
Isometries And Equivalences Between Point Configurations,

Extended To ε-diffeomorphism

Neophytos Charalambides

July 2016

Abstract

In this report I deal with the Orthogonal Procrustes Problem by considering either two
distinct point configurations or the distribution of distances of two point configurations. The
objective is to align the two point configurations by first finding a correspondence between the
points and then constructing the map which aligns the configurations. The terms reordering and
relabelling will be used interchangeably. This idea is also extended to ε-diffeomorphisms which
were introduced by [1] Damelin and Fefferman. I give a few examples to show when distributions
of distances won’t allow you to get a complete map between the points, if the distributions
match, and then describe how we can partition our configurations into polygons in order to
construct the maximum possible correspondences between the configurations, considering their
areas. Included is also a brief overview of reconstructing the configurations, given the distance
distributions. Finally, some algorithms are described for configurations with matching points
along with examples, where we find a permutation which will give us a relabelling, and also the
affine transformation which aligns the configurations. If not specified, any arbitrary dimension
RD with D ≥ 2 can be considered.

1 Procrustes Problem

Procrustes Problem: Let D,n ∈ N, O(D) the set of orthogonal transformations, and A(D) the
set of affine transformations in RD. Considering the following action:

x 7→ Ax+ ~t

where A ∈ O(D), ~t ∈ RD, d(·) the Euclidean distance in RD. X = {x1, . . . , xn} and Y =
{y1, . . . , yn} are collections of distinct points in RD. If d(xi, xi) = d(yi, yj) for all 1 ≤ i, j ≤ n,
then ∃ϕ ∈ A(D) such that ϕ(xi) = yi for all i, j ∈ {1, ..., n}. Given the collections X and Y , find
A ∈ O(D) and ~t ∈ RD, or φ ∈ A(D).

There are several proofs of this Problem. As part of the REU a collaborative proof between 4
students and 2 professors was given, which will therefore be omitted.

1

2 Non-Reconstructible Configurations

In [2] we see an example of two set of points, where the set of their distances match but the point
configurations do not, for a total number of points n = 4. [2] Proposition 2.1 gives a simple way to
check such cases.

Definition 2.1. By relabelling, we mean that if there’s an initial labelling of ordered points in two
congruent configurations, we reorder them in such a way that there’s a correspondence between the
points.

An example is if there’s an initial labelling of ordered points {a, b, c, d, e} in X and {α, β, ε, δ, γ} in
Y , where a corresponds to α, b to β, c to γ, d to δ and e to ε, one such relabelling will come from
the permutation

(
1 2 3 4 5
1 2 5 4 3

)
.

Proposition 2.1. [2] Suppose n 6= 4. A permutation φ ∈ S(n2)
is a relabelling if and only if for all

pairwise distinct indices i, j, k ∈ {1, ..., n} we have:

φ · {i, j} ∩ φ · {i, k} 6= ∅.

In other words, we need to take the edges of equal length between the two configurations we are
considering and check if there’s a mutual vertex between all such pairs for a given permutation
φ ∈ S(n2)

. This permutation is what will give us the labelling if it does exist.

In the context of our problem, we consider the given n-point configurations {p1, ..., pn} and {q1, ..., qn}
with their corresponding pairwise distances DP = {dpij |dpij = d(pi, pj), 1 ≤ i, j ≤ n} and DQ =
{dqij |dqij = d(qi, qj), 1 ≤ i, j ≤ n} with DP = DQ upto some reordering and |DP | = |DQ| =

(
n
2

)
.

We then want to find if ∃{i, k}, {j, l} such that d(pi, pk) = d(qj , ql) ⇔ dpik = dqjl ∀i, j, k, l ∈
{1, ..., n} for a permutation φ ∈ S(n2)

. In the case where this isn’t true, we need to disregard a

certain number of bad points from both configurations in order to achieve this.

2.1 Example

Below is an example with two different 4-point configurations in R2 which have the same distribution
of distances. The corresponding equal distances between the 2 configurations are represented in
the same color, and the we have two edges with distances 1, 2 and

√
5, but it’s obvious that there

doesn’t exist a Euclidean transformation between the two.

From this example we can construct infinitely many sets of 2 different configurations with the same
distribution of distances. This can be done by simply adding as many points as desired on the
same location across the dashed line in both the configurations of figure 2.

