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1 Introduction

Let A = (aij) be an n× n real or complex matrix. The permanent of A is defined as

perA =
∑
σ∈Sn

n∏
i=1

aiσ(i),

where Sn is the symmetric group of permutations σ of {1, ..., n}. The permanent is difficult to compute; the
quickest known exact algorithm of roughly 2n complexity belongs to Ryser and goes as follows.

Let t1, ..., tn be independent commuting variables and let

rA(t1, ..., tn) =

n∏
i=1

 n∑
j=1

aijtj


For a subset I ⊆ {1, ..., n} let tI = (t1, ..., tn) be a vector where

ti =

{
0 if i ∈ I
1 if i /∈ I

Then we have
perA =

∑
I

(−1)|I|rA(tI)

2 Approximating ln(per)

As can be seen, computing permanent directly is difficult, so we explore a method presented by Prof.
Barvinok to approximate ln(per). The basic idea is as follows: let Jn be the n × n matrix filled with 1s.
Following in the footsteps of lemma (3.5) of [1], consider the univariate function

fA(z) = ln per(Jn + z(A− Jn))

in a neighborhood of z = 0 and let

Tm,A(z) = fA(0) +

m∑
k=1

f
(k)
A (0)

zk

k!
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be the Taylor polynomial of fA(z) of degree m at z = 0. Then define

pm,n(A) = Tm,A(1) = fA(0) +

m∑
k=1

f
(k)
A (0)

k!

Then for complex n× n matrices A, pm,n(A) approximates ln perA reasonably well so long as

|1− aij | ≤ δ (2.1)

for all 1 ≤ i, j ≤ n and δ ∈ (0, 1). Much of our work went into implementing this approximation. Naively
one could just compute the functions as written, but that requires computing a permanent, which defeats
the purpose, so we need to improve the speed.

Let gA(z) = per(Jn+z(A−Jn)). It is shown in [1] that computing the first m derivatives f (1)(0), ..., f (m)(0)
reduces to computing the first m derivatives of g(1)(0), ..., g(m)(0). Retrieving the values of the derivatives
of f from those of g is equivalent to solving the linear system in section 3.6 of [1] and can be done in O(m2)
time. It can also be shown that

g(k)(0) = (n− k)!
∑

(i1,..,ik)
(j1,...,jk)

(ai1j1 − 1) · · · (aikjk − 1)

where the sum is taken over all ordered sets {i1, ..., ik}, {j1, ..., jk} satisfying 1 ≤ i1 < ... < ik ≤ n and
1 ≤ j1 < ... < jk ≤ n. This can be further re-written as

g(k)(0) = (n− k)!k!wk(A− Jn)

where wkB is the sum of the permanents of all k× k submatrices of a matrix B; we introduce the k! term to
account for the fact that the permanent of those submatrices is exactly the sum, only taken over unordered
sets. The approach for computing wkA is given in [2] as follows:

Let p(x) be a polynomial of degree k in n ≥ k variables with p(0) = 0. Define

si =
∑

bj∈{0,1}
n∑

j=1
bj=i

p(b1, ..., bn) (2.2)

where the sum is taken over all 0-1 vectors of length n with exactly i 1s.

Define an k − 1× k − 1 lower triangular matrix A = (aij) by

aij =

(
n− j
i− j

)
if i ≥ j and aij = 0 otherwise

Let dn = (dn,1, ..., dn,k−1) be the unique solutions of the system of linear equations dnA = (−1, ...,−1).
Then we have ∑

1≤i1<...<ik≤n

∂kp

∂xi1 ...∂xik
(0) = p(1, ..., 1) +

∑
1≤j≤m−1

sjdn,j (2.3)

For x := (x1, ..., xn)> ∈ Cn let

Sk(x) =
∑

1≤i1<...<ik≤n

xi1 ...xik

Let A be an n× n complex matrix and define pk,A(x) := Sk(Ax). Then we have

wkA = pk,A(1, ..., 1) +
∑

1≤j≤k−1

sjdn,j (2.4)



where the si is defined by 2.2 for p = pk,A. Everything in this approach can be implemented in a straight-
forward manner with the exception of the computing of Sk(x), which can be done very quickly using Newton’s
identities.

