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Abstract

1 Introduction1

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide,2

with a five-year survival rate of approximately 50% [1, 2]. This underscores the need for further3

study into the mechanisms that contribute to HNSCC progression, including invasion, metastasis,4

and recurrence.5

One mechanism of invasion of HNSCC is perineural invasion (PNI). PNI is defined broadly as,6

“invasion in and about nerves by cancer...” [3], and more specifically as, “tumor cells within...the7

nerve sheath or tumor foci outside of the nerve with involvement of 33% of the nerve’s circumfer-8

ence” [4]. PNI involves complex interactions between cancer and nerves. A combination of signaling9

molecules and other micro-environmental factors promotes tropism of cancer towards the nerve [5].10

Moreover, recent research has proven the previously hypothesized idea that cancer stimulates neu-11

rite outgrowth: the nerve sends neurites toward the cancer, which promotes invasion in in vivo12

models [6]. This process can be compared to angiogenesis, wherein via VEGF and other signalling13

molecules, a tumor can promote the growth of endothelial cells, and ultimately vasculature, towards14

the tumor.15

Recent work [6] has validated the analogous mechanism for HNSCC in vivo, using an experi-16

mental model setup based on a chick chorioallantoic membrane (CAM) experimental model. In this17

process, injury, inflammation, or cytokine release leads to galanin (Gal) secretion by nerve. Then,18

Gal reaches the tumor, where it is sensed by Galanin receptor 2 (GalR2), a G-protein-coupled19

receptor. Through a signal transduction pathway, this leads to NFATC2-mediated transcription20

of the genes coding for Gal and Cox2. Cox2 is an enzyme that catalyzes the formation of PGE2;21
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PGE2 and Gal are made and secreted by the tumor. Gal secreted by the tumor promotes neurite22

outgrowth from the nerve, and PGE2 promotes a more invasive tumor phenotype. This facilitates23

PNI.24

This mechanism was studied in vivo in the chick corioallantoic membrane (CAM) experimental25

model [6]. In these experiments, cancer cells, representing a tumor, are added onto the collagenous26

basement membrane of the chick egg. A rat dorsal root ganglion is implanted into the connective27

tissue underneath the basement membrane. The neural tissue and cancer cells can be labeled and28

imaged to visualize and quantify the extent of neurite outgrowth and cancer invasion.29

Although many mathematical models have been developed for angiogenesis (for reviews see30

[7, 8]), few mathematical models exist for PNI. In particular, there is a need for mathematical31

models of PNI that take into account the geometry and spatial dynamics of invasion, as indicated32

by Lolas and co-authors, who highlight that need in their paper on a deterministic mean-field model33

for cancer-induced neurite outgrowth [9]. Their model tracks concentrations of different cell types34

to model the cancer-nerve interaction without a spatial component.35

We developed a hybrid model for the neurite outgrowth in PNI. Hybrid models combine deter-36

ministic components, in this case, PDEs governing diffusion of signalling molecules, with stochastic37

agent-based models, in this case, governing neurite outgrowth. Previous hybrid models, upon which38

our model is based, have been successful in capturing the phenotypes and mechanisms underlying39

angiogenesis [10, 11]. We calibrated our model to the results obtained in the CAM experimental40

model. Our model captured the patterns of neurite outgrowth observed in vivo by Scanlon and co-41

authors [6] in the CAM experiments. Based on our model, we characterize a ”chemotactic regime”,42

a region around a tumor where neurites are able to sense the tumor based on the local amount and43

gradient of galanin.44

2 Methods45

2.1 Mathematical model formulation46

The mathematical model is a hybrid model, consisting of a PDE to describe the diffusion and decay47

of Gal and a stochastic agent-based model (ABM) for neurite outgrowth.48
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2.1.1 Galanin submodel49

The diffusion and decay of Galanin are modeled by:50

∂G

∂t
= ∇ · (D∇G)− aG (1)

where G is the concentration of Gal, D is the diffusion constant of Gal, and a is the decay rate of51