2

Figure 1: Two different 4-point configurations with the same distribution of distances

Figure 2: Configurations with the same distribution of distances for n ≥ 4

In both the above example and the one mentioned in [2], it suffices to exclude one point from the
two configurations and you will be able to get a Euclidean motion to move from one configuration
to the other.

Conjecture 2.1. For two n-point configurations P,Q ∈ R2 with DP = DQ for which @A ∈ O(2),
~t ∈ R2 such that Q =

(
AP + ~t

)
assuming the points have been labelled appropriately, then ∃pi ∈ P

and ∃qi ∈ Q such that Q\qi =
(
A(P\pi) + ~t

)
, for some A ∈ O(2), ~t ∈ R2.

If the above conjecture holds, it suffices to exclude a single bad-point from both P and Q, such that
P and Q differ only by a Euclidean motion. Iterating through the potential pairs of bad-points
will take O(n2), the issue still arises in determining whether the points we excluded results in two
congruent configurations.

3

3 Partition Into Polygons

One approach we can take in order to see which points should be excluded from our 2 configurations
P and Q, is to partition the entire configurations into smaller polygons and compare polygons of
the same area, in order to determine existing point correspondences between P and Q. For any
subsets {i, j, ...} ⊆ {1, ..., n} or {s, t} ⊆ {1, ..., k} we consider in the upcoming sections, the elements
of each subset will be distinct.

3.1 Considering Areas Of Triangles - 10-step algorithm

Considering our two n-point configurations P = {p1, ..., pn} and Q = {q1, ..., qn}, we partition them
into a total of

(
n
3

)
triangles and considering the distance between our 3 points in each case, let’s

say indexed i, j, k, we have the distances dpij , dpik, dpjk and analogously dqi′j′ , dqi′k′ , dqj′k′ .

We now compute the areas as follows:

Aijk =
√
s(s− dpij)(s− dpik)(s− dpjk) where s :=

dpij + dpik + dpjk
2

Bi′j′k′ =
√
s′(s′ − dqi′j′)(s′ − dqi′k′)(s′ − dqj′k′) where s′ :=

dqi′j′ + dqi′k′ + dqj′k′

2

and consider the sets of areas

A =
{
Aijk|∀{i, j, k} ⊆ {1, ..., n}

}
B =

{
Bi′j′k′ |∀{i′, j′, k′} ⊆ {1, ..., n}

}
}

where |A| = |B| =
(
n
3

)
= n(n−1)(n−2)

6 .

We further partition the above sets as follows:

A1 =
{
Aijk|Aijk ∈ A and ∃Bi′j′k′ ∈ B s.t. Aijk = Bi′j′k′

}
B1 =

{
Bi′j′k′ |Bi′j′k′ ∈ B and ∃Aijk ∈ A s.t. Bi′j′k′ = Aijk

}
A2 = A\A1 B2 = B\B1

Note that it may not be true that |A1| = |B1|, as the areas need not all be distinct.We essentially
want the shapes formed by our points in the two sets which are ”identical”. Let’s assume our
sets A1 and B1 are in ascending order with respect to the modes of the areas. We undertake the
following steps in order to check which points to disregard and permutations are valid:

1. Disregard all points from from P and Q which are vertices of triangles in A2 and B2 respec-
tively, but at the same time not vertices of any triagle in A1 and B1.

2. In order we take Aijk ∈ A1 and the corresponding triangles in B1, with Aijk = Bi′j′k′ .

4

3. If the distances of the sides of the triangles corresponding to Aijk and Bi′j′k′ don’t match,
disregard the triangles with area Bi′j′k′ .

4. If the distances match up, we assign the points the corresponding points from P to Q and
essentially start constructing our permutation, so thus far we have:(i j k ···

i′ j′ k′ ···
)

Alternatively, we can match the points between Aijk and Bi′j′k′ which have the same corre-
sponding angles.

5. Note that we might have more that 1 possible permutation, so for now we keep track of all of

them and list them as α
(t)
s =

(i j k ···
i′ j′ k′ ···

)
for s being the indicator of the triangle we take from

A1, and t being the indicator of the corresponding triangle in B1 in order (so if 3 triangles
correspond, we have t ∈ {1, 2, 3}).