Using a third degree approximation (which is motivated by the incredible accuracy of this approximation,
see Table 1), this method allows us to approximate 100 × 100 matrices in less than 10 seconds, while the
naive method (which computed permanents using Rysers method) was limited to about 15× 15 in a similar
amount of time. For a more complete idea of the speed of this approximation, see Table 3, which shows the
average time (taken over 100 trials) to compute the 3rd degree approximations of matrices whose entries were
selected independently randomly from the interval (0, 2). For accuracy of approximation, see Table 1. Note
that we only give the accuracy of the approximations up to n = 15 since we need to compute the real value
to get the error, and we cannot handle larger matrices quickly. Table 1 shows the average percent errors for
100 matrices who’s entries were picked independently randomly subject to 2.1 and δ ∈ {0.1, 0.2, ..., 0.9} and
n ∈ {3, 4, ..., 15} when approximated to degree 3. For results using complex matrices, see 9, which shows the
average error (taken over 100 trials) of matrices whose complex entries were selected independently randomly
from the set of aij satisfying |1 − aij | < δ for various δ. Again we use a third degree approximation. Here
we stop at n = 14 because computing the real value of the permanent for complex matrices is about twice
as slow as for real matrices, and we cannot handle 15 × 15 in a reasonable amount of time. Note that all
error terms (in all tables presented in this paper) are errors approximating the actual permanent, not the
natural log of the permanent.

2.1 0-1 Matrices

There is great interest in computing the permanent of 0-1 matrices because of their relation to graph theory,
and the approach above gives good numerical results for such matrices. Table 2 gives average percent errors
of matrices constructed randomly (entries chosen independently) with probability p of a given entry being 0
(taken over 100 trials).

3 Doubly stochastic matrices

As is shown in [6], computing the permanent of a non-negative matrix reduces by scaling to computing the
permanent of a doubly stochastic matrix. This motivates the need for similar approximation schemes for
doubly stochastic matrices.

3.1 Defining qA(z)

In an attempt to create such a scheme we answer a question posed in [1]. Define the univariate polyno-
mial

qA(z) = per

(
1

n
Jn + z(A− 1

n
Jn)

)
(3.1)

where Jn is the n× n matrix filled with 1s. Does there exist an absolute constant γ > 0 such that

qA(z) = 0 for z ∈ C =⇒ dist(z, [0, 1]) ≥ γ

for any doubly-stochastic A? If the answer is yes, then a modification of Section 4.2 of [1] would produce a
similar approximation scheme as the one presented in Section 2.



Unfortunately, we prove that no such constant exists. To do this, define

wk(A) :=
∑

I,J⊆{1,...,n}
|I|=|J|=k

perA[I, J ] (3.2)

where A[I, J ] is the k × k matrix with entries in rows from I and columns from J . Then by the work of
professor Barvinok we have the following reformulation:

qA(z) = per

(
zA+ (1− z) 1

n
Jn

)
(3.3)

=

n∑
k=0

(n− k)!

nn−k
wk(A)zk(1− z)n−k (3.4)

= (1− z)n
n∑
k=0

(n− k)!

nn−k
wk(A)

zk

(1− z)k

= (1− z)n
n∑
k=0

(n− k)!

nn−k
wk(A)yk where y =

z

1− z
(3.5)

The jump from 3.3 to 3.4 is a direct consequence of Theorem 1.4 of [7]. Because of 3.3 we know qA(1) 6= 0
so we are interested in the roots of

n∑
k=0

(n− k)!

nn−k
wk(A)yk

3.2 Special Case: A = In

Note that

wk(In) =

(
n

k

)
Then by substituting in 3.5 we have the further reformulation, also given by professor Barvinok:

qIn(z) = (1− z)n
n∑
k=0

(n− k)!

nn−k

(
n

k

)
yk

= (1− z)n
n∑
k=0

n!

k!nn−k
yk where y =

z

1− z

= (1− z)n n!

nn

n∑
k=0

xk

k!
where x =

nz

1− z

Thus we are interested in the roots of

r(x) =

n∑
k=0

xk

k!

Luckily this is the truncated exponential series, and thanks to [5] we know the normalized complex roots of
this series converge to the Szegő curve given by the set of complex solutions of the equation

{|ze1−z| = 1}

We know that the Szegő curve is the asymptotic distribution of the roots of r(nx). Thus if x0 is a root of
r(nx) we substitute to get that nx0 = nz

1−z =⇒ z = x0

1+x0
. As n → ∞ we know that the values of x0

become the Szegő curve. In particular, since the Szegő curve passes through (1, 0), our transformed Szegő
curve passes through (1/2, 0). Numerical evidence of this fact can be found in figure 1.