Gal. The spatial domain for the PDE is a two-dimensional rectangular section of the real plane52

with “holes” representing the tumor and the nerve cell body. The boundary conditions are no-flux53

around the outer edges of the domain and the boundary conditions around the tumor and nerve54

have flux, to represent secretion rates of Gal from each entity. The time-dependent PDE was solved55

numerically over time in MATLAB using PDE Toolbox, which uses a finite element method. The56

domain was triangulated with the PDE Toolbox’s default triangulation function. The function57

value and gradient vectors at specific points were determined via the functions evaluateGradient58

and interpolateSolution.59

The PDE model was solved in increments of 10
3 minutes for 1 hour, on a 3 cm * 3 cm domain.60

The gradient and amount of galanin were interpolated on a 601-by-601 square lattice of side length61

600 µm, centered around the origin. The neurites and cancer were placed within this sub-space.62

After 1 hour of simulation, the boundary condition representing tumor secretion was recalculated,63

and the solution from the previous time-step was used as the initial condition for the next hour of64

solving the PDE.65

The boundary condition representing tumor secretion of galanin is a function of the amount66

of galanin at the boundary of the tumor, at the point nearest the nerve. The functional form is67

logarithmic, in order to include a “saturation effect”, so that the secretion rate of the tumor stays68

within a plausible biological maximum bound and does not blow up.69

2.1.2 Neurite submodel70

We developed a stochastic ABM to model the outgrowth of neurites. Neurites grow by elongation71

of cytoskeletal structures, based on intracellular signalling as well as external cues. The neurite72

tip contains many receptors that can sense external ligands and gradients, including extracellular73

matrix-bound and freely diffusing ligands. In response to these external signals, the neurite can74
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Figure 1: A pictorial representation of the model. The rough borders around the tumor and nerve represent
secretion of gal by the tumor and nerve. The solid border around the edge represents no-flux boundary
conditions. The neurites are shown growing out according to the directions chosen by their tips.
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change directions at the tip in order to grow towards a signal (chemoattractants) or grow away from75

a signal (chemorepellent). Our model consists of a series of update rules for neurite tips. Growth is76

modelled by the movement of the tips, which is based on the biological phenomena outlined above.77

The movement algorithm is described below:78

We consider the von Neumann neighborhood around a neurite tip. The first condition for79

chemotactic movement is that the amount of Gal at the tip’s location is large enough that the80

tip can sense it. This is bounded below by the dissociation constant for the binding between Gal81

and its receptor: at low concentrations of Gal, very little Gal will be receptor-bound, and thus the82

signal will not be strong enough. We used the bound83

0.01Kd < G (2)

based on [12]. The next condition is that the gradient is sufficiently large for the neurite to sense.84

In particular, for neurites, the difference between Gal concentrations on two sides of the neurite85

arising from the gradient should be larger than the difference that could be expected to arise from86

noise. Based on work by Goodhill and Urbach, which simplifies estimates from Berg and Purcell,87

we used the bound88

|(∇G)| >
√

2∆Gnoise (3)

where |(∇G)| is the Gal gradient at a point and
√

2∆Gnoise an estimate of the RMS noise [13, 14].89

If both the amount and the gradient of Gal are sufficient, then we consider the projections of the90

gradient vector, ∇G, onto the x- and y-axes. We weight the probability of moving horizontally (in91

the x-direction) and vertically (in the y-direction) as follows:92

Px =
∇Gx

∇Gx +∇Gy

Py =
∇Gy

∇Gx +∇Gy

(4)

provided that both spots are open/available for movement. If one spot is unavailable, then the93

neurite tips move to the available spot. If both spots are unavailable, then the neurite tip can move94

elsewhere with low probability.95

In order to move randomly, we make the assumption that neurites have a directional ”memory”96
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or inertia: they travel in the direction orthogonal or normal to the nerve cell body at the point97

where the neurite starts growing. This is based on the observation that neurites growing from98

dorsal root ganglia grow in a circular, radial pattern (similar to spokes from a hub) in the absence99

of external directional cues [15].100

In the model, neurites have an angle associated with them, and the probability of moving in the101

x or y direction is associated with the cosine or sine of the angle, respectively. When neurites are102