• For triangles with 3 distinct inner angles we will have 1 permutation, for isosceles tri-
angles 2 permutations, and for equilateral triangles 3!=6 permutations.

• In the case of squares when considering quadrilaterals, we will have 4!=24 permutations
(will be discussed in section 3.3).

• This can be though of as matching angles between equidistant edges of our polygons.

6. Go to the next triangle in A1 (which might have the same area as our previous triangle), and
repeat steps 2-4

• If the distances of our current triangle match with those of our previous triangle, simply
take all previous permutations and ”concatenate” them (I will also be using the term

”combine”). So for example
(
α
(1)
1

)
2

=
(
α
(1)
1 α

(2)
1

)
, where the index v in

(
α
(t)
s

)
v

indicates

the combination we have with α
(t)
s being the first element of the permutation as above.

We therefore get a total of
∏ν−1
ι=0 (t − ι) permutations we are currently keeping track

of, where ν is the number of elements in the constructions thus far. Note that in the
above procedure we assume no common points, and the case where mutual points exists
is described below.

7. If our current and previous triangles share points, we consider the combination of two triangles
in B1 with the same corresponding areas and shapes and matching points as the combination
of the two triangles taken from A1, so we’ll either get a quadrilateral (if they share 2 points) or
two triangles sharing an vertex (not a pentagon), and check whether all

(
4
2

)
or
(
5
2

)
distances

between our 2 shapes match up. If they do, we replace or extend the permutations we
are keeping track of, and disregard any permutations from before which don’t satisfy the
conditions of this bullet-point.

8. If our current and previous triangles don’t share points, we essentially repeat steps 2-5 and
extend the permutations we are keeping track of, in a similar manner to that shown in step
6.

9. At this point we have traversed through all triangles in both A1 and B1 with the same
area, and have constructed permutations (not necessarily all of the same size) which can be

5

considered as sub-correspondence of points between P and Q (meaning that more points may
be included to the correspondences). We are now going to be considering the triangles with
area of the next lowest mode and repeat steps 2-8, while keeping track of the permutations we
have thus far. Some steps though will be slightly modified as now we are considering various
shapes (corresponding to our permutations), and in the above steps when referring to our
”previous triangle”, we will now be considering our ”previous shapes”.

10. Repeating the above until we traverse through all triangles in A1 and B1 will give us a certain
number of permutations, and for our problem we can simply take the permutations of the
largest size (might have multiple) and the points which aren’t included in that permutation
can be considered as bad points for the problem. Note that certain points might be considered
as bad for certain permutations and not for others, which depends entirely on P and Q.

Brief Explanation On The Above Approach

The idea of the above approach is to disregard non-identical shapes and configurations of the point
sets P and Q, while simultaneously constructing the desired permutations of sub-configurations
which have the same shape. Note that we start of with the triangle areas which have the smallest
mode in order to simplify the implementation of this algorithm. There will exist a diffeomorphism
between P and Q if and only if the maximum permutations constructed have size n, where all
points will be included. A drawback of this approach, is that we keep track of a relatively large
number of permutations through out this process, but when going through each set of triangles of
the same area, a lot of them are disregarded in step 7.

3.2 Graph Point Of View

Another way to view this problem is as a graph problem, where our points correspond to vertices
and the distances correspond to weighted edges between the vertices of a fully-connected graph.
Considering the two graphs GP and GQ constructed by P and Q respectively, our goal is to find ex-
isting subgraph isomorphisms. This is known to be an NP-Complete problem. The triangles we were
using above will correspond to 3-node cliques, while quadrilaterals will correspond to 4-node cliques.

Considering this will actually make the problem significantly easier to implement, by taking ad-
vantage of the adjacency of matrices of the two graphs. In section 6 we use this concept to find
the correspondence between the points, when it’s known that there exists for all points in P and
Q. This is the Graph Isomorphism problem, and belongs in the NP-Intermediate complexity class.

3.3 Considering Areas Of Quadrilaterals

Alternatively, we can partition P = {p1, ..., pn} and Q = {q1, ..., qn}, by partitioning them into a to-
tal of

(
n
4

)
quadrilaterals , and consider the

(
4
2

)
= 6 distances between our 4 points in each case. If we

take 4 distinct points indexed i, j, k, l, we have the set of distancesDP ijkl = {dpij , dpik, dpil, dpjk, dpjl, dpkl}
and analogously DQi′j′k′l′ = {dqi′j′ , dqi′k′ , dqi′l′ , dqj′k′ , dqj′l′ , dqk′l′}.