4 Negative matrices

Lastly we work to expand our method to real matrices with negative entries. Consider a matrix A such that
the entries are non-negative and the row and column sums do not exceed 1. Define the polynomial

rA(z) = per

(
1

n
Jn + zA

)
for z ∈ C.

If ρ > 0 such that
rA(z) 6= 0 for |z| < ρ

then for any 0 < δ < ρ we can efficiently approximate

rA(−δ) = per

(
1

n
Jn − δA

)
which gives a method to approximate permanents of real matrices 1

nJn − δA that allow positive, negative,
and zero entries. As before we can write

rA(z) =

n∑
k=0

(n− k)!

nn−k
wk(A)zk

From [3] we know that the roots of

pA(z) =

n∑
k=0

wk(A)zk

are negative real and satisfy z ≤ − 1
4 . From [4] we can find a real ρ0 > 0 such that all roots of the

polynomial

en(z) =

n∑
k=0

(nz)k

k!

satisfy |z| > ρ0. In fact the largest value of ρ0 is given as the distance of the point on the Szegő which is
closest to the origin, and is the solution to xe1−x = −1, which is ≈ 0.278. Then by a theorem of Szegő given
in [8] we know that the roots of the Schur composition

(pA ◦ en)(z) =

n∑
k=0

nkwk(A)

k!
(
n
k

) zk

=
nn

n!

n∑
k=0

(n− k)!

nn−k
wk(A)zk

=
nn

n!
rA(z)

satisfy |z| > ρ0
4 , so we can choose

ρ =
ρ0
4

In other words we can use the approximation method of section 2 to approximate rA(−δ) for 0 < δ < 0.278
4 .

For numerical results, see Tables 4, 5, and 6. The first of these tables shows the average percent error of
matrices constructed randomly as follows. A matrix A would be made by choosing each entry independently
randomly from (0, 1/n), and then we would approximate 1

nJn − δA with the various δ shown. Each spot in
the table represents average percent error for 100 trials. The second and third tables shows the case when A
is the n×n identity matrix, and again we approximate 1

nJn−δA for various δ. We give two tables, one shows
the data for a large spread of δ, and the other zooms in around the values of δ where the approximation



begins to break down. In all cases we used a third degree approximation. While we can only guarantee that
these methods work for 0 < δ < 0.278

4 ≈ 0.07, the data suggests that we can reasonably use this approach
for 0 < δ < 1/3, and if the matrix is unstructured for 0 < δ < 0.8. Lastly this method can be used to
approximate 0-1 matrices as follows:

If B is an n×n matrix of 0s and 1s, we may ask how many 0s can we afford in each row and column so that
perB can be approximated using the same approach. In other words we can write

1

n
B =

1

n
Jn − tA

where A is an n×n non-negative matrix with row and column sums not exceeding 1 and 0 ≤ t < ρ. Fix any
row (or column) i and let ki be the number of 0’s in the the ith row of B. Then we have

tA =
1

n
(Jn −B)

Since
∑n
j=1 aij ≤ 1 the above implies that t ≥ ki

n =⇒ ρ ≥ ki
n =⇒ ≈ 0.278

4 ≥ ki
n meaning we can guarantee

only 0.278
4 ≈ 7% of zeros. However, numerical trials suggest that we can realistically allow more zeros. For

example, see tables 7 and 8, which give 3rd degree approximations for random 0−1 matrices B with exactly
b δnc 0s in each row and column. Here the entries are not independently random, because we require an
exact number of 0s in each row and column - however we do randomly sample from the set of matrices with
exactly b δnc 0s in each row and column. We take 100 trials for various n and δ, and the second table zooms
in around where the approximation begins to break down.

5 Complex Roots

Lastly we address and unrelated question posed by professor Barvinok: Theorem 1.4 of [1] states that if
Z = (zij) is an n× n complex matrix such that

|1− zij | ≤
1

2
∀i, j

then perZ 6= 0. What is the largest possible δ > 0 such that if Z = (zij) is an n × n complex matrix
satisfying

|1− zij | ≤ δ ∀i, j

then perZ 6= 0?

