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Abstract. It is known that the limiting distribution of the normalized eigenvalues of an n × n
matrix with independent complex Gaussian entries is uniform in the unit disk D ⊂ C, as n tends
to infinity. We are interested in the conditional distribution of the eigenvalues in the presence of
obstacles restricting their location. That is, requiring the eigenvalues to lie outside an open subset
G of D. In the limit, the optimal distribution consists of a singular component, supported on the
boundary of the obstacle G, and a uniform component supported on D \ G. In special cases (e.g.
circular or elliptical regions), it is possible to find an analytic solution, however, in general this is
difficult and one has to rely on numerical methods. We employ the balayage method, in order to
find the optimal distribution via a solution of a suitable Dirichlet problem. Several examples are
provided to illustrate the use of the method.
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1. Introduction

Originally introduced by Wishart in 1920s [Wis28], random matrices can be used in different
areas of science including mathematics, statistics, and physics. [BKS+06, Meh04, AGZ05]. For
example, a large variety of problems can be given in terms of n-dimensional system of linear
ordinary differential equations of the form

(1)
dx

dt
= Mx,

where x ∈ Cn, and the coefficient matrix M ∈ MC
n×n has complex random entries. Since the

properties of solutions to the system in (1) are affected by the location of the eigenvalues of M in
the complex plane, it becomes necessary to study the random matrix M .

For a real symmetric random matrix with independent entries, it is known that the limiting
distribution of the eigenvalues is given by the semi-circle law [Meh04,TV08]. For a non-symmetric
random matrix with complex independent entries, it has been shown that the limiting distribution
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of the eigenvalues is given by the circular law [TV08]. However, it is not yet known how the limiting
distribution of the eigenvalues changes if there are obstacles or restrictions on the locations of the
eigenvalues. In this paper, we will focus on random matrices with standard complex normal entries
and examine how the limiting distribution of the eigenvalues of this matrix, which is also known
as the Ginibre ensemble [Gin65], changes based on the restrictions imposed on the locations of
eigenvalues.

The structure of this report is as follows: in Section 2 we derive the joint probability distribution
of the eigenvalues of an n×n matrix with complex normal entries. Section 3 includes a discussion of
the reduction that allows for a description of the probability of certain constraints on eigenvalues in
terms of continuous measures. Section 4 deals with the balayage method for finding the distribution
of the eigenvalues in terms of a solution of a suitable Dirichlet problem. Lastly, in Section 5, we
finish this paper by discussing some examples of the balayage method corresponding to different
restrictions on the location of the eigenvalues of M .

2. Joint Distribution of the eigenvalues

In this section, we derive the joint probability density function (p.d.f.) of the eigenvalues of a
random matrix M , whose elements Mij are independent and identically distributed (i.i.d.) complex
normal random variables. We call this random matrix M , the standard complex random matrix,
where a standard complex normal random variable is defined as follows:

Definition 2.1. A random variable Q is said to be standard complex normal random variable if
its density is given by

1

π
e−|q|

2

dA(q),

where A(q) is the measure on C.

The joint distribution of n independent standard complex normal random variables is

(2)
1

πn
e−

∑n
i=1 |qi|

2
n∏
i=1

dA(qi).

Now let G ⊆ C be open, and define the set of matrices

AG = {M ∈MC
n×n : ∀i, λi /∈ G},

where {λi}ni=1 is the set of (random) eigenvalues of the matrix M , and MC
n×n denotes the set of

all n × n random matrix with complex normal random variables as its entries. Given G, our goal
is to compute the probability P(M ∈ AG) of choosing, among all random matrices of size n× n, a
standard complex random matrix whose eigenvalues lie outside G. From (2):

P(M ∈ AG) =
1

πn2

∫
AG

e−
∑
i,j |mij |

2

dA(mij).

Before we start to find the joint distribution of the eigenvalues, recall that a non-symmetric square
matrix M can be decomposed as

(3) M = V (Z + T )V ∗,

where V is a unitary matrix, i.e V V ∗ = I and V ∗ denotes the conjugate transpose of V , Z
is a diagonal matrix and T is a strictly upper triangular matrix. This is known as the Schur
decomposition. See chapter 2 of [AR12] for the further details.
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Theorem 2.1. [HKPV09, Section 6.3] Given an n × n complex standard random matrix M and
Z = (z1, z2, . . . , zn), the n-tuple of eigenvalues of M in uniform random order, the joint distribution
of Z is

fZ(z) =
1

Cn
· e−

∑n
j=1 |zj |2 ·

∏
i>j

|zi − zj |2dA(z),

where Cn is a normalizing constant and A(z) is an area measure on Cn.

Our approach is to use the change of variable method to re-express (2) in terms of the eigenvalues
instead of the elements of the random matrix M . We proceed as follows.

Step 1: The term e−
∑
i,j |mij |

2

can be rewritten as an expression involving the eigenvalues of
the matrix M . Note that

∑
i,j |mij |2 = tr(M∗M), where M∗ is the conjugate transpose of M .

From (3), one can write M as V (Z + T )V ∗. Note that this decomposition is not unique. In order
to make it unique, we can, for example, require that the diagonal elements of V are positive, i.e.
Vii > 0. We may assume that these diagonal values are non-zero. Therefore,

tr(M∗M) = tr(V (Z + T )∗V ∗V (Z + T )V ∗)

= tr(V ∗V (Z + T )∗V ∗V (Z + T )) tr(AB) = tr(BA)

= tr((Z + T )∗(Z + T )) V is a unitary matrix

= tr(Z∗Z) + tr(T ∗T ),

where the last line holds due to the fact that Z is a diagonal matrix and T is a strictly upper
triangular matrix. Therefore we have

e−
∑
i,j |mij |

2

= e−(
∑n
j=1 |zj |

2+
∑
i<j |tij |

2).

Step 2: From the Schur decomposition and using matrix differentiation rules, we have

dM = dV (Z + T )V ∗ + V (dZ + dT )V ∗ + V (Z + T )dV ∗.

Since V V ∗ = I, it follows that V ∗dV is a skew-Hermitian form, which leads to

dM = V (V ∗dV (Z + T )− (Z + T )V ∗dV + dZ + dT )V ∗.

Therefore,

V ∗dMV = V ∗dV (Z + T )− (Z + T )V ∗dV + dZ + dT.

Now put V ∗dMV = Λ = (λij), Z + T = S = (sij), V
∗dV = Ω = (ωij), then

(4) Λ = ΩS − SΩ + dS.

Since Λ is the image under unitary transformation of dM ,∧
i,j

(dmij ∧ dmij) =
∧
i,j

(λij ∧ λij) =
∧
i,j

|λij |2.

We express
∧
i,j |λij |2 in terms of the eigenvalues in the following way:

λij =

j∑
k=1

ωikskj −
n∑
k=i

sikωkj + dsij

=

{
ωij(sjj − sii) +

∑j−1
k=1 ωikskj −

∑n
k=i+1 sikωkj i > j,

dsij + (ωii − ωjj)sij +
∑j

k=1,k 6=i ωikskj −
∑n

k=i,k 6=j sikωkj i ≤ j.
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We evaluate
∧
i,j |λij |2 in the order of λn1, λn1, λn2, λn2, · · · , λnn, λnn, λ(n−1)1, λ(n−1)1, λ(n−1)2, λ(n−1)2,

· · · , λ11, λ11, which allows for the cancellations in ∧i,jωij . Then using the above expression and the
properties of the wedge product, we get∧

i,j

|λij |2 =
∏
i>j

|zi − zj |2
∧
i

|dzi|2
∧
i>j

|ωij |2
∧
i<j

|dtij + tij(ωii − ωjj)|2.

Recall that Ω = V ∗dV is a skew-Hermitian form and that the dimension of the subspace of skew-
Hermitian forms is n2−n. In addition, note that for all k, ωkk ∧ (

∧
i>j |ωij |2) is an n2−n+ 1 form,

and ωkk ∧ (
∧
i>j |wij |2) = 0 (It is an n2 − n+ 1 form on an n2 − n manifold). Finally, we get∧
i,j

(dmij ∧ dmij) =
∧
i,j

|λij |2 =
∏
i>j

|zi − zj |2
∧
i

|dzi|2
∧
i>j

|ωij |2
∧
i<j

|dtij |2.