6

We now compute the areas as follows:

r := max{d ∈ DP ijkl} , s := max{d ∈ DP ijkl\{r}}

{a, b, c, d} := DP ijkl\{r, s}, where a,c correspond to distances of edges which don’t share a vertex

Aijkl =
1

4

√
4r2s2 − (a2 + c2 − b2 − d2)2

r′ := max{d ∈ DQi′j′k′l′} , s′ := max{d ∈ DQijkl\{r′}}

{a′, b′, c′, d′} := DQi′j′k′l′\{r′, s′}, where a’,c’ correspond to distances of edges which don’t share a vertex

Bi′j′k′l′ =
1

4

√
4r′2s′2 − (a′2 + c′2 − b′2 − d′2)2

and consider the sets of areas

A =
{
Aijkl|∀{i, j, k, l} ⊆ {1, ..., n}

}
B =

{
Bi′j′k′l′ |∀{i′, j′, k′, l′} ⊆ {1, ..., n}

}
where |A| = |B| =

(
n
4

)
= n(n−1)(n−2)(n−3)

24 .

We further partition the above sets as follows:

A1 =
{
Aijkl|Aijkl ∈ A and ∃Bi′j′k′l′ ∈ B s.t. Aijkl = Bi′j′k′l′

}
B1 =

{
Bi′j′k′l′ |Bi′j′k′l′ ∈ B and ∃Aijkl ∈ A s.t. Bi′j′k′l′ = Aijkl

}
A2 = A\A1 B2 = B\B1

We can now follow the same algorithm described in section 3.1, with the exception that now we’ll
be considering 4 points at a time, rather than 3. Depending on the point-configurations P and Q,
either this approach or the previous approach might be more efficient, but this cannot be determined
a priori.

7

4 Partition Into Polygons For ε-distortions

We extend our previous work to ε-distortions.

4.1 Areas Of Triangles For ε-distortions

For notational convenience we will be using the same notation used in section 3.1, as well as the
fact that our sets will have the following property:

(1− εij) ≤
dpij
dqi′j′

=
||pi − pj ||
||q′i − q′j ||

≤ (1 + εij), ∀{i, j} ⊆ {1, ..., n}, given i 6= j

rather than dpij = dqi′j′ ⇔ ||pi − pj || = ||q′i − q′j ||.

Theorem 4.1. For our usual setup, it holds that for three points in our two point configurations
P and Q with indices and areas {i, j, k}, Aijk and {i′, j′, k′}, Bi′j′k′ respectively, the points can be
mapped from P to Q through an E-distorted diffeomorphism if and only if√

(Bi′j′k′)2 −
1

4
·H1 ≤ Aijk ≤

√
(Bi′j′k′)2 +

1

4
·H2

where H1, H2 depend on E := max
{
εst|{s, t} ⊆ {i, j, k}

}
, and the elements of the distribution of

distances of Bi′j′k′ .

Proof. Considering the area of the triangles defined by the point pi, pj , pk and the corresponding
points q′i, q

′
j , q
′
k, we define εij− := (1− εij), εij+ := (1 + εij), and get the following 3 inequalities for

each triangle:
dqi′j′ · εij− ≤ dpij ≤ dqi′j′ · εij+
dqi′k′ · εik− ≤ dpik ≤ dqi′k′ · εik+
dqj′k′ · εjk− ≤ dpjk ≤ dqj′k′ · εjk+

In order to simplify our computations we define:

E := max
{
εst|{s, t} ⊆ {i, j, k}

}
E− := (1− E) E+ := (1 + E)