While we cannot answer the question definitively, we note that the proof of Theorem 1.4 relies on a geometric
lemma about complex vectors and a chain of inequalities. Consider

M =

(
7
6 +

√
2
3 i

3
4 +

√
3
4 i

1 3
2

)
This matrix achieves every equality in the proof and the permanent is non-zero, which suggests that if 1/2
is a sharp bound, it can only be achieved asymptotically.



6 Tables and figures

Table 1: percent error of random matrices for various n and δ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3 4.46E-04 5.56E-03 3.11E-02 1.05E-01 2.98E-01 6.52E-01 1.29E+00 2.50E+00 3.71E+00
4 3.80E-04 5.37E-03 3.03E-02 9.59E-02 2.37E-01 5.52E-01 1.11E+00 1.83E+00 3.13E+00
5 3.03E-04 4.65E-03 1.93E-02 6.26E-02 1.94E-01 3.13E-01 6.88E-01 1.58E+00 2.38E+00
6 2.30E-04 3.67E-03 1.50E-02 6.39E-02 1.32E-01 3.26E-01 4.94E-01 1.00E+00 1.84E+00
7 1.64E-04 3.01E-03 1.50E-02 4.95E-02 1.47E-01 3.09E-01 4.98E-01 1.09E+00 1.29E+00
8 1.59E-04 2.22E-03 1.04E-02 3.57E-02 9.56E-02 1.79E-01 4.18E-01 7.85E-01 1.15E+00
9 1.44E-04 2.06E-03 1.06E-02 3.43E-02 7.96E-02 1.81E-01 3.84E-01 5.39E-01 1.03E+00
10 1.24E-04 1.77E-03 1.02E-02 2.99E-02 8.92E-02 1.63E-01 2.69E-01 5.41E-01 7.93E-01
11 9.11E-05 1.63E-03 7.77E-03 2.39E-02 6.89E-02 1.53E-01 2.49E-01 4.84E-01 7.39E-01
12 1.01E-04 1.66E-03 8.82E-03 2.46E-02 5.87E-02 1.36E-01 2.95E-01 4.62E-01 7.74E-01
13 8.28E-05 1.28E-03 6.69E-03 2.16E-02 5.30E-02 9.47E-02 2.08E-01 4.12E-01 7.25E-01
14 8.90E-05 1.45E-03 6.76E-03 2.15E-02 6.01E-02 9.85E-02 2.19E-01 3.23E-01 5.97E-01
15 8.18E-05 1.43E-03 6.39E-03 2.14E-02 4.42E-02 1.03E-01 1.91E-01 3.71E-01 5.61E-01

Table 2: percent error of random 0-1 matrices for various n and probability p of zeros
0.1 0.2 0.3 0.4 0.5

3 1.60E+00 6.97E+00 9.33E+00 1.51E+01 1.55E+01
4 1.12E+00 7.17E+00 1.69E+01 1.88E+01 2.97E+01
5 1.09E+00 1.02E+01 2.12E+01 2.98E+01 4.05E+01
6 6.96E-01 5.65E+00 1.37E+01 5.06E+01 6.50E+01
7 7.94E-01 6.23E+00 2.11E+01 3.65E+01 9.45E+01
8 5.25E-01 3.24E+00 1.37E+01 3.59E+01 1.81E+02
9 4.87E-01 3.28E+00 1.18E+01 4.18E+01 1.23E+02
10 4.25E-01 3.03E+00 1.26E+01 5.22E+01 1.15E+02
11 4.38E-01 2.75E+00 9.77E+00 3.06E+01 1.36E+02
12 4.16E-01 2.49E+00 1.06E+01 3.92E+01 1.34E+02
13 5.14E-01 2.78E+00 1.11E+01 3.36E+01 1.25E+02
14 3.61E-01 2.65E+00 1.10E+01 3.88E+01 1.14E+02
15 3.74E-01 2.96E+00 1.19E+01 3.99E+01 1.20E+02



Table 3: average time (of 100 trials) to compute p3, n(A) for various n and A, where each aij is selected
independently randomly from (0, 2)

n time (sec)
20 0.0995
40 0.4636
60 1.1916
80 4.8871
100 8.4683
120 14.8043
140 23.3279
160 30.187
180 42.0778
200 61.2965

