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1 Introduction

Forcing is a technique that was discovered by Cohen in the mid 20th century,
and it is particularly useful in proving independence results. The process in-
volves adding new, generic elements to your universe and using them to prove a
result. In many applications this is encapsulated by the addition of suitable ax-
ioms, often these are Forcing Axioms. One of the first such principles is known
as Martin’s Axiom(MA). For explanation and background of MA see Kunen [3].
In general we consider the basic format of a forcing axiom to be as follows:

FAκ(P ) : For every partial order in the class P, for any family D of at most
κ-many dense subsets, there is a D-generic filter.

Due to the nature of Choice being independent of ZF, along with the general
concern over what propositions use Choice, it is natural to think of certain weak
choice principles as equivalent to forcing axioms. This can also make certain
proofs easier and more natural for individuals who are familiar with forcing but
less so with some other equivalents. This paper will prove equivalents between
several choice principles and appropriate forcing axioms.

2 Preliminary Results

The following lemma can be useful in working with a broad class of partial
orders that tend to come up often in applications.

Lemma 1 For any partial order such that every element is either minimal or
has two incompatibe extensions, G is a generic filter iff G = {y ∈ P | y ≥ x} for
some minimal element x

Proof:
⇐ is clear from the definition of a generic filter.
⇒ We know that G is a generic filter. Therefore we conclude that P \G is not
dense, for if it was then it would be a dense set that is not intersected by G. So
there is an element p ∈ G such that every extension of p is in G. This implies
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that p must be minimal, for otherwise the filter would contain incompatible
elements. For any D ∈ D, D contains every minimal element in P since if not
then D would not be dense, since that minimal element would be an element
for which the set contained nothing less than or equal to. Now we must show
that G is the upward closure of p. Take any other element q ∈ G. Then by
definition there must be a common extension r ∈ G that extends both p and q.
However p is minimal, so r = p. Therefore p ≤ q for any q in P. �

Some examples of formerly known equivalents between certain choice princi-
ples and forcing axioms:

It is a well established fact that the Axiom of Choice, which states that for
any family of sets there exists a choice function, is equivalent to Zorn’s Lemma.

Zorn′sLemma:
Every partial order with lower bounds on every chain contains a minimal ele-
ment.

It is natural that before working with weak choice principles we show how
full choice can be represented as a Forcing Axiom. In the next theorem let a
’Zorn’ Partial Order be any partial order that satisfies the conditions of Zorn’s
lemma (every chain has a lower bound) and satisfies the conditions from lemma
1 (every element is either minimal or has two incompatible extensions).

Theorem 1 Zorn’s Lemma ⇔ For every Zorn partial order, with every family
D of dense subsets, there exists a D-generic filter.

Proof:
⇒ Now consider any minimal element m ∈ P. Let Gm = {q ∈ P | q ≥ m}. Then
Gm is a generic filter, since m is a common extension for any two elements in
G, and for any D ∈ D we know m ∈ Gm ∩D by Lemma 1.
⇐ We know we can find a generic filter G on any Zorn partial order. G must
be the upward closure of a minimal element by Lemma 1. Therefore the partial
order must contain some minimal element. �

Next we consider a formulation of the weaker choice principle, Dependent Choice.

DependentChoice(DC) : Let R be a binary relation on X such that ∀x ∈
X ∃y ∈ X(xRy). Then there exists a sequence 〈xn | n < ω〉 such that
∀n < ω(xnRxn+1).

Theorem 2 DC ⇔ For all partial orders and every countable family of dense
sets D there is a D-generic filter.
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Proof:
⇒ Let P be a partial order. Let D = {Dn | n < ω}. Define a relation R

as the following: xRy ↔ y ≤ x and (x ∈
⋂n
k=0Dn → y ∈

⋂n+1
k=0 Dn) and

(x /∈ D0 → y ∈ D0) . Use dependent choice to obtain a sequence {xn}n∈N such
that xnRxn+1. Now let G = {y ∈ P | ∃n ∈ ω(y ≥ xn)}.
Claim : G is a generic filter.
G is a filter, since for any two elements y1, y2 there must be some xn such that
xn ≤ y1 and xn ≤ y2 by definition of G. It is clear that G is closed upward.
G is D-generic since each xn intersects the first n+1 dense sets Dn based on
the defined relation R. If x is in the intersection of the first n dense sets then
its successor in the sequence chosen must be in the first n + 1 sets. We know
that D0 must be intersected by either x0 or x1, and therefore every Dn will
eventually be intersected. So for every D there is some member of the sequence
that intersects that D (since there are only countably many). Each of these xn
is in the filter, so G is a D-generic filter for this partial order.