initialised, the initial angle is defined. The angle can change when the gradient is sufficiently large,103

in which case the neurite’s angle is changed to that of the gradient vector at that point. Movement104

is made with uniform probability, weighted by the angle as follows:105

Px1 =
k1 cos θ

cos θ + sin θ

Py1 =
k1 sin θ

cos θ + sin θ

Px2 =
(1− k1) cos θ

cos θ + sin θ

Py2 =
(1− k1) sin θ

cos θ + sin θ

(5)

where x1 and y1 represent the x and y directions away from the nerve body (i.e. extension),106

x2 and y2 represent the x and y directions away from the nerve body (i.e. retraction), and k1 and107

(1− k1) represent the probabilities of extension and retraction, respectively.108

2.2 Model parameters109

Model parameters were estimated based on literature values as indicated in the table.110

The secretion rate of Gal by cancer was estimated based on literature values for Gal secretion111

[16]. Henson and co-authors estimate the amount of Gal secreted by 105 cells in 24 hours for112

various cancer cell lines [16]. By assuming simple secretion and decay of Gal, the instantaneous113

secretion rate per cell per hour was determined. The secretion rate of Gal by the nerve body is114

an order-of-magnitued estimate suggested by Goodhill [12]. The decay/degradation rate of Gal115

was estimated based on observations of the half-life of Gal in various tissues [17–19]. The diffusion116

constant was estimated using the method outlined by Goodhill [13], extrapolating the diffusion117

constant by assuming a direct relationship between the cube of the radius of a molecule and its118
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mass, and an inverse relationship between the diffusion constant and the radius of the molecule.119

The time-step for neurite outgrowth is estimated at 3 minutes, based on the suggestion that120

neurites ”integrate” signals on a time scale of 100 seconds [13], with additional time to represent121

the outgrowth of the neurite.122

Table 1: Parameter values for the model.

Parameter Definition Units Value Sources

D Diffusion constant of galanin 36 mm2 hr−1 0.02

Order-of-
magnitude
estimate after
[13]

Γn Secretion rate of nerve body 104 cells nM hr−1 0.01093
order of magni-
tude estimate
after [12]

Γc
Maximum secretion rate for tu-
mor

nm hr−1 4
fitted to data
[16]

T Time-step for neurite outgrowth minutes 10
3

time-scale esti-
mate from var-
ious sources

Kd
Dissociation constant of Gal
binding to Gal receptors

nM 1-10 [20, 21]

a Degradation/Decay rate of Gal hr−1 0.3781
fitted to data
[17–19]

2.3 Data123

The model output was compared visually to the phenotypes observed by Scanlon and co-authors124

in in vivo experiments [6], reproduced in Figure 2. The key feature is that with cancer cells that125

have Gal receptors (and thus can respond to Gal secreted by the nerve), there is significant neurite126

outgrowth from the nerve, in a directed fashion towards the cancer.127

2.4 Chemoattractive regime128

We define the chemoattractive regime at time t to be the set of points of the PDE domain such129

that the amount and gradient of Gal are sufficient for neurite tips to sense, that is, the set of points130

of the PDE domain that satisfies Equations 2 and 3 at time t. Since the chemoattractive regime131

is centered around the cancer cells, we define the chemoattractive regime radius to be the distance132
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between the center of the cancer cells and the point of the chemoattractive regime nearest where133

the nerve would be centered in our simulations (i.e. the left-most point of the chemoattractive134

regime). We also studied the chemoattractive regime in a simplified Gal submodel. In this model,135

we neglect the Gal secretion of the nerve; the boundary conditions are no-flux around the edge and136

non-zero-flux around the cancer cells. In this simplified model, we performed a sensitivity analysis137

by varying the diffusion constant (D), amount threshold (0.01Kd), and Gal secretion rate of cancer138

(Γc) and calculating the chemoattractive regime radius at 48 hours. We chose 48 hours because139

the chemoattractive regime appears to reach a steady state within a few hours (see Figure 5.140