Table 4: Average percent error (taken over 100 trials) of the 3rd degree approximation of Jn−δA for various
δ and n, where A is constructed by randomly independently selecting aij from the interval (0, 1/n).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3 9.00E-04 1.53E-02 8.34E-02 2.81E-01 6.34E-01 1.93E+00 2.82E+00 6.99E+00 1.45E+01
4 1.00E-03 1.69E-02 9.16E-02 3.37E-01 8.43E-01 2.03E+00 3.25E+00 7.17E+00 1.55E+01
5 1.20E-03 1.85E-02 1.11E-01 3.91E-01 1.01E+00 1.96E+00 4.13E+00 8.87E+00 1.47E+01
6 1.30E-03 2.24E-02 1.13E-01 4.01E-01 1.02E+00 2.25E+00 4.62E+00 9.08E+00 1.61E+01
7 1.50E-03 2.43E-02 1.26E-01 4.40E-01 1.14E+00 2.83E+00 5.01E+00 1.04E+01 1.83E+01
8 1.70E-03 2.73E-02 1.47E-01 5.07E-01 1.33E+00 2.82E+00 6.10E+00 1.12E+01 2.17E+01
9 1.80E-03 3.07E-02 1.57E-01 5.35E-01 1.42E+00 3.18E+00 6.43E+00 1.24E+01 2.40E+01
10 2.00E-03 3.37E-02 1.81E-01 6.14E-01 1.50E+00 3.57E+00 6.92E+00 1.36E+01 2.45E+01
11 2.10E-03 3.58E-02 1.85E-01 6.34E-01 1.66E+00 3.84E+00 7.50E+00 1.43E+01 2.66E+01
12 2.30E-03 3.77E-02 2.04E-01 6.97E-01 1.75E+00 4.07E+00 8.13E+00 1.54E+01 2.73E+01
13 2.50E-03 4.02E-02 2.25E-01 7.19E-01 1.87E+00 4.45E+00 8.37E+00 1.64E+01 3.01E+01
14 2.60E-03 4.43E-02 2.43E-01 7.97E-01 1.98E+00 4.55E+00 9.17E+00 1.78E+01 3.25E+01
15 2.90E-03 4.76E-02 2.44E-01 8.30E-01 2.16E+00 4.75E+00 9.59E+00 1.87E+01 3.40E+01



Table 5: Percent error of 3rd degree approximation of Jn − δIn for various δ and n. Note: The ERROR
terms in the table indicate that the permanent was negative or zero, and our approximation is meaningless
in these cases.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
3 2.38E-03 4.30E-02 2.46E-01 8.84E-01 2.48E+00 6.02E+00 1.35E+01 2.98E+01 7.15E+01
4 3.15E-04 1.19E-02 1.07E-01 5.32E-01 1.90E+00 5.40E+00 1.28E+01 2.53E+01 4.21E+01
5 4.21E-05 3.34E-03 4.72E-02 3.31E-01 1.59E+00 6.17E+00 2.23E+01 1.03E+02 ERROR
6 5.61E-06 9.41E-04 2.10E-02 2.04E-01 1.26E+00 5.64E+00 1.87E+01 4.34E+01 6.96E+01
7 7.86E-07 2.67E-04 9.37E-03 1.28E-01 1.06E+00 6.60E+00 4.12E+01 ERROR ERROR
8 1.32E-07 7.62E-05 4.21E-03 8.06E-02 8.59E-01 6.06E+00 2.72E+01 6.42E+01 8.82E+01
9 1.01E-08 2.18E-05 1.90E-03 5.11E-02 7.25E-01 7.24E+00 9.18E+01 ERROR ERROR
10 1.54E-08 6.30E-06 8.62E-04 3.24E-02 5.97E-01 6.64E+00 3.82E+01 8.11E+01 9.62E+01
11 1.31E-08 1.70E-06 3.93E-04 2.07E-02 5.06E-01 8.12E+00 3.99E+02 ERROR ERROR
12 6.70E-09 5.28E-07 1.79E-04 1.32E-02 4.21E-01 7.37E+00 5.09E+01 9.12E+01 9.88E+01
13 3.38E-07 5.27E-07 8.22E-05 8.48E-03 3.57E-01 9.23E+00 ERROR ERROR ERROR
14 2.06E-07 4.15E-08 3.76E-05 5.45E-03 3.00E-01 8.25E+00 6.38E+01 9.62E+01 9.97E+01
15 2.96E-07 4.28E-07 1.78E-05 3.51E-03 2.55E-01 1.06E+01 ERROR ERROR ERROR

Table 6: Percent error of 3rd degree approximation of Jn− δIn for various δ and n, zoomed in around where
the approximation begins to break down. Note: The ERROR terms in the table indicate that the permanent
was negative or zero, and our approximation is meaningless in these cases.