⇐ We need to construct a partial order from the set X with the binary re-
lation R. Let P = {p ∈ X<ω | ∀i < dom(p)(p(i)Rp(i+ 1)} with p ≤ q ↔ q ⊆ p.
Let En = {p ∈ P | n ∈ dom(p)}. Each En is dense, since every finite function
can be extended to some element with larger domain, specifically each element
p ∈ En has a witness in Edom(p)+1. Therefore our conditions are satisfied and
there is a E-generic filter on this partial order. Since G intersects every En G
contains functions of arbitrarily large finite length. If we take

⋃
G this gives

us a full function from ω to X, since every n is in the domain of this function.
Therefore since we defined our partial order using the relation R there is a se-
quence 〈xn | n ∈ ω〉 such that xnRxn+1 �

The next theorem is from Shannon [4], removing an unnecessary condition and
simplifying the proof in order to clarify and provide another example of the link
between forcing axioms and choice principles.

Define a class of partial orders Γ = {P | P is the countable union of finite
sets}

Theorem 3 ACωfin ⇔ FAω(Γ)

Proof:
⇒ This proof follows the proof of MA(ω) from [3]. We know that ACωfin is
equivalent to ”The union of a denumerable collection of finite, pairwise disjoint
non-empty sets is denumerable”. Let D = {Dn : n ∈ ω} be our countable
family of dense subsets. Define pn as follows: let p0 be any element of P. Let
pn+1 ∈ Dn and pn+1 ≤ pn. These can be selected using a well-ordering of P by
choosing least elements. We then let G = {q ∈ P | ∃n(q ≥ pn)}. Then G is a
D-generic filter.

3



⇐ Let Cn be a sequence of finite nonempty sets. Let P be the set of choice
functions on finite initial segments of the sequence. Define ≤ on P by reverse
inclusion. P is the countable union of finite sets, since there are countably
many finite initial segments, each with finitely many choice functions. Let
D = {Dn | n < ω} where Dn = {p ∈ P | ∀(i ≤ n)Cn ⊆ dom(p)}. It is
clear that Dn is dense for each n. Therefore we can get G a D-generic filter.
Let f =

⋃
G. First we must justify that f is a function. f cannot choose two

elements for the same set, since these would have to come from two incompati-
ble finite functions, which cannot both be in a filter together. f must also have
domain equal to all of the Cn since G meets Dn. Therefore f is a choice function
on these countably many finite sets. �

3 Main Results

The Boolean Prime Ideal Theorem (BPI) is a relatively strong version of choice,
which can often be substituted in many proofs in place of full choice. As such
there are many known equivalences and consequences of BPI. The purpose of
this section is to introduce a new equivalent in the realm of forcing and show
how this can be used in place of other versions of BPI in proofs.

Boolean Prime Ideal Theorem :
Every Boolean Algebra has a prime ideal.

Most equivalent statements to BPI involve using that a property is consistent
for every finite case in order to prove the full case. The equivalent statement we
are most concerned with in this paper is the Consistency Principle. For proof
that the consistency principle is equivalent to the boolean prime ideal theorem
see Jech [2].

Consistency Principle : Every binary mess has a consistent function.

We would like to put forward a new equivalent to BPI in the form of a Forcing
Axiom, or as similar to a standard Forcing Axiom as possible. Following the ex-
ample of Cowen in [1] equivalents to the BPI seem to require moving away from
a strict adherence to the forcing axiom form discussed above. The requirements
on antichains in the following theorem are in the same vein as the piercing sets
of levels discussed in [1].

Theorem 4 BPI ⇔ For every partial order P with A a family of finite an-
tichains such that ∀F ∈ [A]<ω∃p ∈ P∀A ∈ F∃q ∈ A(p ≤ q) then there is a
A-generic linked family on P.

Proof:
⇐ We have a binary mess M on a set X and we would like to define an ap-
propriate partial order and family of finite antichains. Let P = {m | m ∈ M}

4



with p ≤ q ↔ q ⊆ p. So extension is determined by function extension. Next
define ∀B ∈ [X]<ω the set AB = {m ∈ M | dom(m) = B}. Each AB is a finite
antichain. They are finite since each A is finite and there can only be finitely
many distinct functions from some finite domain into 2. They must also form
an antichain since any two distinct elements must disagree at some point in the
domain, and therefore cannot both be extended to the same function.