3 Results141

3.1 Simulations with 0 tumor boundary condition142

We first performed simulations with a no-flux boundary condition around the tumor, to represent143

a tumor that does not secrete Gal (in the experimental setup, this corresponds to the control cells).144

In this simulation, the neurites simply grew radially (Figure 3).145

3.2 Simulations with non-zero tumor boundary condition146

In these simulations, the tumor had non-zero flux boundary condition, representing a tumor that147

secretes Gal. In this simulation, the neurites grew radially initially, but by Day 3, showed an148

”inflection point”, as they turned and grew directly towards the cancer (Figure 4).149

3.3 Chemoattractive regime150

These simulations show the size of the chemoattractive regime in the simplified model (Figure 5A).151

The chemoattractive regime radius quickly reaches a numerical steady state in the simplified model152

(Figure 5B), which justifies studying the steady-state behavior of the chemotactic regime in our153

sensitivity analysis.154

3.4 Sensitivity analysis: chemoattractive regime155

These simulations show the steady-state chemoattractive regime radius with respect to various156

parameters. Panel A and B of Figure 6 shows that the regime radius is insensitive to the amount157
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Figure 3 | GALR2 promotes PNI. (a) UM-SCC-1 cells (green) overexpressing GALR2 co-mingle with SH-SY5Y neuroblastoma cells (red) and induce more
neuritogenesis (differentiation) than controls pcDNA, (two experiments, two replicates in each; scale bar, 100 mm). (b) UM-SCC-1-GALR2 cells are more
invasive (red arrows) towards DRG than controls (UM-SCC-1-pcDNA) and induce neurite outgrowth (blue arrow; scale bar, 1 mm). (c) Knockdown of
endogenous GALR2 in UM-SCC-1 cells, validated by immunoblot (left panel), inhibits invasion (right panel; two experiments, three replicates in each).
(d) UM-SCC-1-GALR2 CAM tumours (green) are more invasive and induce neurite outgrowth (red; scale bar, 5 mm, n¼ 6 in each group). (e) UM-SCC-1-
GALR2 cell invasion (red arrow) and neurite outgrowth (blue arrow) are attenuated with antagonist anti-GAL antibody (iGAL; scale bar, 1 mm). (f) Invasion
of UM-SCC-1-GALR2 (red arrow) and neurite outgrowth (blue arrow) are inhibited by M871 (designated iGALR2), but not scrambled peptide. (pcDNA
n¼ 3, GALR2 n¼ 6, GALR2-M871 n¼4, GALR2-Scr n¼ 5; scale bar, 1 mm). (g) M871 (iGALR2) inhibits growth of UM-SCC-1-GALR2 CAM tumours (scale
bar, 5 mm, Ctr n¼ 7, iGALR2 n¼ 8, Scr n¼8). Area was quantified with ImageJ. b,e are representative of three independent experiments with three
replicates in each. f is representative of two experiments. (*Po0.05, two-sample t-test; graph represents meanþ s.d.).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7885 ARTICLE

NATURE COMMUNICATIONS | 6:6885 | DOI: 10.1038/ncomms7885 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

Figure 2: This figure shows neurite outgrowth from rat dorsal root ganglia (labeled N) co-cultured with
tumor cells (labeled C) in the CAM experimental model system. The panels on the left are visible-light
images; the panels on the right show the neurites labeled with a red fluorescent tag and the cancer labeled
with a green fluorescent tag. The top row, labeled ”pcDNA”, represents cancer cells that do not have Gal
receptor proteins, and thus are not induced by the dorsal root ganglion to secrete Gal. The second row,
labeled ”GalR2”, represents cancer cells with Galanin receptor 2 (GalR2), which secrete Gal in response to
the Gal from the dorsal root ganglion. Both invasion by the cancer and neurite outgrowth are significantly
increased by the presence of GalR2-positive, Gal-secreting cancer cells. Reprinted from [6]. Reprinted with
permission from the publishers.
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4 mm

4 mm

4 mm

A.