Step 3: Combining step 1 and 2, we can re-express the joint distribution of elements of the matrix
as follows:

1

πn2 · e
−(

∑n
j=1 |zj |

2+
∑
i<j |ti,j |

2) ·
(∏
i>j

|zi − zj |2
∧
i

|dzi|2
∧
i>j

|ωij |2
∧
i<j

|dtij |2
)
.

Integrating out the ωij and tij terms, we get

fZ(z) =
1

C ′n
· e−

∑n
j=1 |zj |

2

·
∏
i>j

|zi − zj |2dA(z),

where C ′n is a normalizing constant that depends on n.

Remark 2.1. [HKPV09, p.60] One can explicitly compute the normalizing constant Cn in the last
expression by evaluating the integral

C ′n =

∫
e−

∑n
j=1 |zj |2 ·

∏
i>j

|zi − zj |2dA(z).

One can show that

C ′n = πn ·
n∏
k=1

k!.

The eigenvalues tend to be uniformly distributed on the disk with radius
√
n. See Figure 1 for

the case when n is 1000. After rescaling the eigenvalues by
√
n, the eigenvalues now tend to lie

inside the unit disk centered at the origin. By substituting zj with
√
nwj , the joint distribution of

W = (w1, w2, · · · , wn) is given by

fW(w) =
1

Cn
· exp

−n2
 n∑

i=1

|wi|2

n
− 1

n2

∑
i 6=j

log |wi − wj |

 dA(w)

where A(w) is an area measure on Cn.

3. A large deviation principle

In this section, using the joint distribution of the eigenvalues derived in the previous section,
we introduce a large deviation principle to find the optimal limiting distribution of the eigenvalues
under the presence of obstacles. The whole derivation closely follows [PH98]. We first list some
notations. Let G ⊆ D = {|w| ≤ 1} be the union of finitely many simply connected domains and
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Figure 1. The distribution eigenvalues without normalization

AG = C \ G. AnG is the n-dimensional cartesian product of AG. Then the probability that no
eigenvalues lie in G is

Pn(∀i, wi /∈ G) =

∫
AnG

fW(w)dA(w) =
1

C ′n

∫
AnG

exp

−n2
 n∑

i=1

|wi|2

n
− 1

n2

∑
i 6=j

log |wi − wj |

 dA(w).

Note that the major contribution to the integral comes from the point w ∈ AnG that makes the
expression inside the square brackets the smallest. Therefore, after taking logarithm on both sides,
we expect the integral to be asymptotically approximated as:

(5) logPn(∀i, wi /∈ G) ≈ −n2 · inf
w∈AnG

 n∑
i=1

|wi|2

n
− 1

n2

∑
i 6=j

log |wi − wj |

− C ′n.
The above expression can be re-written in terms of the empirical measure of the eigenvalues.

Definition 3.1. The empirical measure µn is defined as

µn =
1

n

n∑
j=1

δwj

where δwj is a Dirac delta measure at wj.

Recall that if f is a continuous function in C,∫
fdµn =

1

n

n∑
j=1

f(wj).

Using the definition of empirical measure, (5) can be re-written as

logPn(µn ∈ BG) ≈ −n2 · inf
µn∈BG

[(∫
Cn
|w|2dµn(w)−

∫∫
z 6=w

log |z − w|dµn(z)dµn(w)

)]
− C ′n,
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where BG = {µ | µ(G) = 0}. Now we introduce the functional,

(6) J(µ) =

∫
C
|w|2dµ(w)−

∫∫
C2

log |z − w|dµ(z)dµ(z).

Theorem 3.1. If µn is a sequence of empirical measures of the eigenvalues of the Ginibre ensemble,
then

lim
n→∞

1

n2
logPn(µn ∈ BG) = −

(
3

4
+ inf
µ∈BG

J(µ)

)
.

A rough strategy of the proof for the above theorem is to find an appropriate upper bound for
lim supn→∞

1
n2 logP(µn ∈ AG) and a lower bound for lim infn→∞

1
n2 logP(µn ∈ AG). After finding

the upper and lower bound, we will use the squeeze theorem to get the value of the limit. In this
paper, we demonstrate how the upper bound is achieved. For the lower bound, see [AKR16]. One
can also show the conditional limiting measure is the minimizer of the functional J(µ) over µ ∈ BG.
To begin the proof of the upper bound, we must first introduce some standard definitions and state
relevant theorems. See [DZ09] for further explanations.

Definition 3.2. A Polish space is a separable, completely metrizable topological space.

Definition 3.3. Let τ be a Polish space, then the weak topology on M1(τ) is the topology generated
by the following sets

Uφ,x,δ =

{
v ∈M1(τ) :

∣∣∣∣∫
τ
φ dv − x

∣∣∣∣ < δ

}
where δ > 0, x ∈ R, φ ∈ C(τ), a set of continuous functions in τ .

Definition 3.4. A probability measure µ on τ is tight if for each η > 0, there exists a compact set
Kη ⊂ τ such that µ(Kc

η) < η.

Remark 3.1. Every probability measure on a Polish space is tight.

Definition 3.5. A sequence {µn}n∈N of probability measures on a Polish space X satisfies a large
deviations principle (LDP) with speed an →∞ as n→∞ and rate function I if:

(1) I : X → [0,∞] is lower semi-continuous, that is, lim inf
x→x0

I(x) ≥ I(x0)

(2) For any open set O ⊂ X, − inf
x∈O

I(x) ≤ lim inf
n→∞

1
an

logµn(O)

(3) For any closed set F ⊂ X, lim sup
n→∞

1
an

logµn(F ) ≤ − inf
x∈F

I(x).

Remark 3.2. A sequence {µn}n∈N of probability measures on a Polish space X satisfies a weak
large deviations principle if

(1) The rate function I is positive and lower semi-continuous.
(2) There is a lower bound for open sets, which is equivalent to the condition (2) in the definition

3.5.
(3) There is an upper bound for compact sets. Here the condition is the same as in the previous

definition, except closed sets are replaced by compact sets, resulting in a weaker principle.

Definition 3.6. A sequence {µn} of probability measures on a Polish space X is exponentially tight
if there exists a sequence {KL}L∈N of compact sets such that

lim sup
L→∞

lim sup
n→∞

1

an
logµn(Kc

L) = −∞.

Definition 3.7. A rate function I is good if the level sets {x ∈ X : I(x) ≤M} are compact for all
M ∈ R.
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Theorem 3.2. [DZ09, Lemma 1.2.18] (a) If {µn} satisfies the weak LDP and is exponentially tight,
then it satisfies the full LDP and the rate function I is good. (b) If {µn} satisfies the upper bound
of the LDP, with a good rate function I, then it is exponentially tight.

To prove the upper bound in theorem (3.1), recall the definition of J(µ):

J(µ) =

∫
C

|w|2dµ(w)−
∫∫

C2

log |z − w|dµ(z)dµ(w).

In our case, the rate function is J(µ) and an = n2. One can show that the level sets {µ ∈M1(C) :
J(µ) ≤M} are compact, thus J(µ) is a good rate function.

We first show that the functional J(µ) is lower semi-continuous and strictly convex for measures
with compact support. Consider µ ∈ M1(C), where M1(C) is a set of all probability measures on
C, and let

Σ(µ) =

∫∫
C2

log |x− y|dµ(x)dµ(y),

which is also known as the logarithmic energy of the measure µ. Notice that

Σ(µ) = inf
ε>0

∫∫
log (ε+ |x− y|)dµ(x)dµ(y).

Σ is an upper semi-continuous functional in µ, as the expression inside the infimum is continuous.
Finally, since

(7) J(µ) =

∫
C
|z|2dµ(z)− Σ(µ)

one can observe that J is a lower semi-continuous functional because the first term is linear and
continuous. One can show this in an alternative way by introducing

F (x, y) = − log |x− y|+ 1

2
(|x|2 + |y|2) , x, y ∈ C,

Fα(x, y) = min{F (x, y), α}, α > 0.