=⇒ dqs′t′ · E− ≤ dpst ≤ dqs′t′ · E+ , for all pairs {s,t} ⊆ {i, j, k}

and
s := dpij + dpik + dpjk

s′ := dqi′j′ + dqi′k′ + dqj′k′

8

It then follows that for all pairs {s, t} ⊆ {i, j, k}, that

(2dqs′t′) · E− ≤ 2dpst ≤ (2dqs′t′) · E+

(−2dqs′t′) · E+ ≤ −2dpst ≤ (−2dqs′t′) · E−
and

(dqi′j′ + dqi′k′ + dqj′k′) · E− ≤ dpij + dpik + dpjk ≤ (dqi′j′ + dqi′k′ + dqj′k′) · E+

s′ · E− ≤ s ≤ s′ · E+

=⇒ (s′ · E− − 2dqi′j′ · E+) ≤ (s− 2dqij) ≤ (s′ · E+ − 2dqi′j′ · E−)

Taking advantage of the triangle inequality, s′ ≤ 2dqi′j′ , we get the following bounds, which unfor-
tunately are not precise:

2dqi′j′ · (E−−E+) ≤ (s′ ·E−− 2dqi′j′ ·E+) ≤ (s− 2dqij) ≤ (s′ ·E+− 2dqi′j′ ·E−) ≤ 2s′ · (E+−E−)

2dqi′j′ · (E− − E+) ≤ (s− 2dqij) ≤ 2s′ · (E+ − E−)

(−4E) · dqi′j′ ≤ (s− 2dqij) ≤ (4E) · s′

0 ≤ (s− 2dqij) ≤ (4E) · s′

We know that the area of the triangle defined by the points in the configurations P and Q are
respectively:

Aijk =

√
s(s2 − dpij)(

s
2 − dpik)(

s
2 − dpjk)

2
=

1

2
·
√
s(s− 2dpij)(s− 2dpik)(s− 2dpjk)

=⇒ Aijk =
1

2
·
√
S for S := s(s− 2dpij)(s− 2dpik)(s− 2dpjk)

Bi′j′k′ =

√
s′(s

′

2 − dqi′j′)(
s′

2 − dqi′k′)(
s′

2 − dqj′k′)
2

=
1

2
·
√
s′(s′ − 2dqi′j′)(s′ − 2dqi′k′)(s′ − 2dqj′k′)

=⇒ Bi′j′k′ =
1

2
·
√
S′ for S′ := s′(s′ − 2dqi′j′)(s

′ − 2dqi′k′)(s
′ − 2dqj′k′)

In order to be as precise as possible we don’t undertake any simplifications, and from the above
inequalities considering the indices {i, j, k} and {i′, j′, k′}, we get:

s′
∏
ι′ 6=κ′

(s′ · E− − 2dqι′κ′ · E+) ≤ s
∏
ι6=κ

(s− 2dpικ) ≤ s′
∏
ι′ 6=κ′

(s′ · E+ − 2dqι′κ′ · E−)

s′
∏
ι′ 6=κ′

[(s′ − 2dqι′κ′)− (s′ + 2dqι′κ′) ·E] ≤ s
∏
ι6=κ

(s− 2dpικ) ≤ s′
∏
ι′ 6=κ′

[(s′ − 2dqι′κ′) + (s′ + 2dqι′κ′) ·E]

9

s′(α1 − β1)(α2 − β2)(α3 − β3) ≤ s
∏
ι6=κ

(s− 2dpικ) ≤ s′(α1 + β1)(α2 + β2)(α3 + β3)

s′
[
α1α2α3 − [α3β2(α1 − β1) + α1β3(α2 − β2) + α2β1(α3 − β3)]− β1β2β3

]
≤ s

∏
ι 6=κ

(s− 2dpικ) ≤

≤ s′
[
α1α2α3 + [α3β2(α1 + β1) + α1β3(α2 + β2) + α2β1(α3 + β3)] + β1β2β3

]
S′ − s′

[
α3β2(α1 − β1) + α1β3(α2 − β2) + α2β1(α3 − β3) + β1β2β3

]
≤ S ≤

≤ S′ + s′
[
α3β2(α1 + β1) + α1β3(α2 + β2) + α2β1(α3 + β3) + β1β2β3

]
S′ −H1 ≤ S ≤ S′ +H2

Comparing the areas of two corresponding triangles from the 2 point-configurations we then get:

4 · (Bi′j′k′)2 −H1 ≤ 4 · (Aijk)2 ≤ 4 · (Bi′j′k′)2 +H2

(Bi′j′k′)
2 − 1

4
·H1 ≤ (Aijk)

