1759 0.1615 0.0784 0.1815 0.0799, 0.0781

An interesting pattern that we noticed was that out of all the shuffling
methods that were trialed, about 20% of them resulted in the region where
the second higest eigenvalue was less than 0.5, meaning about 20% of all
models are faster than the GSR Model, for n = 3.

3.3 Eigenvectors and Eigenvalues

Another aspect of the Geometric Model was investigating the eigenvectors
and eigenvalues of the transition matrices for multiple size decks with respect
to α. This was possible for n = 3, after which Mathematica was unable to
calculate the eigenvectors. So for n = 4 and 5, only the eigenvalues were
calculated. Mathematica was able to calculate the eigenvectors for n =
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4 and 5bBy setting α to a value between 0 and 1. After looking at the
eigenvectors for n = 3, 4, and 5, there was an apparent pattern with one of
the constant eigenvectors.

n size vector

3 v3 = (1 -1 -1 1 1 -1)T

4 v4 = (1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1)T

As one can see, these are entirely made up of 1’s and -1’s. We discovered
that the 1’s and -1’s correspond to the parity of the permutation is odd or
even. For example when n = 3

Permutation v3 Sign
123 1 even
132 -1 odd
213 -1 odd
231 1 even
312 1 even
321 -1 odd

In this example, 132 is considered odd because it is the composition of an
odd number of transpositions. We will refer to vn as the signature vector.
Mathematica calculated the eignvalues for the signature eigenvectors for n =
3, . . . , 11, which are listed in the following table.

n Eigenvalue
3 1− 2α2

4 1− 2α + 2α2 − 2α3

5 1− 6α2 + 8α3 − 4α4

6 1− 3α + 6α2 − 12α3 + 12α4 − 4α5

7 1− 12α2 + 32α3 − 44α4 + 32α5 − 8α6

8 1− 4α + 12α2 − 36α3 + 68α4 − 72α5 + 40α6 − 8α7

9 1− 20α2 + 80α3 − 180α4 + 256α5 − 216α6 + 96α7 − 16α8

10 1− 5α + 20α2 − 80α3 + 220α4 − 388α5 + 440α6 − 304α7 + 112α8 − 16α9

11 1− 30α2 + 160α3 − 500α4 + 1056α5 − 1504α6 + 1408α7 − 816α8 + 256α9 − 32α10

The following will prove that the signature vector is an eigenvector for all
size decks.
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Let G be a finite group, with P : G→ [0, 1] a probability distribution on
G. Let X0, X1, X2, . . . be random variables whose values are elements of G,
with

Pr (Xi+1 = b | Xi = a) = P (ba−1)

Under these conditions we say that the Xi are a random walk on G. They
represent a Markov Chain with transition probabilities

Pr(a→ b) = P (ba−1)

Suppose H is a normal subgroup of G, and G/H = {aH : a ∈ G} is the
group of cosets of H. Let P ∗ : G/H → [0, 1] be given by

P ∗(aH) =
∑
h∈H

P (ah)

Theorem 1. P ∗ represents a random walk on G/H. That is, if Yi = XiH ∈
G/H, then Pr (Yi+1 = bH | Yi = aH) = P ∗(ba−1H).

Proof.

Pr (Yi+1 = bH | Yi = aH)

= Pr (Xi+1 ∈ bH | Xi ∈ aH)

=
Pr (Xi+1 ∈ bH ∩Xi ∈ aH)

Pr(Xi ∈ aH)

=

∑
h0∈H

∑
h1∈H Pr (Xi+1 = bh1 ∩Xi = ah0)

Pr(Xi ∈ aH)

=

∑
h0∈H

∑
h1∈H Pr (Xi+1 = bh1 | Xi = ah0) · Pr(Xi = ah0)

Pr(Xi ∈ aH)

=

∑
h0∈H Pr(Xi = ah0)

∑
h1∈H Pr (Xi+1 = bh1 | Xi = ah0)

Pr(Xi ∈ aH)
.

But∑
h1∈H

Pr (Xi+1 = bh1 | Xi = ah0) =
∑
h1∈H

P (bh1(ah0)
−1) =

∑
h1∈H

P (bh1h
−1
0 a−1).
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As h1 runs through all values of H, h1h
−1
0 does so as well. So let h = h1h

−1
0

and we have ∑
h∈H

P (bha−1).

Now as h runs through all values of H, ha−1 runs through the left coset
Ha−1. But because H is a normal subgroup of G, Ha−1 = a−1H. So∑

h∈H

P (bha−1) =
∑
h∈H

P (ba−1h) = P ∗(ba−1H).