Note that F is bounded from below by some constant. And Fα is bounded above and below and
continuous. Therefore, the integral

∫
C2 Fα(x, y)dµ(x)dµ(y) is a continuous functional. Note that,

sup
α>0

∫
C2

Fα(x, y)dµ(x)dµ(y) =

∫
C2

F (x, y)dµ(x)dµ(y)

=

∫
C
|x|2dµ(x)−

∫
C2

log |x− y|dµ(x)dµ(y) = J(µ).

The above expression is lower semi-continuous since it is the supremum of continuous functionals.
To show that J is a strictly convex functional for measures with compact support, we first introduce
the following lemma.

Lemma 3.1. [ST97, Lemma 1.8] Let ν = µ1 − µ2, where µ1, µ2 are probability measures with
compact support and finite logarithmic energy. Then, Σ(ν) ≤ 0 and Σ(ν) = 0 if and only if ν = 0.

Now suppose that µ1 and µ2 satisfy the condition of the above lemma. In order to prove the
convexity of J , we show concavity for Σ and it is sufficient to prove mid-point concavity. In other
words, we wish to show that

(8) Σ

(
µ1 + µ2

2

)
≥ 1

2
(Σ(µ1) + Σ(µ2)).
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By definition,

Σ

(
µ1 + µ2

2

)
=

∫
C2

log |x− y|d
(
µ1 + µ2

2

)
(x)d

(
µ1 + µ2

2

)
(y)

=
1

4
Σ(µ1) +

1

4
Σ(µ2) +

1

2

∫
C2

log |x− y|dµ1(x)dµ2(y).(9)

By Lemma 3.1, we also have

(10) 0 ≥ Σ

(
µ1 − µ2

2

)
=

1

4
Σ(µ1) +

1

4
Σ(µ2)−

1

2

∫
C2

log |x− y|dµ1(x)dµ2(y).

Taking the sum of (9) and (10), we get (8). In addition, Σ is strictly concave since the equality in
(8) only holds when µ1 = µ2. Hence, from (7), J(µ) is strictly convex for measures with compact
support.
Now we will introduce some preliminary lemmas to prove the upper bound of the Theorem 3.1.

Lemma 3.2. [PH98, Lemma 10] Let Cn be the normalizing constant,

Cn =

∫
Cn

exp

−n n∑
j=1

|zj |2
∏

j<k

|zj − zk|2dA(z).

then,

lim sup
n→∞

1

n2
logCn ≤ − inf

µ∈M1(C)
J(µ).

Remark 3.3. We will show later that

inf
µ∈M1(C)

J(µ) =
3

4

Proof. We use the following simple fact∑
1≤j<k≤n

(aj + ak) = (n− 1) ·
n∑
j=1

aj

Using this, we can rewrite Cn as

Cn =

∫
Cn

exp

− n∑
j=1

|zj |2
 · exp

2 ·

∑
j<k

log |zj − zk| −
|zj |2

2
− |zk|

2

2

 dA(z).

The above expression can be rewritten as

=

∫
Cn

exp

− n∑
j=1

|zj |2
 · exp

−2
∑
j<k

F (zj , zk)

 dA(z)

=

∫
Cn

exp

− n∑
j=1

|zj |2
 · exp

(
−n2

∫∫
{x 6=y}

F (x, y)dµnz (x)dµnz (y))dA(z)

)
.

where µnz = 1
n

∑n
j=1 δzj . We can bound the above integral by

exp

(
−n2 inf

µ∈M1(C)

∫∫
C2

F (x, y)dµ(x)dµ(y)

)
·
∫
Cn

exp(−
n∑
j=1

|zj |2) dA(z).

Rewriting the integral over Cn, we have

Cn ≤
(

exp

(
−n2 inf

µ∈M1(C)

∫∫
C2

F (x, y)dµ(x)dµ(y)

))
·
(∫

e|z|
2
dA(z)

)n
.
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After taking the logarithm on both sides, dividing by n2, and taking the upper limit, we get the
following inequality:

lim sup
n→∞

1

n2
logCn ≤ − inf

µ∈M1(C)

∫∫
C2

F (x, y)dµ(x)dµ(y).

�

Definition 3.8. For all µ ∈M1(C) and G ⊂M1(C), set

G̃ = {z ∈ Cn : µnz ∈ G},

where µnz is the empirical measure of z.

Lemma 3.3. [PH98, Lemma 11] ∀µ ∈M1(C) and G, an open neighborhood of µ,

(11) inf
G:µ∈G

[lim sup
n→∞

1

n2
logPn(G̃)] ≤ −J(µ)− lim inf

n→∞

1

n2
logCn

Proof. Since Fα = min{F, α} ≤ F , it follows that 1
n2

∑
j 6=k Fα(zj , zk) ≤ 1

n2

∑
j 6=k F (zj , zk) + α

n .
Using this fact, it follows that

Pn(G̃) ≤ 1

Cn

∫
G̃

exp

− n∑
j=1

|zj |2
 · exp

(
−n2

∫∫
C2

Fα(x, y)dµnz (x)dµnz (y) + nα

)
dA(z).

This, in turn, is

Pn(G̃) ≤ 1

Cn

(∫
e−|z|

2
dA(z))

)n
· exp

(
−n2 inf

µ′∈G

∫∫
C2

Fα(x, y)dµ′(x)dµ′(y) + nα

)
.

Thus, we get

lim sup
n→∞

1

n2
logPn(G̃) ≤ − inf

µ′∈G

∫∫
C2

Fα(x, y)dµ′(x)dµ′(y)− lim inf
n→∞

1

n2
logCn.

Taking the infimum over all open neighborhoods G of µ and using the continuity and boundedness
of Fα, we are left with

inf
G

[lim sup
n→∞

1

n2
logPn(G̃)] ≤ −

∫∫
C2

Fα(x, y)dµ(x)dµ(y)− lim inf
n→∞

1

n2
logCn.

The above inequality holds for all α and taking the limit as α→∞, we get (11) by the monotone
convergence theorem. �

Next we show Pn is exponentially tight. To show this, for any positive α, we must find a compact
set, Kα ⊂M1(C) such that

lim sup
α→∞

lim sup
n→∞

1

n2
logPn(K̃c

α) = −∞

Lemma 3.4. [PH98, Lemma 14] Pn is exponentially tight.

Proof. For α > 0, let Kα = {µ ∈ M1(C) :
∫
C |z|

2dµ(z) ≤ α}. It can be proven that Kα is closed.
See [PH98] for more details. Therefore if we show that Kα is tight, Kα is compact. Consider
µ ∈ Kα, we know that

α ≥
∫
C
|z|2dµ(z) =

∫
|z|≤r

|z|2dµ(z) +

∫
|z|>r

|z|2dµ(z)

≥
∫
|z|>r

r2dµ(z) = r2µ({|z| > r}) = r2µ(Dc
r),
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where Dr = {|z| ≤ r}. Note that the uniform estimate µ(Dc
r) ≤ α

r2
implies that the family Kα

forms a tight family. Now we find an upper bound for Pn(K̃c
α). Note that

Pn(K̃c
α) =

1

Cn

∫
K̃c
α

exp

−n n∑
j=1

|zj |2
 ·∏

j<k

|zj − zk|2dA(z),

Using the fact that 1
n

∑n
1 |zj |2 > α, we know that

Pn(K̃c
α) ≤ 1

Cn
exp

(
−1

2
αn2

)
· In,

where

In =

∫
Cn

exp

(
−n

2

n∑
1

|zj |2
)
·
∏
j<k

|zj − zk|2dA(z).

Similarly to Lemma 3.2 (with |z|2 replaced by |z|
2

2 ),

In ≤ exp

(
−n2

(
inf

µ∈M1(C)

[∫
|z|2

2
dµ− Σ(µ)

])
+ 1

)
holds for large enough n. We will later show that the infimum is attained. It remains to find a
lower bound for Cn. Recall that

Cn =

∫
Cn

exp

−n n∑
j=1

|zj |2
 ·∏

j<k

|zj − zk|2dA(z).

To find a lower bound, we integrate over the compact subset Bn = {z ∈ Cn, z = (z1, z2, ..., zn) :
|zk − wk| ≤ 1

n2 }. Here, wk = exp(2πikn ), k ∈ {1, 2, · · · , n}, are the nth root of unity. If z ∈ Bn,

exp

−n n∑
j=1

|zj |2
 ≥ exp

(
−n · n

(
1 +

1

n2

))
= exp(−n2 − 1).