2 ≤ (Bi′j′k′)
2 +

1

4
·H2√

(Bi′j′k′)2 −
1

4
·H1 ≤ Aijk ≤

√
(Bi′j′k′)2 +

1

4
·H2

4.2 Considering Areas Of Triangles - Part 2

For areas of triangles for ε-distortions, we construct the sets of areas of the partitioned triangles as
follows:

A = {Aijk|∀{i, j, k} ⊆ {1, ..., n}}
B = {Bi′j′k′ |∀{i′, j′, k′} ⊆ {1, ..., n}}

A1 =
{
Aijk|Aijk ∈ A w/ E and ∃Bi′j′k′ ∈ B, s.t. |

√
(Bi′j′k′)2 −

H1

4
| ≤ Aijk ≤ |

√
(Bi′j′k′)2 +

H2

4
|
}

B1 =
{
Bi′j′k′ |Bi′j′k′ ∈ B and ∃Aijk ∈ A w/ E, s.t. |

√
(Bi′j′k′)2 −

H1

4
| ≤ Aijk ≤ |

√
(Bi′j′k′)2 +

H2

4
|
}

A2 = A\A1 B2 = B\B1

We then follow the exact same 10-step algorithm to get the desired result for ε−distortions, although
now it is very unlikely that 2 or more triangles will have the exact same area.

10

4.3 Areas Of Quadrilaterals For ε-distortions

Just as above, for notational convenience we will be using the same notation used in section 3.1,
as well as the fact that our sets will have the following property:

(1− εij) ≤
dpij
dqi′j′

=
||pi − pj ||
||q′i − q′j ||

≤ (1 + εij), ∀{i, j} ⊆ {1, ..., n}

rather than dpij = dqi′j′ ⇔ ||pi − pj || = ||q′i − q′j ||.

Theorem 4.2. For our usual setup, it holds that for four points in our two point configurations P
and Q with indices and areas {i, j, k, l}, Aijkl and {i′, j′, k′, l′}, Bi′j′k′l′ respectively, the points can
be mapped from P to Q through an E-distorted diffeomorphism if and only if√

(Bi′j′k′l′)2 · (1 + E2)2 − Ĥ2

16
≤ Aijkl ≤

√
(Bi′j′k′l′)2 · (1 + E2)2 +

Ĥ2

16

where Ĥ1, Ĥ2 depend on E := max
{
εst|{s, t} ⊆ {i, j, k, l}

}
, and the elements of the distribution of

distances of Bi′j′k′l′ .

Proof. We consider our two n-point configurations P = {p1, ..., pn} and Q = {q1, ..., qn}, and parti-
tion them into a total of

(
n
4

)
quadrilaterals , and take into account

(
4
2

)
= 6 distances between our 4

points in each case. If we take the 4 points indexed i, j, k, l, we have the set of distances DP ijkl =
{dpij , dpik, dpil, dpjk, dpjl, dpkl} and analogously DQi′j′k′l′ = {dqi′j′ , dqi′k′ , dqi′l′ , dqj′k′ , dqj′l′ , dqk′l′}
for our 2nd configuration. We also define εij− := (1− εij), εij+ := (1 + εij), and get the following
6 inequalities for each triangle:

dqi′j′ · εij− ≤ dpij ≤ dqi′j′ · εij+ dqj′k′ · εjk− ≤ dpjk ≤ dqj′k′ · εjk+

dqi′k′ · εik− ≤ dpik ≤ dqi′k′ · εik+ dqj′l′ · εjl− ≤ dpjl ≤ dqj′l′ · εjl+
dqi′l′ · εil− ≤ dpil ≤ dqi′l′ · εil+ dqk′l′ · εkl− ≤ dpkl ≤ dqk′l′ · εkl+

Following a similar approach to what was shown previously, we define the following parameters and
compute the areas:

E := max
{
εst|{s, t} ⊆ {i, j, k, l}

}
E− := (1− E) E+ := (1 + E)

=⇒ dqs′t′ · E− ≤ dpst ≤ dqs′t′ · E+ , for all pairs {s,t} ⊆ {i, j, k, l}

and
r := max{d ∈ DP ijkl} s := max{d ∈ DP ijkl\{r}}

{a, b, c, d} := DP ijkl\{r, s}, where a,c correspond to distances of edges which don’t share a vertex