Next we would like to show that the family of AB satisfies our condition.
For any finite subset {AB1

...ABn
} we can take the union of the corresponding

Bi, which will still be finite since the finite union of finite sets is finite. Since
our partial order is made of every element of the mess (which must contain an
element corresponding to every finite domain), there must be some p ∈ P such
that dom(p) =

⋃n
i=1Bi. Furthermore the restriction of p to any of the Bi must

also be in the mess and therefore in the partial order. Thus p extends an ele-
ment in each of the ABi

.Thus the family of all of the AB satisfies our condition
on the finite antichains. Therefore there exists G, a linked family that intersects
each of the AB .

Now we claim that f =
⋃
G is our consistent function. First we want to

show that f is a function, i.e. it does not contradict itself at any point in the
domain. This is however guaranteed by the fact that G is a linked family. Any
two elements of a linked family are compatible and therefore they must agree
on any common domain. Next we want to ensure that dom(f) = X. This is
clear, since G is A-generic, for any finite subset B of X, including the singletons,
G intersects AB which means B ⊂ dom(f). From the above argument as to
why the AB are antichains, it is clear that G intersects each AB in exactly one
element. So for every A, if we take f � B, this element is in the mess/partial
order. Therefore f is a consistent function.

⇒ In this direction we start with an arbitrary partial order with a family
of finite antichains that satisfy our condition, and we wish to define an ap-
propriate binary mess. Let X be the set of all elements of the partial order.
M = {m : P → 2 | P ∈ [X]<ω ∧ (∀x, y ∈ P (m(x) = m(y) = 1→ x 6⊥ y) ∧ (A ∈
A ∧A ⊆ P → ∃x ∈ A(m(x) = 1))}.

First we claim that M is a binary mess. It is clear that M is closed under
restrictions. If an antichain is still entirely contained in the restricted domain
then the same element gets mapped to one, and whatever elements that still
remain that get mapped to one are still compatible. To show that every finite
subset of X is the domain for some element of M we will construct such a func-
tion. Let P ∈ [X]<ω. Consider all finite antichains entirely contained in P.
There can be only finitely many of these antichains, since P is finite. By our
condition on these antichains, there is some element p that extends an element
from each of these antichains. Take all q such that p ≤ q and let m send these
q to one, send the rest of P to zero. This m will be in the mess. So every finite
subset of X is the domain for some element of M. Therefore M is a binary mess.
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By the consistency principle, we can get a function f that is consistent with
the mess. We let G = {p | f(x) = 1}. We claim that G is a A-generic linked
family. Let x, y ∈ G. Clearly, based on our definition of M, these two elements
are compatible. Its also clear, since f is a consistent function, that f � P is in
the mess for every P ∈ [X]<ω, so G must intersect each of our finite antichains,
since by definition an element in this antichain must get mapped to one by f.
Thus G is an A-generic linked family. �

We will show some ways in which this new equivalence can be used to prove
other equivalent statements or consequences of the boolean prime ideal theorem.
For the sake of convenient notation, let FA represent the equivalent formulation
introduced in Theorem 4.

Example
The following theorem is actually equivalent to BPI but we will show specifically
how it can be proved from this equivalent of BPI.

Theorem 5 FA ⇒ Let {Ai} be a collection of finite sets and S a symmetric
binary relation on

⋃
i∈I Ai Suppose that for every finite W ⊂ I there is an S-

consistent choice function for {Ai}i∈W . Then there is an S-consistent choice
function for {Ai}i∈I .

Proof:
First we will define our partial order and collection of finite antichains. So
let P = {p | p is an s-consistent choice function on a finite subcollection of
{Ai | i ∈ I}} with p ≤ q ↔ q ⊆ p. Then for every finite W ∈ I let DW be
the antichain consisting of all S-consistent choice functions on {Ai}i∈W . This
antichain must be finite since W and each of the Ai are finite. Let the collection
of all the DW be our family of antichains A. However for any finite collection of
antichains, there must be an element that extends an element of each of the an-
tichains. This is because the finite union of the corresponding W is also a finite
subset and so the S-consistent choice function on that union can be restricted to
any of the component subsets and be in the corresponding antichains. Therefore
we have an A-generic linked family, call it G.