We know that ∏
j<k

|zj − zk|2 =
∏
j 6=k
|zj − zk|.

Using the triangle inequality and the fact that each eigenvalue is within 1
n2 of their respective root

of unity, we get∏
j 6=k
|zj − zk| =

∏
j 6=k
|wj − wk + zj − wj − zk + wk| ≥

∏
j 6=k

(
|wj − wk| −

2

n2

)
.

For large n, the two terms wj and wk are about 1
n apart, leading us to∏

j 6=k
|zj − zk| ≥

∏
j 6=k

(
1

2
|wj − wk|

)
=

(
1

2

)n(n−1)
·
∏
j 6=k
|wj − wk|.

In order to proceed our argument, we make a following claim.

Claim 3.1. Dn(w1, w2, · · · , wn) = (
√
n)n

where Dn is the determinant of an n× n Vandermonde matrix.
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Proof. Recall

Dn(w1, w2, · · · , wn) =

∣∣∣∣∣∣∣∣∣
1 w1 w2

1 . . . wn1
1 w2 w2

2 . . . wn2
...

...
...

. . .
...

1 wn w2
n . . . wnn

∣∣∣∣∣∣∣∣∣ .
Let vj = (1, wj , w

2
j , · · · , w

n−1
j ) ∈ Cn,∀j ∈ {1, 2, · · · , n}. Note that wj , j ∈ {1, 2, · · · , n} are the n th

root of unity. Therefore, |vj | = (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
n

1
2 =
√
n. In addition, the fact that vj ⊥ vk, j 6= k

can be seen from:

〈vj , vk〉 =

n−1∑
l=0

wlj(wk)
l =

n−1∑
l=0

exp

(
2πil(j − k)

n

)
=

exp
(
2πin(j−k)

n

)
− 1

exp
(
2πi(j−k)

n

)
− 1

= 0.

The determinant of the Vandermonde matrix is the volume of an n dimensional parallelepiped,
which leads to the fact that Dn(w1, w2, · · · , wn) = (

√
n)n. �

In addition to the claim, notice that Dn(w1, w2, · · · , wn) =
∏
j<k |wj − wk| = (

√
n)n. Thus∏

j 6=k |wj − wk| = nn, and

Cn ≥
∫
Bn

exp

−n n∑
j=1

|zj |2
 ·∏

j<k

|zj − zk|2dA(z) ≥ exp(−Cn2 + n log n) ·
∫
Bn

dA(z).

The integral on the right hand side of the last term in previous expression equals to ( π
n4 )n, which

is bounded by exp(−Cn log n). Finally, we get

Cn ≥ exp(−Cn2 − Cn log n).

Recall that

Pn(K̃c
α) =

1

Cn

∫
K̃c
α

exp(−n
∑
|zj |2) ·

∏
j<k

|zj − zk|2dA(z),

using our previous estimates, we get

lim sup
n→∞

1

n2
logPn(K̃c

α) ≤ −α
2

+ C.

for some constant C. Taking the limit of the right hand side as α→∞, we get that

lim sup
n→∞,α→∞

1

n2
logPn(K̃c

α)→ −∞,

and this implies exponential tightness of the sequence µn (or Pn). �

Since Pn satisfies exponential tightness, we obtain the the upper bound for the left hand side
term in the Theorem 3.1. One can also prove the lower bound for the one similar to Lemma
(3.3) aforementioned term(see [PH98].). In addition, one can find a lower bound in Theorem 3.1
[AKR16].
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3.1. The Equilibrium Measure. In this section, we find the unique global minimizer of the
functional J , also known as the equilibrium measure. We first evaluate the functional J for the
uniform probability measure on the unit disk,

νeq(z) = 1D
dA(z)

π
,

where D is the unit disk centered at the origin. Then we will show that the global minimizer for
the functional J is in fact this measure. To show this result, we introduce the notion of logarithmic
potential.

Definition 3.9. The logarithmic potential of a probability measure µ ∈M1(C) is given by

Uµ(z) =

∫
C

log |z − w|dµ(w).

Now consider the functional J applied to νeq,

(12) J(νeq) =

∫
C
|z|2dνeq(w)−

∫∫
C2

log |z − w|dνeq(z)dνeq(w).

To compute the leftmost integral, we change to polar coordinates and arrive at the following integral:

2π∫
0

 1∫
0

r2 · rdr

 dθ

π
=

1

2
.

To compute the rightmost integral in (12), we first find the logarithmic potential of the measure
νeq. Working in polar coordinates, we get

Uνeq(z) =

1∫
0

 1

2π

2π∫
0

log |z − reiθ|dθ

 2rdr.

Next, we claim the following result.

Claim 3.2.

Uνeq(z) =

{
|z|2
2 −

1
2 z ≤ 1,

log |z| z > 1.

Proof. By a well-known formula [Lan13, p. 342], for α, β ∈ C (not both 0),

1

2π

2π∫
0

log |αeiθ − β|dθ = log max{|α|, |β|}.

One can proceed by considering two different cases. When |z| > 1, we get

Uνeq(z) =

1∫
0

log max{|z|, r} 2rdr = log |z|
1∫

0

2rdr = log |z|.

On the other hand, for |z| ≤ 1,

Uνeq(z) =

|z|∫
0

log |z| · 2rdr +

1∫
|z|

log r · 2rdr = log |z| · |z|2 +

(
r2 log r − r2

2

)∣∣∣∣1
r=|z|

=
|z|2

2
− 1

2
.

�
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By Claim 3.2 the rightmost integral in (12) becomes∫
|z|≤1

(
|z|2

2
− 1

2

)
dνeq(z) =

1

2

∫
|z|≤1

|z|2dνeq(z)−
1

2

∫
|z|≤1

dνeq(z).

Recall that we already computed the first term of the right hand side of the above equation, and
for the second term, the integral is simply an integral with respect to a probability measure over
its support, giving a value of 1. Thus,

J(νeq) =
1

2
−
(

1

2
· 1

2
− 1

2

)
=

3

4

We will use this result later in Section 4. Now we prove that the uniform probability measure is
the global minimizer of the functional J . To prove this statement, we introduce the notion of a
pseudo inner product of probability measures.

Definition 3.10. Let µ1, µ2 be measures with finite logarithmic energy and compact support. Then
the pseudo inner product of µ1 and µ2 is

〈µ1, µ2〉 = −
∫∫

C2

log |z − w|dµ1(z)dµ2(w)

and the pseudo norm associated with this pseudo inner product is denoted by ‖µ‖2 = 〈µ, µ〉.

By taking ν = µ1 − µ2, in Lemma 3.1, we get the following corollary.

Corollary 3.1. If µ1, µ2 ∈M1(C) and µ1 and µ2 have finite logarithmic energy, then

‖µ1 − µ2‖2 = −Σ(µ1 − µ2) ≥ 0

where the equality holds if and only if µ1 = µ2.

Proposition 3.1. Let µ be a measure supported inside D with finite logarithmic energy. Then,

‖µ− νeq‖2 = J(µ)− J(νeq).

Proof. Note that
‖µ− νeq‖2 = 〈µ, µ〉 − 〈µ, νeq〉 − 〈νeq, µ〉+ 〈νeq, νeq〉

which is equivalent to

−
∫∫

C2

log |z − w|dµ(z)dµ(w) + 2

∫∫
C2

log |z − w|dνeq(w)dµ(z)−
∫∫

C2

log |z − w|dνeq(z)dνeq(w).

by Claim 3.2,

‖µ− νeq‖2 = −
∫∫

C2

log |z − w|dµ(z)dµ(w) +

∫
(|z|2 − 1)dµ(z) +

1

4

=

∫
|z|2dµ(z)−

∫∫
C2

log |z − w|dµ(z)dµ(w)− 1 +
1

4
= J(µ)− J(νeq)

�

Remark 3.4. If the support of µ is not contained in D, then

‖µ− νeq‖2 ≤ J(µ)− J(νeq).

Corollary 3.2. The global minimizer of the functional J(µ), νeq, is the uniform probability measure
on the unit disk.