S := (a2 + c2 − b2 − d2) S̃ := (a2 + b2 + c2 + d2)

Aijkl =
1

4

√
4r2s2 − (a2 + c2 − b2 − d2)2 =⇒ Aijkl =

1

4

√
4r2s2 − S2

11

r′ := max{d ∈ DQi′j′k′l′} s′ := max{d ∈ DQi′j′k′l′\{r′}}

{a′, b′, c′, d′} := DQi′j′k′l′\{r′, s′}, where a’,c’ correspond to distances of edges which don’t share a vertex

S′ := (a′2 + c′2 − b′2 − d′2) S̃′ := (a′2 + b′2 + c′2 + d′2)

Bi′j′k′l′ =
1

4

√
4r′2s′2 − (a′2 + c′2 − b′2 − d′2)2 =⇒ Bi′j′k′l′ =

1

4

√
4r′2s′2 − S′2

It then follows that for all pairs {s, t} ⊆ {i, j, k}

(dqs′t′)
2 · (E−)2 ≤ (dpst)

2 ≤ (dqs′t′)
2 · (E+)2

−(dqs′t′)
2 · (E+)2 ≤ −(dpst)

2 ≤ −(dqs′t′)
2 · (E−)2

which imply that
(r′s′)2 · (E−)4 ≤ (rs)2 ≤ (r′s′)2 · (E+)4

and[
(a′2+c′2)·(E−)2−(+b′2+d′2)·(E+)2

]
≤ (a2+c2−b2−d2) ≤

[
(a′2+c′2)·(E+)2−(+b′2+d′2)·(E−)2

]
[
(a′2 + c′2) · (1− 2E + E2)− (+b′2 + d′2) · (1 + 2E + E2)

]
≤ (a2 + c2 − b2 − d2) ≤

≤
[
(a′2 + c′2) · (1 + 2E + E2)− (+b′2 + d′2) · (1− 2E + E2)

]
[
(a′2 + c′2 − b′2 − d′2) · (1 + E2)− 2E · (a′2 + c′2 + b′2 + d′2)

]
≤ (a2 + c2 − b2 − d2) ≤

≤
[
(a′2 + c′2 − b′2 − d′2) · (1 + E2) + 2E · (a′2 + c′2 + b′2 + d′2)

]
[
S′ · (1 + E2)− S̃′ · (2E)

]
≤ S ≤

[
S′ · (1 + E2) + S̃′ · (2E)

]
−
[
S′ · (1 + E2) + S̃′ · (2E)

]2
≤ −S2 ≤ −

[
S′ · (1 + E2)− S̃′ · (2E)

]2
−S′2 · (1 + E2)2 −

[
S̃′ · (2E) · [2ES̃′ + S′(1 + E2)]

]
≤ −S2 ≤

≤ −S′2 · (1 + E2)2 −
[
S̃′ · (2E) · [2ES̃′ − S′(1 + E2)]

]
−S′2 · (1 + E2)2 −H1 ≤ −S2 ≤ −S′2 · (1 + E2)2 −H2

Comparing the areas of two corresponding quadrilaterals from the 2 point-configurations we then
get:

4(r′s′)2 · (E−)4 − S′2 · (1 + E2)2 −H1 ≤ 4(rs)2 − S2 ≤ 4(r′s′)2 · (E+)4 − S′2 · (1 + E2)2 −H2

12

4(r′s′)2 · [(1 + E2)2 − 4E(1− E + E2)]− S′2 · (1 + E2)2 −H1 ≤ 4(rs)2 − S2 ≤
≤ 4(r′s′)2 · [(1 + E2)2 + 4E(1 + E + E2)]− S′2 · (1 + E2)2 −H2[

4(r′s′)2 − S′2
]
· (1 + E2)2 −

[
16(r′s′)2 · (E − E2 + E3) +H1

]
≤ 4(rs)2 − S2 ≤

≤
[
4(r′s′)2 − S′2

]
· (1 + E2)2 +

[
16(r′s′)2 · (E + E2 + E3)−H2

]
[
4(r′s′)2 − S′2

]
· (1 + E2)2 − Ĥ1 ≤ 4(rs)2 − S2 ≤

[
4(r′s′)2 − S′2

]
· (1 + E2)2 + Ĥ2

(Bi′j′k′l′)
2 · (1 + E2)2 − Ĥ1

16
≤ (Aijkl)