Let f =
⋃
G. We claim that f is a full S-consistent choice function. Since

any two elements of G must be compatible, there can be no point where the
function disagrees with itself. Furthermore, its clear that since G intersects
every finite antichain in our family, it must choose one element from each Ai,
since W = {i} is a finite subset. Thus we know f is a choice function now we
need to show that it is S-consistent. For any two elements Ax, Ay f � {Ax, Ay}
is S-consistent by assumption, and so this relationship must hold for the unre-
stricted function as well. Therefore f is S-consistent. �
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Example
The Ordering Principle is a choice principle that is known to be strictly weaker
than, and follow from, the boolean prime ideal theorem. The ordering principle
states that any set can be linearly ordered.

Theorem 6 FA ⇒ Every set can be linearly ordered.

Proof:
Let X be an arbitrary set. Define a partial order P = {≤|≤ is a linear order
on some A ∈ [X]<ω}. We will use reverse inclusion, so ≤ R �↔�⊆≤. For
each P ∈ [X]<ω let AP be all of the linear orders of P. These exist since finite
sets can be linearly ordered. These are finite antichains, since there are only
finitely many possible orderings of a finite set, and if two linear orders differ
then they can have no common extension. For any finite collection of these,
take the union of the corresponding finite subsets, this can be linearly ordered
and the restriction to any of the component subsets extends an element from
each of the finite antichains.

Therefore we have an A-generic linked family, G. If we take
⋃
G we claim

this is a linear order on X. To show trichotomy holds, for any two distinct ele-
ments of X, one must be greater than the other, since an order on just those two
elements must be in the linked family (since the family is generic and therefore
must intersect that antichain). This also shows that G is antisymmetric, since
if distinct elements were both less than each other, they would be incompatible
and so could not be in the linked family. Reflexivity is clear, since for any x,
x ≤ x is the only partial order that can exist on the singleton sets, and so must
be included in G. In order to show transitivity consider x,y,z in X. Then, since
G is A-generic, it must contain a linear ordering on x,y, and z which is not
contradicted by any other element of G. So if x ≤ y and y ≤ z then x ≤ z must
be in the finite linear order, and thus must be contained in the full order. �

Next we consider another weak choice principle which follows from the Ordering
Principle. We will then use some of the ideas from [4] to show an equivalence
with a forcing axiom.

ACLO
fin : Every linearly-orderable collection of finite sets has a choice function.

In order to prove the next theorem first we define a class of partial orders.
For any n < ω let ∆n be all partial orders that are linearly orderable unions
of finite sets with antichains of size at most n. In the following theorem there
is no restriction on the cardinality of the family of dense sets, and so the filter
obtained is fully generic.
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Theorem 7 ACLOfin ↔ for any n FA(∆n) and the filter obtained will be linearly-
orderable.

Proof:
⇒ Since there is an upper bound on the size of the antichains we know that
there are no infinite sequences of increasing antichains. Therefore we can find
antichains of maximal length in P. Pick one such antichain and call it A. Define
for some x that is an element of such an antichain, Gx = {y : y 6⊥ x}. We
claim that Gx is a linearly-orderable generic filter. Gx inherits the linear order
from the full partial order. Clearly Gx must intersect every dense set, since for
any dense D, there must be some y ∈ D such that y ≤ x. And that element y
must be in Gx. To show that Gx is a filter we use a technique from [4]. Take
y, z ∈ Gx. By definition there are elements u, v ∈ Gx such that u ≤ x, u ≤ y and
v ≤ x, v ≤ z. There must be a w ∈ Gx such that w ≤ u,w ≤ v. (If there was
no such w then the antichain I that x belongs to could be extended by taking
A \ x ∪ {u, v}.) Therefore Gx is a generic filter.

⇐ Let I be a linearly orderable index on a collection {Ai}i∈I of finite sets.
Take P =

⋃
i∈I Ai and ∀x,∀y(x ≤ y). It should be noted that this defines a

quasi-order, however in general quasi-orders can be collapsed into partial orders.
Note that each Ai forms a dense set, so our filter G must intersect each Ai. Since
each Ai is finite we can take the minimal element of each of these intersections
with respect to the linear order on G. Define f =

⋃
G this is a choice function on

our linearly orderable collection of finite sets. Since we chose minimal elements,
f chooses only one element from each Ai. As mentioned above, f must choose
some element for each set, since non of the intersections G ∩Ai are empty. �
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