Proof. From Corollary 3.1 and Proposition 3.1, we know that J(µ)−J(νeq) ≥ 0, for measures with
support in D. Additionally one can see from the Corollary 3.1 that this global minimizer is unique
since J(µ) = J(νeq) holds only when µ = νeq. �
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We see that minimizing J(µ) is equivalent to minimizing ‖µ− νeq‖2. In addition, the measure that
minimizes ‖µ − νeq‖2 out of all measures satisfying µ(G) = 0, is known as the balayage of µ to
D \G. In the following section, we will discuss the balayage method in more detail.

4. The Balayage Method and the invariance property of J

Let G ⊂ D be an open set with smooth boundary. In the previous section, we mentioned the
notion of balayage of µ to D \G as a measure which minimizes ‖µ− νeq‖2 over all measures such
that µ(G) = 0, where G ⊂ D = {|w| ≤ 1}. In this section, we list some properties of balayage and
introduce the balayage method which can be used to find the optimal limiting distribution for a
given set G. Lastly, we end this section by using properties of balayage to prove the translation
invariance property of J .

Let the balayage of µ to D \G be denoted by µG. It can be expressed as a sum of two parts: 1)
a singular component, µsG, which is supported on the boundary of the obstacle G, and 2) a uniform

component, µuG, which is supported on the complement D \G. In addition, the solution satisfies

UµG(z) =

{
|z|2
2 −

1
2 z ∈ D \G,

log |z| z ∈ C \D

where µG is the balayage measure such that µG = µsG + µuG. [ST97, Section II.4]
Now we introduce the balayage method, which allows us to find the singular part of the optimal

limiting distribution for a nice domain G ⊂ D. The balayage method gives the singular part in
terms of a solution of a Dirichlet problem defined on the domain G. Specifically, we will find a
function w where: 1) w is harmonic in G, 2) w agrees with the logarithmic potential Uνeq on D \G,
where νeq is the equilibrium measure, by solving a Dirichlet problem. After solving for w, we can
recover the measure from the function w using the following theorem.

Theorem 4.1. [ST97, Section II.1] The singular part of the optimal limiting measure µG of the
distribution of eigenvalues along ∂G is given by

µsG =
1

2π
·
(
∂w

∂n+
+

∂w

∂n−

)
ds

where the function w is the solution of the Dirichlet problem on G that agrees with logarithmic
potential Uνeq on D \G, ∂w

∂n+
and ∂w

∂n−
are, respectively, the outward and inward normal derivatives;

and ds is the arc length measure defined on ∂G .

Therefore, as long as we can solve the Dirichlet problem on G, we can find the optimal limiting
measure for the eigenvalues. Additionally, note that from Theorem 4.1, µsG is invariant under
translations of G in D. This is because the equilibrium measure is translation invariant in C. In
this paper, we provide some examples for nice domains where the Dirichlet problem can be easily
solved. However, in general, solving a Dirichlet problem analytically turns out to be a very difficult
problem. In Section 4, we provide examples of solutions of the Dirichlet problem for some nice
domains.

4.1. Invariance property of the functional J . In addition to minimizing J , using Theorem 4.1,
one can investigate the dependence of J on G. Now we show the translation invariance property
of the functional J . Before we show the property, recall that J(µG) is given by,

J(µG) =

∫
C
|z|2dµG(z)−

∫∫
C2

log |z − w|dµG(z)dµG(w) =

∫
C

(|z|2 − UµG(z))dµG(z).
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by the definition of the logarithmic potential. Since µG is supported only on D\G, the logarithmic

potential UµG(z) takes on the value |z|
2

2 −
1
2 on the support of µG. Using this fact, we find

J(µG) =

∫ (
|z|2 −

(
|z|2

2
− 1

2

))
dµG(z) =

∫ (
|z|2

2
− 1

2

)
dµG(z) + 1.

Notice that the latter integrand is equivalent to Uνeq(z), and we can rewrite the last expression as∫∫
log |z − w|dνeq(w)dµG(z) + 1.

Changing the order of integration, we get

J(µG) =

∫
UµG(z)dνeq(z) + 1.

Thus,

J(µG)− J(νeq) =

∫
UµG(z)dνeq(z)−

∫
Uνeq(z)dνeq(z) =

∫
G

(
UµG(z)− Uνeq(z)

)
dνeq(z).

To show that this value is translation invariant with respect to shifts of the domain G, we wish to
show J(µG) = J(µGa), where Ga = {z′ ∈ D|z′ = z + a, z ∈ G} and Ga ⊂ D. Note that this is
equivalent to showing,

UµG(z)− Uνeq(z) = UµGa (z + a)− Uνeq(z + a).

By the definition of the logarithmic potential,

UµG(z)− Uνeq(z) =

∫
Gc

log |z − w|dA(w)

π
+

∫
∂G

log |z − w|dµsG(w)−
∫
C

log |z − w|dA(w)

π

=

∫
∂G

log |z − w|dµsG(w)−
∫
G

log |z − w|dA(w)

π
.

Now we must show that∫
∂G

log |z − w|dµsG(w)−
∫
G

log |z − w|dA(w)

π
=

∫
∂Ga

log |z′ − w|dµsGa(w)−
∫
Ga

log |z′ − w|dA(w)

π
.

where z′ = z + a. Since z′ ∈ D,∫
G

log |z − w|dA(w)

π
=

∫
Ga

log |z′ − w|dA(w)

π
.

Thus all we need to show is∫
∂G

log |z − w| dµsG(w) =

∫
∂Ga

log |z + a− w| dµsGa(w).

Recall that the singular part of µG is the balayage of the uniform measure, and therefore, it is
invariant under translations. Hence the functional J is translation invariant.

5. Examples of the Balayage Method

For certain domains, solving the Dirichlet problem in an analytical way is possible. Here, we
provide two examples where we use the balayage method to find the optimal boundary distribution.
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5.1. Disk of radius r. Suppose the domain G is a disk with radius r and center (x0, 0). Without
loss of generality, we assume x0 to be positive. The first step of the balayage method is to solve a
following Dirichlet problem.
Conditions for Dirichlet problem

(1) ∆W (z) = 0, z ∈ G
(2) W (z) = Uνeq(z), z ∈ ∂G

Note that Uνeq(z) = |z|2
2 −

1
2 , where νeq is an equilibrium measure. Consider a function W (z) =

r2−x02−1
2 + x0 · x, where z = x + yi ∈ C. The function W clearly satisfies both conditions of

the Dirichlet problem above. This function can be obtained either by directly deriving from the
equation for G or using the Poisson integral formula. We demonstrate the balayage method for the
aforementioned function and use Poisson integral formula to check the answer. The function W is

W (z) =


r2−x02−1

2 + x0 · x z ∈ G,
|z|2
2 −

1
2 z ∈ D \G,

log |z| z ∈ C \D.

The normal derivatives ∂w
∂n+

and ∂w
∂n−

are given below:

∂w

∂n+
= ∇W · ~n+ = (x, y) ·

(
x− x0
r

,
y

r

)
=
x2 − x0 · x

r
+
y2

r
,

∂w

∂n−
= ∇W · ~n− = (x0, 0) ·

(
x0 − x
r

,
−y
r

)
=
x0

2 − x0 · x
r

.

Therefore, the singular part µsG along the boundary is given by

µsG =
1

2π
·
(
∂w

∂n+
+

∂w

∂n−

)
=

1

4π
ds,

where ds is an arc length measure. Hence, for a disk, as expected, the optimal distribution along
the boundary is just the constant density depending on r, which is roughly 0.08. One can see this
in Figure 2.

Figure 2. The optimal distribution plot for circle

The reason for the small oscillation in the graph is because of Mathematica’s parameterization
of the circle and because Mathematica approximates the solution to the Dirichlet problem. Math-
ematica parameterizes the circle by ordering the points of the circle by angle from the center. This
leads to a parameterization that is not quite the circle, but instead a close polygonal approximation.
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Here, we used 534 points for the circle. The solution W (z) of the Dirichlet problem is a surface,
and because Mathematica makes a mesh of this surface using many triangles, treats the circle as
a polygon (discretization error), and uses Lagrange Interpolation to smooth out the surface from
a function defined only on a set of nodes, the partial of W (z) with respect to the outer and inner
normal vectors varies along the boundary. Additionally, Mathematica treats all terms numerically
in solving the Dirichlet (roundup error) and W (z) is not differentiable on the boundary, giving rise
to yet another source of error. Thus the reason for the slight oscillation. If Mathematica used
more and more, smaller, triangles to approximate the solution, the oscillation would decrease to
the value µ which we obtained above analytically.