0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35
3 2.48 2.99 3.58 4.27 5.08 6.02 7.10 8.36 9.83 11.50 13.50
4 1.90 2.38 2.95 3.64 4.45 5.40 6.51 7.79 9.25 10.90 12.80
5 1.59 2.11 2.78 3.65 4.76 6.17 7.99 10.30 13.30 17.20 22.30
6 1.26 1.74 2.38 3.21 4.28 5.64 7.35 9.46 12.00 15.10 18.70
7 1.06 1.55 2.25 3.24 4.63 6.60 9.37 13.30 19.10 27.70 41.20
8 0.86 1.31 1.97 2.91 4.23 6.06 8.53 11.80 15.90 21.10 27.20
9 0.73 1.17 1.87 2.95 4.63 7.24 11.30 17.90 29.00 49.20 91.80
10 0.60 1.00 1.66 2.69 4.27 6.64 10.10 14.80 21.20 29.00 38.20
11 0.51 0.90 1.58 2.74 4.72 8.12 14.10 25.00 47.30 104.00 399.00
12 0.42 0.78 1.42 2.52 4.37 7.37 12.00 18.70 27.80 38.90 50.90
13 0.36 0.70 1.35 2.58 4.87 9.23 17.80 36.40 86.50 393.00 ERROR
14 0.30 0.61 1.23 2.39 4.52 8.25 14.40 23.60 35.90 50.00 63.80
15 0.26 0.55 1.17 2.45 5.08 10.60 23.00 55.90 210.00 ERROR ERROR



Table 7: Average percent error of 3rd degree approximation of B = Jn − δA, where B is a random 0 − 1
matrix with exactly b δnc 0s in each row and column, taken for various δ and n, (taken over 100 trials) Note:

The 0 terms in the table come from when δ is too small, so b δnc = 0, and the approximation is unneeded
because the matrix has only 1’s in it.

0.1 0.2 0.3 4 0.5 0.6 0.7 0.8
3 0.00E+00 0.00E+00 0.00E+00 1.04E+01 1.04E+01 1.04E+01 5.07E+01 5.07E+01
4 0.00E+00 0.00E+00 1.90E+00 1.90E+00 2.02E+01 2.09E+01 1.97E+01 6.85E+01
5 0.00E+00 3.31E-01 3.31E-01 3.57E+00 3.68E+00 2.63E+01 2.60E+01 7.48E+01
6 0.00E+00 4.79E-02 4.79E-02 5.45E-01 4.25E+00 3.30E+00 3.36E+01 3.39E+01
7 0.00E+00 6.06E-03 2.75E-01 2.97E-01 1.46E+00 4.30E+00 4.34E+00 4.60E+01
8 0.00E+00 6.80E-04 1.80E-01 7.79E-01 1.36E+00 1.19E+00 1.17E+01 7.60E+01
9 0.00E+00 7.00E-05 1.18E-01 5.09E-01 4.85E-01 6.56E+00 2.95E+01 1.51E+02
10 1.00E-05 8.17E-02 3.36E-01 3.01E-01 4.54E+00 1.95E+01 6.80E+01 2.78E+02
11 0.00E+00 5.78E-02 2.28E-01 2.21E-01 3.18E+00 1.35E+01 4.31E+01 1.30E+02
12 0.00E+00 4.25E-02 1.67E-01 1.88E-01 9.54E+00 2.88E+01 7.97E+01 2.45E+02
13 0.00E+00 3.30E-02 1.22E-01 1.82E+00 7.09E+00 2.04E+01 1.43E+02 4.67E+02
14 0.00E+00 2.54E-02 1.14E-01 1.41E+00 1.50E+01 3.75E+01 9.19E+01 8.59E+02
15 0.00E+00 7.38E-02 9.96E-02 4.18E+00 1.14E+01 6.34E+01 1.52E+02 1.62E+03

Table 8: Average percent error of 3rd degree approximation of B = Jn − δA, where B is a random 0 − 1
matrix with exactly b δnc 0s in each row and column, taken for various δ and n, zoomed in around where the
approximation begins to break down (taken over 100 trials) Note: The 0 terms in the table come from when
δ is too small, so b δnc = 0, and the approximation is unneeded because the matrix has only 1’s in it.