B. Gal (nM) after 72 hours at max secretion rate
4 mm

Figure 3: A. Simulations with tumor that does not secrete Gal. Cancer cells are depicted in yellow;
nerve/neurites are depicted in blue. B. The gradient of Gal in the PDE domain (in nM). The nerve is the
”hole” in the domain on the left; the cancer cells are represented by the ”hole” the right. In these simulations,
the cancer cells had a no-flux boundary condition to represent a 0 secretion rate.
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4 mm

4 mm

4 mm

A.

B. Gal (nM) after 72 hours at max secretion rate
4 mm

Figure 4: A. Simulations with tumor that secretes Gal (non-zero tumor boundary conditions). Cancer cells
are depicted in yellow; nerve/neurites are depicted in blue. B. The gradient of Gal in the PDE domain (in
nM). The nerve is the ”hole” in the domain on the left; the cancer cells are represented by the ”hole” the
right.
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Figure 5: A. Plot of chemotactic regime in the simplified model. The regime is colored in yellow; points
in the domain outside the chemotactic regime are coloured in violet. B. The radius (from the center of the
cancer to the edge of the chemotactic regime)

threshold but sensitive to D, the diffusion constant of Gal, and Γc, the secretion rate of Gal by the158

tumor. In particular, increasing the diffusion constant leads to a larger chemoattractive regime,159

with a relationship that is approximately log-linear. Increasing secretion rate also leads to a larger160

chemoattractive regime. At low diffusion constants, the chemoattractive regime is insensitive to161

small in secretion rate above a non-zero secretion rate.162

4 Discussion163

4.1 Qualitative comparison of model and data164

By accounting for known aspects of neurite outgrowth and of the biological mechanism of PNI,165

we successfully captured the overall phenotype of neurite outgrowth in the CAM model for PNI:166

random radial outgrowth followed by chemotactically directed outgrowth towards the tumor. Our167

results qualitatively match the experimental data in time-scale and distance scales.168

One aspect of the experimental data in Figure 2 that the model fails to capture adequately is169

the observed polarisation of the neuron: there is one very large neurite or neurite bundle and a170

cloud of smaller neurites. Since the model does not contain any polarisation terms, the model fails171

to capture this effect.172

Finally, the model simulations with 0 tumor boundary conditions show significant neurite out-173
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growth, unlike the control (top row) experimental results in Figure 2. This could potentially be174

overcome by rescaling the movement probabilities or diffusion constant, but it is worth noting that175

in its present form, the model does not account for the lack of neurite outgrowth seen in the case176

that the cancer does not secrete Gal.177

4.2 Interpreting the chemoattractive regime178

The chemotactic regime is defined to be the area around the cancer where the amount and gradient179

of Gal are large enough to direct neurite outgrowth towards the cancer. Our results suggest that180

the chemoattractive regime is large enough to attract neurites from >1 mm away (in the CAM181

model), but not always large enough to extend all the way to the nerve body (depending on the182

Gal secretion rate and the diffusion constant).183

This suggests that both undirected and directed neurite outgrowth contribute to neurites grow-184

ing towards cancer: random outgrowth allows neurites to reach the chemotactic regime, where they185

can grow in a directed fashion towards the tumor. This mechanism is consistent with experimental186

observations of PNI in the CAM model (Figure 2, unpublished observations), which show a certain187

amount of radial neurite outgrowth, with long enough neurites turning or bending towards the188

tumor. The concept of the chemotactic regime is a succinct encapsulation of these observations.189

4.3 Limitations190

The neurite submodel is a relatively simplistic, phenomenological approach to neurite outgrowth.191

The bounds for amount and gradient of Gal that a neurite can sense take the place of a more192

elaborate receptor model, and we do not incorporate the process of polarization into our model.193

As such, the neurite outgrowth trajectories are individually plausible, but it is unlikely that one194