(a) (b)

Figure 3. The optimal distribution plotted for circle using a heat map

From Figure 3, heuristically, we can see the distribution of eigenvalues is roughly constant (with
a margin of error of ±0.0004). Recall Figure 2, which shows the distribution plot for the circle;
regardless of the θ, the dependent variable y was roughly constant with minor oscillation. In the
case of Figure 3, the y-value is the numerical representation of the color (the heat map value).
Since this value is constant, the resulting color is also constant.

5.2. Ellipse. Now suppose our domain G is an ellipse with center (x0, 0). More formally one can
write this as

G =
{

(x, y)
∣∣∣ (x− x0)2

a2
+
y2

b2
= 1
}

It is known that the solution of the corresponding Dirichlet problem is a polynomial of degree 2 in
x, y. The solution that satisfies is

W (z) =


a2−b2

2(a2+b2)
x2 − a2−b2

2(a2+b2)
y2 + 2b0

2x0
2(a2+b2)

x+ 2a2b2−2b2x02−a2−b2
2(a2+b2)

z ∈ G,
|z|2
2 −

1
2 z ∈ D \G,

log |z| z ∈ C \D

Note that ~n+ = 1
C ·(

b(x−x0)
a , ayb ) and ~n− = 1

C ·(
b(x0−x)

a , −ayb ) where C =

√
b2(x−x0)2

a + a2y2

b . Therefore

we can recover an optimal measure µ along the boundary,

µs =
1

2πC
·
(

(x, y) ·
(
b(x− x0)

a
,
ay

b

)
+

(
a2 − b2

a2 + b2
x+

2b0
2x0

a2 + b2
,
b2 − a2

a2 + b2

)
·
(
b(x0 − x)

a
,
−ay
b

))
ds,

which can be further simplified to

1

2πC
·
(
bx2 − bxx0

a
+
ay2

b
+

(a2b− 3b3)x0x+ 2b3x20 + (b3 − a2b)x2

a3 + ab2
+
a3y − ab2y
a2b+ b3

)
.
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Figure 4. The optimal distribution plot for ellipse

One can see that, unlike the case of disk, the optimal limiting distribution density along the
boundary varies with the location. Figure 4 shows how the uniform density changes for the ellipse
9x2

4 +9y2 = 1. Figure 4 is the solution of the Dirichlet problem without solving for µs analytically, as
was done above. Like the case for the circle, Mathematica parameterizes the ellipse by ordering the
points by angle from the center, again constructing a discrete approximation of the ellipse with 500
boundary points. Mathematica solves the Dirichlet problem by approximating the solution surface
W (z) by using a mesh of many triangles, and using Lagrange Interpolation to achieve the best
smooth surface. Because of these two computational simplifications, the inner and outer normals
of W (z) are approximated by consequence. The scale in Figure 4 is larger than that of Figure 2,
so the oscillation does not appear to be as large, but some oscillatory features are still noticeable
at 0, π

2 , π, and 3π
2 .

(a) (b)

Figure 5. The optimal distribution plotted for ellipse in heat map

In Figure 5, the limiting distribution oscillates along the boundary of the ellipse, with the most
eigenvalues falling on the top or the bottom of the ellipse. The density of these eigenvalues tapers
off to a minimum on the right and left sides of the ellipse. Recall in Figure 4, that the distribution
is at a maximum when θ = π

2 ,
3π
2 and at a minimum when θ = 0, π. This is exactly the case in

Figure 5, since this figure is merely the visual representation of this distribution plotted along the
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boundary ellipse. From these figures, we can also observe that the points close to the center of the
ellipse have higher density values.
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Figure 1 code

(1) m = RandomReal[NormalDistribution[0, 1/Sqrt[2]], {1000, 1000}] +

I*RandomReal[NormalDistribution[0, 1/Sqrt[2]], {1000, 1000}];

// m is a random normal distribution with 1000 values

(2) e = Eigenvalues[m];

// e is the set of eigenvalues of m

(3) e1 = e/Sqrt[1000];

// e1 normalizes e so that the majority of eigenvalues are less than 1

(4) Show[{ListPlot[{{Re[#], Im[#]} & /@ e1}, AspectRatio -> 1],

ContourPlot[x^2 + y^2 == 1, {x, -1, 1}, {y, -1, 1}]}]

// this plots e1, the set of eigenvalues, within the unit circle

Figure 2 code

(1) reg = Disk[{0, 0}, 1/2];

// initializes a circle with radius 1/2

(2) discReg = BoundaryDiscretizeRegion[reg, AccuracyGoal -> 5]; sol =

NDSolveValue[{\!\(

\*SubsuperscriptBox[\(\[Del]\), \({x, y}\), \(2\)]\(u[x, y]\)\) ==

0,

DirichletCondition[u[x, y] == (x^2 + y^2)/2 - 1/2, True]},

u, {x, y} \[Element] discReg, AccuracyGoal -> 20,

PrecisionGoal -> 35];

// this function discretizes the region "reg" such that it satisfies the Dirichlet

condition

(3) centerX = 0;

centerY = 0; bdryPts =

MeshCoordinates[BoundaryDiscretizeRegion[reg, AccuracyGoal -> 5]];

bdryPts =

Sort[bdryPts,

ArcTan[#1[[1]] - centerX, #1[[2]] - centerY] <

ArcTan[#2[[1]] - centerX, #2[[2]] - centerY] &]; bdryPtsX =

Array[{(# - 1)/(Length[bdryPts] - 1), bdryPts[[#, 1]]} &,

Length[bdryPts]];

bdryPtsY =

Array[{(# - 1)/(Length[bdryPts] - 1), bdryPts[[#, 2]]} &,

Length[bdryPts]]; paramX =

Interpolation[bdryPtsX, InterpolationOrder -> 1];

paramY = Interpolation[bdryPtsY, InterpolationOrder -> 1];

pp[x_] = {paramX[x], paramY[x]};

ppt[x_] = {D[paramX[x], x], D[paramY[x], x]};

ppn[x_] = {D[paramY[x], x], -D[paramX[x], x]};

ppnn[x_] = Normalize[ppn[x]];

// this body of code gives us the 500 or so boundary points as well as the inner and

outer normals of "reg" after discretization

(4) solGrad[x_, y_] = {D[sol[x, y], x], D[sol[x, y], y]};

outGrad[x_, y_] = {x, y};

(5) dens[x_] = -solGrad[pp[x][[1]], pp[x][[2]]].ppnn[x] +

outGrad[pp[x][[1]], pp[x][[2]]].ppnn[x];

// this gives us the density function that is plotted with a constant in Figures 2 &

4.

(6) ListPlot[Sort[bdryPts,

ArcTan[#1[[1]], #1[[2]]] < ArcTan[#2[[1]], #2[[2]]] &]]



THE CONDITIONAL DISTRIBUTION OF THE EIGENVALUES OF THE GINIBRE ENSEMBLE 21

(7) Plot[(1/(2*Pi)) dens[u], {u, 0, 1}, AxesStyle -> Thickness[0.01],

AxesLabel -> {Style[x, Bold, FontSize -> 20],

Style[y, Bold, FontSize -> 20]},

TicksStyle -> Directive[Black, Thick, Bold, 20],

PlotRange -> {{0, 1}, {0.07965 - 1/150, 0.07965 + 1/150}},

PlotStyle -> Thick]

// This plots the distribution used in Figures 2 & 4.

Figure 3 code
Part A

// much of the code is the same, except for the numbers that are changed to adjust for

the boundary shape.