So we have

Pr (Yi+1 = bH | Yi = aH) =

∑
h0∈H Pr(Xi = ah0) · P ∗(ba−1H)

Pr(Xi ∈ aH)

=
P ∗(ba−1H)

∑
h0∈H Pr(Xi = ah0)

Pr(Xi ∈ aH
= P ∗(ba−1H).

We shall say that the random walk on G described by P induces the
random walk on G/H described by P ∗. Let A be the transition matrix for
the Markov Chain given by the random walk of P on G. That is,

Aa,b = Pr (Xi+1 = b | Xi = a) = P (ba−1).

Let A∗ be the transition matrix for the induced Markov Chain on G/H.

Theorem 2. If A∗v∗ = λv∗, then Av = λv, where va = v∗aH .

Proof.

(Av)b =
∑
a∈G

Aa,bva =
∑
a∈G

P (ba−1)v∗aH

=
∑

aH∈G/H

∑
h∈H

P (b(ah)−1)v∗aH =
∑

aH∈G/H

v∗aH
∑
h∈H

P (bh−1a−1).
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But again, because H is normal, Ha−1 = a−1H, so

(Av)b =
∑

aH∈G/H

v∗aH
∑
h∈H

P (ba−1h) =
∑

aH∈G/H

v∗aHP
∗(ba−1H)

=
∑

aH∈G/H

v∗aHPr (Yi+1 = bH | Yi = aH) =
∑

aH∈G/H

v∗aHA
∗
aH,bH

= (A∗v∗)bH = λv∗bH = λvb.

Using these two theorems, we are able to prove the following corrollary.

Corrollary 3. If P is a random walk on Sn, the the signature vector v given
by

vπ =

{
1 if permutation π is even
-1 if permutation π is odd

is an eigenvector of A with eigenvalue λ = P ∗(even π)− P ∗(odd π).

Proof. The alternating group An is a normal subgroup of Sn with index 2.
So by Theorem 1, P induces a random walk P ∗ on Sn/An. The two cosets
of An are the even permutations (An itself) and the odd permutations. So if
p = P ∗(An), the transition matrix for the induced chain is

A∗ =

[
p 1− p

1− p p

]
Since

A∗ ·
[

1
−1

]
=

[
p− (1− p)
(1− p)− p

]
= (2p− 1)

[
1
−1

]
,[

1
−1

]
is an eigenvector of A∗ with eigenvalue 2p− 1. Therefore by Theorem

2 the signature vector is an eigenvector of A with the same eigenvalue.

4 Conclusion

In this research, we explored three areas—comparing the standard model
to the Geometric Model, finding a region of fast shuffling methods, and ex-
amining the eigenvalues and eigenvectors of the transition matrices.

17



GSR and the Geometric Model are models of riffle shuffling. The Geo-
metric Model is a generalization of the standard model by holding an extra
parameter, α, that describes the neatness of a shuffler. Out of 45 test subjects
who shuffled approximately 50 times each, the Geometric Model predicted
a good fit distribution for 16 people. This was an improvement over the
standard model, which predicted a good fit distribution for only 5 people.

Next, we considered the region where all fast shuffling methods lie. For
n = 3 we found one that was much faster than GSR (decay rate 0.11399).
About 20% of all shuffling models are faster than GSR for n = 3.

Lastly, we analyzed the transition matrix to find the significance of the
eigenvalues and eigenvectors. Through numerous computer trials and obser-
vations of the eigenvalues of the transition matrices for small decks, we found
and proved a pattern: the signature vector is an eigenvector for any shuffling
method.

We conclude that the Geometric Model should be the prominently used
model because it is a better fit for our samples’ shuffling patterns. The Ge-
ometric Model also holds faster shuffles than the standard model. Although
the relationship between the eigenvalues and eigenvectors and randomizing
the deck is still unclear, these results can help us conclude that there is an
evident correlation between the eigenvectors and eigenvalues with the ran-
domization. Further research should be done to find a stronger correlation
between large size decks and fast shuffles.

5 Definitions

1. A deck is an ordering of cards.

2. The neatness of a shuffler is defined as
Number of transitions

n−1

3. A permutation is a way of rearranging the ordering of cards.

4. A randomization of a deck is one that approaches uniform distribu-
tion.

5. A random walk is a repeated Markov Chain

6. A riffle shuffle is cutting the deck into two piles and dropping cards
by alternating from the left and right piles.
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7. The signature vector is a vector that is constructed based on whether
the permutation is odd or even.

8. A transition is when a hand from which a card is dropped switches
from the left and right piles.

9. A transition matrix is a n! × n! matrix which is made up of the
probability of transitioning from one deck to another.
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