DRG would send out 5 distinct neurites of similar length.195

The tumor model is a mass/aggregate model: we do not consider the dynamics of individual196

cells. This is seen in two ways: first, we do not consider within-cell dynamics or intra-tumor197

dynamics in the secretion of Gal, and second, we do not consider invasive (i.e. moving) tumor198

cells. The first limitation could be overcome with a cellular model for the tumor, incorporating199

within-cell dynamics, proliferation, and other features of a tumor. The second limitation could be200

overcome by incorporating cancer cell motility (for a recent review of cancer models, see [7]).201
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Certain parameters need better estimation or fitting. The diffusion constant for Gal should be202

obtained experimentally in tissues, ideally by live imaging, since it is clear from Figure 6 that the203

diffusion constant determines the size of the chemoattractive regime. In addition, the assumption204

of pure Fickian diffusion may be inaccurate given that the presence of cells may interfere with205

diffusion (i.e. perhaps cellular transport should be considered). Imaging experiments with labeled206

Gal would potentially validate the assumption about diffusion or suggest a better model for Gal207

transport.208

4.4 Future directions209

This preliminary model offers several opportunities for mathematical extension as well as experi-210

mental validation.211

4.4.1 Modeling212

This model could be extended in several ways. It is known that extending a biological model from213

two spatial dimensions to three spatial dimensions can change the dynamics of the model; the CAM214

PNI assay is quite flat in the sense that the interacting components do so on a relatively thin section215

of tissue, so a two-spatial-dimensional model is a reasonable choice. However, in order to apply this216

model to HNSCC in humans, it might be important to consider three-spatial-dimensional models217

(if they do, in fact have different dynamics) to reflect the spatial complexity of tumors in humans.218

Therefore, a logical extension of this work would be to develop an analogous model in three spatial219

dimensions.220

In this model, we consider a neurite outgrowth algorithm to make the neurite model. However,221

this model could be formalised into a biased random walk. A 2013 biased random walk model of222

chemotaxis by Jain and Jackson has the additional advantage of including chemokine-receptor bind-223

ing dynamics explicitly [11]. It would at least be beneficial to compare our more phenomenological224

gradient and amount sensing limits to the graded response functions based on receptor activation225

in that paper [11], either to validate or to improve the approach taken here. Additionally, some226

simple polarization model, such as a positive-feedback loop between length and growth for the227

longest neurite, would help recapture the observed phenotype of one larger neurite/neurite bundle228

and several smaller neurites.229
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This model captures neurite outgrowth towards a tumor; an important extension of this model230

is capturing the growth of cancer cells towards the nerve. A model with motile invasive cells is231

an important extension of this model. It would facilitate the study of the relative contribution232

of neurite outgrowth and cancer invasion to PNI, and perhaps elucidate the mechanism by which233

neurite outgrowth facilitates cancer invasion into the nerve.234

4.4.2 Further experimental study235

While most model parameters were estimated with some basis in Gal-specific literature, the diffusion236

constant for Gal was not obtained directly; this can be rectified with experiments for estimating237

the diffusion constant for a protein. In addition, the dynamics (diffusion and transport) of Gal in238

tissues and cells could be estimated [22]. Finally, further models could consider diffusion in the239

case that Fickian diffusion assumptions break down: i.e. an anisotropic, ”molecularly crowded”240

environement [23].241

Additional experiments could be performed to test the accuracy of the estimates of the minimum242

amount and gradient of galanin that a neurite can sense. For instance, Rosoff and coauthors243

developed an assay in which controllable amounts and gradients of a molecule can be printed onto244

a gel, and then the response of neurites can be quantified [24]. Similar assays could be performed245

with controlled amounts and gradients of Gal to study in detail the response of neurites to various246

concentration patterns of Gal.247

4.5 Conclusion248

In summation, we developed a modeling approach to simulate chemical and spatial components249

of the nerve-cancer interaction. This simple hybrid captures several important features of PNI,250

most importantly, the combination of random and directed neurite outgrowth observed in the251

CAM experiments. This combination suggests the existence of a chemoattractive regime, within252

which neurites move chemoatactically due to the Gal secretion of the tumor. Outside of this253

chemoattractive regime, the neurites cannot ”sense” the cancer, so random outgrowth is necessary254

to reach the regime. The size of the chemoattractive regime suggests that both undirected and255

directed neurite outgrowth contribute to PNI. This preliminary study indicates that extensions256

of this model would be fruitful in providing insights about PNI, especially in testing treatment257
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strategies.258
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