(1) reg = Disk[{0, 0}, 1/2];

// initializes a circle with radius 1/2

(2) discReg = BoundaryDiscretizeRegion[reg, AccuracyGoal -> 5]; sol =

NDSolveValue[{\!\(

\*SubsuperscriptBox[\(\[Del]\), \({x, y}\), \(2\)]\(u[x, y]\)\) ==

0,

DirichletCondition[u[x, y] == (x^2 + y^2)/2 - 1/2, True]},

u, {x, y} \[Element] discReg, AccuracyGoal -> 20,

PrecisionGoal -> 35];

// this function discretizes the region "reg" such that it satisfies the Dirichlet

condition

(3) centerX = 0;

centerY = 0; bdryPts =

MeshCoordinates[BoundaryDiscretizeRegion[reg, AccuracyGoal -> 5]];

bdryPts =

Sort[bdryPts,

ArcTan[#1[[1]] - centerX, #1[[2]] - centerY] <

ArcTan[#2[[1]] - centerX, #2[[2]] - centerY] &]; bdryPtsX =

Array[{(# - 1)/(Length[bdryPts] - 1), bdryPts[[#, 1]]} &,

Length[bdryPts]];

bdryPtsY =

Array[{(# - 1)/(Length[bdryPts] - 1), bdryPts[[#, 2]]} &,

Length[bdryPts]]; paramX =

Interpolation[bdryPtsX, InterpolationOrder -> 1];

paramY = Interpolation[bdryPtsY, InterpolationOrder -> 1];

pp[x_] = {paramX[x], paramY[x]};

ppt[x_] = {D[paramX[x], x], D[paramY[x], x]};

ppn[x_] = {D[paramY[x], x], -D[paramX[x], x]};

ppnn[x_] = Normalize[ppn[x]];

// this body of code gives us the 500 or so boundary points as well as the inner and

outer normals of "reg" after discretization

(4) solGrad[x_, y_] = {D[sol[x, y], x], D[sol[x, y], y]};

outGrad[x_, y_] = {x, y};

(5) dens[x_] = -solGrad[pp[x][[1]], pp[x][[2]]].ppnn[x] +

outGrad[pp[x][[1]], pp[x][[2]]].ppnn[x];

// this gives us the density function of the eigenvalues.

(6) ListPlot[Sort[bdryPts,

ArcTan[#1[[1]], #1[[2]]] < ArcTan[#2[[1]], #2[[2]]] &]]

(7) plt = ParametricPlot[pp[u], {u, 0, 1}, PlotStyle -> Thickness[0.05],
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ColorFunction ->

Function[{x, y, u}, ColorData["DarkRainbow"][dens[u]]]];

Show[ParametricPlot[{Cos[2*Pi*x], Sin[2*Pi*x]}, {x, 0, 1},

PlotStyle -> Thickness[0.02], AxesStyle -> Thickness[0.01],

AxesLabel -> {Style[x, Bold, FontSize -> 54],

Style[y, Bold, FontSize -> 54]},

TicksStyle -> Directive[Black, Thick, Bold, 60]],

ParametricPlot[pp[u], {u, 0, 1}, PlotStyle -> Thickness[0.05],

ColorFunction ->

Function[{x, y, u}, ColorData["DarkRainbow"][dens[u]]]]]

// This plots the distribution and the circle, coloring the circle to describe the

distribution of eigenvalues.

Part B

// much of the code is the same, except for the numbers that are changed to adjust for

the boundary shape.

(1) reg = Disk[{1/3, 0}, 1/2];

// plots a circle with radius 1/2 centered at (1/3, 0)

(2) discReg = BoundaryDiscretizeRegion[reg, AccuracyGoal -> 5]; sol =

NDSolveValue[{\!\(

\*SubsuperscriptBox[\(\[Del]\), \({x, y}\), \(2\)]\(u[x, y]\)\) ==

0,

DirichletCondition[u[x, y] == (x^2 + y^2)/2 - 1/2, True]},

u, {x, y} \[Element] discReg, AccuracyGoal -> 20,

PrecisionGoal -> 35];

// this function discretizes the region "reg" such that it satisfies the Dirichlet

condition

(3) centerX = 0;

centerY = 0; bdryPts =

MeshCoordinates[BoundaryDiscretizeRegion[reg, AccuracyGoal -> 5]];

bdryPts =

Sort[bdryPts,

ArcTan[#1[[1]] - centerX, #1[[2]] - centerY] <

ArcTan[#2[[1]] - centerX, #2[[2]] - centerY] &]; bdryPtsX =

Array[{(# - 1)/(Length[bdryPts] - 1), bdryPts[[#, 1]]} &,

Length[bdryPts]];

bdryPtsY =

Array[{(# - 1)/(Length[bdryPts] - 1), bdryPts[[#, 2]]} &,

Length[bdryPts]]; paramX =

Interpolation[bdryPtsX, InterpolationOrder -> 1];

paramY = Interpolation[bdryPtsY, InterpolationOrder -> 1];

pp[x_] = {paramX[x], paramY[x]};

ppt[x_] = {D[paramX[x], x], D[paramY[x], x]};

ppn[x_] = {D[paramY[x], x], -D[paramX[x], x]};

ppnn[x_] = Normalize[ppn[x]];

// this body of code gives us the 500 or so boundary points as well as the inner and

outer normals of "reg" after discretization

(4) solGrad[x_, y_] = {D[sol[x, y], x], D[sol[x, y], y]};

outGrad[x_, y_] = {x, y};

(5) dens[x_] = -solGrad[pp[x][[1]], pp[x][[2]]].ppnn[x] +

outGrad[pp[x][[1]], pp[x][[2]]].ppnn[x];

// this gives us the density function of the eigenvalues.
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(6) ListPlot[Sort[bdryPts,

ArcTan[#1[[1]], #1[[2]]] < ArcTan[#2[[1]], #2[[2]]] &]]

(7) plt = ParametricPlot[pp[u], {u, 0, 1}, PlotStyle -> Thickness[0.05],

ColorFunction ->

Function[{x, y, u}, ColorData["DarkRainbow"][dens[u]]]];

Show[ParametricPlot[{Cos[2*Pi*x], Sin[2*Pi*x]}, {x, 0, 1},

PlotStyle -> Thickness[0.02], AxesStyle -> Thickness[0.01],

AxesLabel -> {Style[x, Bold, FontSize -> 54],

Style[y, Bold, FontSize -> 54]},

TicksStyle -> Directive[Black, Thick, Bold, 60]],

ParametricPlot[pp[u], {u, 0, 1}, PlotStyle -> Thickness[0.05],

ColorFunction ->

Function[{x, y, u}, ColorData["DarkRainbow"][dens[u]]]]]

// This plots the distribution and the circle, coloring the circle to describe the

distribution of eigenvalues.

Figure 4 code

// much of the code is the same, except for the numbers that are changed to adjust for

the boundary shape.

(1) reg = Disk[{0, 0}, {2/3, 1/3}];

// plots an ellipse, width 2/3, height 1/3

(2) discReg = BoundaryDiscretizeRegion[reg, AccuracyGoal -> 5]; sol =

NDSolveValue[{\!\(

\*SubsuperscriptBox[\(\[Del]\), \({x, y}\), \(2\)]\(u[x, y]\)\) ==

0,

DirichletCondition[u[x, y] == (x^2 + y^2)/2 - 1/2, True]},

u, {x, y} \[Element] discReg, AccuracyGoal -> 20,

PrecisionGoal -> 35];

// this function discretizes the region "reg" such that it satisfies the Dirichlet

condition

(3) centerX = 0;

centerY = 0; bdryPts =

MeshCoordinates[BoundaryDiscretizeRegion[reg, AccuracyGoal -> 5]];

bdryPts =

Sort[bdryPts,

ArcTan[#1[[1]] - centerX, #1[[2]] - centerY] <

ArcTan[#2[[1]] - centerX, #2[[2]] - centerY] &]; bdryPtsX =

Array[{(# - 1)/(Length[bdryPts] - 1), bdryPts[[#, 1]]} &,

Length[bdryPts]];

bdryPtsY =

Array[{(# - 1)/(Length[bdryPts] - 1), bdryPts[[#, 2]]} &,

Length[bdryPts]]; paramX =

Interpolation[bdryPtsX, InterpolationOrder -> 1];

paramY = Interpolation[bdryPtsY, InterpolationOrder -> 1];

pp[x_] = {paramX[x], paramY[x]};

ppt[x_] = {D[paramX[x], x], D[paramY[x], x]};

ppn[x_] = {D[paramY[x], x], -D[paramX[x], x]};

ppnn[x_] = Normalize[ppn[x]];

// this body of code gives us the 500 or so boundary points as well as the inner and

outer normals of "reg" after discretization

(4) solGrad[x_, y_] = {D[sol[x, y], x], D[sol[x, y], y]};

outGrad[x_, y_] = {x, y};
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(5) dens[x_] = -solGrad[pp[x][[1]], pp[x][[2]]].ppnn[x] +

outGrad[pp[x][[1]], pp[x][[2]]].ppnn[x];

// this gives us the density function of the eigenvalues.