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.04E+01 1.04E+01 1.04E+01
4 0.00E+00 0.00E+00 1.90E+00 1.90E+00 1.90E+00 1.90E+00 1.90E+00 1.90E+00 1.90E+00
5 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01
6 4.79E-02 4.79E-02 4.79E-02 4.79E-02 4.79E-02 4.79E-02 6.42E-01 5.69E-01 4.47E-01
7 6.06E-03 6.06E-03 6.06E-03 6.06E-03 2.82E-01 3.08E-01 3.06E-01 2.91E-01 2.91E-01
8 6.80E-04 6.80E-04 1.81E-01 1.78E-01 1.81E-01 1.81E-01 1.80E-01 1.75E-01 8.25E-01
9 7.00E-05 1.16E-01 1.18E-01 1.19E-01 1.18E-01 1.16E-01 4.92E-01 4.86E-01 5.03E-01
10 8.09E-02 7.96E-02 7.93E-02 8.07E-02 3.32E-01 3.32E-01 3.38E-01 3.27E-01 3.32E-01
11 5.88E-02 5.80E-02 5.72E-02 2.31E-01 2.32E-01 2.25E-01 2.34E-01 2.22E-01 2.19E-01
12 4.34E-02 4.34E-02 1.71E-01 1.60E-01 1.69E-01 1.65E-01 1.67E-01 1.77E-01 1.82E-01
13 3.31E-02 1.24E-01 1.24E-01 1.24E-01 1.22E-01 1.50E-01 1.54E-01 1.44E-01 1.48E-01
14 9.37E-02 9.30E-02 9.38E-02 9.27E-02 1.21E-01 1.18E-01 1.20E-01 1.41E+00 1.40E+00
15 7.18E-02 7.44E-02 7.25E-02 9.79E-02 1.01E-01 9.92E-02 1.11E+00 1.11E+00 1.13E+00



Table 9: Average percent error of 3rd degree approximation of random complex matrices A whose entries
were picked independently randomly such that |1− aij | < δ for various n and δ.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3 9.50E-04 1.70E-02 8.27E-02 2.68E-01 6.11E-01 1.41E+00 2.61E+00 4.57E+00 6.18E+00
4 7.82E-04 1.27E-02 5.96E-02 1.94E-01 5.51E-01 9.80E-01 2.22E+00 3.79E+00 6.79E+00
5 5.66E-04 1.03E-02 4.84E-02 1.34E-01 3.92E-01 8.55E-01 1.38E+00 2.44E+00 4.50E+00
6 4.98E-04 7.03E-03 3.93E-02 1.07E-01 2.90E-01 6.53E-01 1.22E+00 1.96E+00 3.52E+00
7 3.55E-04 5.63E-03 2.91E-02 9.74E-02 2.33E-01 5.32E-01 8.15E-01 1.49E+00 2.84E+00
8 2.82E-04 4.89E-03 2.41E-02 7.72E-02 2.02E-01 4.71E-01 7.60E-01 1.18E+00 2.33E+00
9 2.32E-04 4.16E-03 2.04E-02 6.28E-02 1.67E-01 3.00E-01 6.56E-01 1.20E+00 1.82E+00
10 2.06E-04 3.76E-03 1.92E-02 5.91E-02 1.23E-01 2.76E-01 5.66E-01 1.05E+00 1.54E+00
11 2.09E-04 3.40E-03 1.60E-02 5.02E-02 1.16E-01 2.23E-01 4.32E-01 7.37E-01 1.45E+00
12 1.85E-04 2.69E-03 1.24E-02 4.23E-02 1.12E-01 2.06E-01 4.37E-01 6.66E-01 1.31E+00
13 1.74E-04 2.59E-03 1.25E-02 4.47E-02 1.00E-01 1.94E-01 3.60E-01 6.58E-01 1.12E+00
14 1.38E-04 2.29E-03 1.15E-02 3.22E-02 7.84E-02 1.65E-01 3.67E-01 6.07E-01 9.19E-01

Figure 1: Roots of qIn(z) converging to the transformed Szegő curve.
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