(6) ListPlot[Sort[bdryPts,

ArcTan[#1[[1]], #1[[2]]] < ArcTan[#2[[1]], #2[[2]]] &]]

(7) Plot[(1/(2*Pi)) dens[u], {u, 0, 1}, AxesStyle -> Thickness[0.01],

AxesLabel -> {Style[x, Bold, FontSize -> 20],

Style[y, Bold, FontSize -> 20]},

TicksStyle -> Directive[Black, Thick, Bold, 20],

PlotRange -> {{0, 1}, {0.065 - 1/15, 0.065 + 1/15}},

PlotStyle -> Thick]

// This plots the distribution of eigenvalues of the ellipse.

Figure 5 code
Part A

// much of the code is the same, except for the numbers that are changed to adjust for

the boundary shape.

(1) reg = Disk[{0,0},{2/3,1/3}];

// plots an ellipse, width 2/3, height 1/3

(2) discReg = BoundaryDiscretizeRegion[reg, AccuracyGoal -> 5]; sol =

NDSolveValue[{\!\(

\*SubsuperscriptBox[\(\[Del]\), \({x, y}\), \(2\)]\(u[x, y]\)\) ==

0,

DirichletCondition[u[x, y] == (x^2 + y^2)/2 - 1/2, True]},

u, {x, y} \[Element] discReg, AccuracyGoal -> 20,

PrecisionGoal -> 35];

// this function discretizes the region "reg" such that it satisfies the Dirichlet

condition

(3) centerX = 0;

centerY = 0; bdryPts =

MeshCoordinates[BoundaryDiscretizeRegion[reg, AccuracyGoal -> 5]];

bdryPts =

Sort[bdryPts,

ArcTan[#1[[1]] - centerX, #1[[2]] - centerY] <

ArcTan[#2[[1]] - centerX, #2[[2]] - centerY] &]; bdryPtsX =

Array[{(# - 1)/(Length[bdryPts] - 1), bdryPts[[#, 1]]} &,

Length[bdryPts]];

bdryPtsY =

Array[{(# - 1)/(Length[bdryPts] - 1), bdryPts[[#, 2]]} &,

Length[bdryPts]]; paramX =

Interpolation[bdryPtsX, InterpolationOrder -> 1];

paramY = Interpolation[bdryPtsY, InterpolationOrder -> 1];

pp[x_] = {paramX[x], paramY[x]};

ppt[x_] = {D[paramX[x], x], D[paramY[x], x]};

ppn[x_] = {D[paramY[x], x], -D[paramX[x], x]};

ppnn[x_] = Normalize[ppn[x]];

// this body of code gives us the 500 or so boundary points as well as the inner and

outer normals of "reg" after discretization

(4) solGrad[x_, y_] = {D[sol[x, y], x], D[sol[x, y], y]};

outGrad[x_, y_] = {x, y};
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(5) dens[x_] = -solGrad[pp[x][[1]], pp[x][[2]]].ppnn[x] +

outGrad[pp[x][[1]], pp[x][[2]]].ppnn[x];

// this gives us the density function of the eigenvalues.

(6) ListPlot[Sort[bdryPts,

ArcTan[#1[[1]], #1[[2]]] < ArcTan[#2[[1]], #2[[2]]] &]]

(7) plt = ParametricPlot[pp[u], {u, 0, 1}, PlotStyle -> Thickness[0.05],

ColorFunction ->

Function[{x, y, u}, ColorData["Rainbow"][dens[u]]]];

Show[ParametricPlot[{Cos[2*Pi*x], Sin[2*Pi*x]}, {x, 0, 1},

PlotStyle -> Thickness[0.02], AxesStyle -> Thickness[0.01],

AxesLabel -> {Style[x, Bold, FontSize -> 54],

Style[y, Bold, FontSize -> 54]},

TicksStyle -> Directive[Black, Thick, Bold, 60]],

ParametricPlot[pp[u], {u, 0, 1}, PlotStyle -> Thickness[0.05],

ColorFunction ->

Function[{x, y, u}, ColorData["Rainbow"][dens[u]]]]]

// This plots the distribution and the ellipse, coloring the ellipse to describe the

distribution of eigenvalues.

Part B

// much of the code is the same, except for the numbers that are changed to adjust for

the boundary shape.

(1) reg = Disk[{1/3 - 0.06,0},{2/3,1/3}];

// plots an ellipse, width 2/3, height 1/3. The ellipse is shifted to the right by

approximately 1/3

(2) discReg = BoundaryDiscretizeRegion[reg, AccuracyGoal -> 5]; sol =

NDSolveValue[{\!\(

\*SubsuperscriptBox[\(\[Del]\), \({x, y}\), \(2\)]\(u[x, y]\)\) ==

0,

DirichletCondition[u[x, y] == (x^2 + y^2)/2 - 1/2, True]},

u, {x, y} \[Element] discReg, AccuracyGoal -> 20,

PrecisionGoal -> 35];

// this function discretizes the region "reg" such that it satisfies the Dirichlet

condition

(3) centerX = 0;

centerY = 0; bdryPts =

MeshCoordinates[BoundaryDiscretizeRegion[reg, AccuracyGoal -> 5]];

bdryPts =

Sort[bdryPts,

ArcTan[#1[[1]] - centerX, #1[[2]] - centerY] <

ArcTan[#2[[1]] - centerX, #2[[2]] - centerY] &]; bdryPtsX =

Array[{(# - 1)/(Length[bdryPts] - 1), bdryPts[[#, 1]]} &,

Length[bdryPts]];

bdryPtsY =

Array[{(# - 1)/(Length[bdryPts] - 1), bdryPts[[#, 2]]} &,

Length[bdryPts]]; paramX =

Interpolation[bdryPtsX, InterpolationOrder -> 1];

paramY = Interpolation[bdryPtsY, InterpolationOrder -> 1];

pp[x_] = {paramX[x], paramY[x]};

ppt[x_] = {D[paramX[x], x], D[paramY[x], x]};

ppn[x_] = {D[paramY[x], x], -D[paramX[x], x]};

ppnn[x_] = Normalize[ppn[x]];
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// this body of code gives us the 500 or so boundary points as well as the inner and

outer normals of "reg" after discretization

(4) solGrad[x_, y_] = {D[sol[x, y], x], D[sol[x, y], y]};

outGrad[x_, y_] = {x, y};

(5) dens[x_] = -solGrad[pp[x][[1]], pp[x][[2]]].ppnn[x] +

outGrad[pp[x][[1]], pp[x][[2]]].ppnn[x];

// this gives us the density function of the eigenvalues.

(6) ListPlot[Sort[bdryPts,

ArcTan[#1[[1]], #1[[2]]] < ArcTan[#2[[1]], #2[[2]]] &]]

(7) plt = ParametricPlot[pp[u], {u, 0, 1}, PlotStyle -> Thickness[0.05],

ColorFunction ->

Function[{x, y, u}, ColorData["Rainbow"][dens[u]]]];

Show[ParametricPlot[{Cos[2*Pi*x], Sin[2*Pi*x]}, {x, 0, 1},

PlotStyle -> Thickness[0.02], AxesStyle -> Thickness[0.01],

AxesLabel -> {Style[x, Bold, FontSize -> 54],

Style[y, Bold, FontSize -> 54]},

TicksStyle -> Directive[Black, Thick, Bold, 60]],

ParametricPlot[pp[u], {u, 0, 1}, PlotStyle -> Thickness[0.05],

ColorFunction ->

Function[{x, y, u}, ColorData["Rainbow"][dens[u]]]]]

// This plots the distribution and the ellipse, coloring the ellipse to describe the

distribution of eigenvalues.