2 ≤ B2
i′j′k′l′ · (1 + E2)2 +

Ĥ2

16√
(Bi′j′k′l′)2 · (1 + E2)2 − Ĥ1

16
≤ Aijkl ≤

√
(Bi′j′k′l′)2 · (1 + E2)2 +

Ĥ2

16

4.4 Considering Areas Of Quadrilaterals - Part 2

For areas of quadrilaterals for ε-distortions, we construct the sets of areas of the partitioned quadri-
laterals as follows:

A =
{
Aijkl|∀{i, j, k, l} ⊆ {1, ..., n}

}
B =

{
Bi′j′k′l′ |∀{i′, j′, k′, l′} ⊆ {1, ..., n}

}

A1 =
{
Aijkl|Aijkl ∈ A w/ E and ∃Bi′j′k′l′ ∈ B, s.t. |

√
(Bi′j′k′l′)2 · (1 + E2)2 − Ĥ1

16
| ≤

≤ Aijkl ≤ |

√
(Bi′j′k′l′)2 · (1 + E2)2 +

Ĥ2

16
|
}

B1 =
{
Bi′j′k′l′ |Bi′j′k′l′ ∈ B and ∃Aijkl ∈ A w/ E, s.t. |

√
(Bi′j′k′l′)2 · (1 + E2)2 − Ĥ1

16
| ≤

≤ Aijkl ≤ |

√
(Bi′j′k′l′)2 · (1 + E2)2 +

Ĥ2

16
|
}

A2 = A\A1 B2 = B\B1

We then follow the exact same 10-step algorithm to get the desired result for ε−distortions, although
now it is very unlikely that 2 or more quadrilaterals will have the exact same area.

13

5 Reconstruction From Distances

5.1 One-Sided Error Algorithm

We want to see how likely it is to Construct Point Configurations, given the distance distributions.

Using [3] Theorem 1.3 and considering n-point configurations, we can select
(
n
3

)
different sets for

{i0, i1, i2},
(
n−3
2

)
for {j1, j2},

(
n−5
2

)
for {k1, k2},

(
n−7
2

)
for {l1, l2} and

(
n−9
2

)
for {m1,m2}. The total

number of possible such collections is:(
n− 3

2

)
·

4∏
ι=1

(
n− 3− 2ι

2

)
=
n(n− 1)(n− 2)

3!
·

4∏
ι=1

(n− 2ι− 1)(n− 2ι− 2)

2!

=
n!

(n− 11)!
· 1

96

Define N := n!
(n−11)! ·

1
96 .

Figure 3: N tends to behave like en, as n approaches 33

As shown above, the number of 11-tuples one has to check is very large and not practical even
though it’s relatively easy to implement. An alternative way to check if our configuration is in fact
reconstructible from distances is to run a one sided-error algorithm.

14

We make use of the polynomial defined in [3] which takes as inputs 6 distances:

g(U, V,W,X, Y, Z) :=
[
2U2Z+2UZ2+2V 2Y+2V Y 2+2X2W+2XW 2+2UV X+2UYW+2VWZ+2XY Z

]
+

+
[
−2UV Y−2UV Z−2UXW−2UXZ−2UY Z−2UWZ−2V XY−2V XW−2V YW−2V Y Z−2XYW−2XWZ

]
and the following facts:

• g(U, V,W,X, Y, Z) = 0 if and only if the inputs are the sides and diagonals of a well-defined
quadrilateral

• if g(d{i0,i1}, d{i0,i2}, d{j1,j2}, d{k1,k2}, d{l1,l2}, d{m1,m2}) 6= 0 for all such 11-tuples in P , then P
is reconstructible from distances

For the one-sided error algorithm we assume that P is reconstructible from distances, and select
at random an 11-tuple from P . If for the given 11-tuple we get that g(d{i0,i1}, ..., d{m1,m2}) = 0, we
conclude that P is in fact not reconstructible from distances. The issue here is that we may
falsely conclude that P is reconstructible from distances, with an error of |K1|

N , where:

K =
{
{i0, i1, ...,m2}|{i0, i1, ...,m2} ⊆ P

}
|K| = N

K1 =
{
{i0, i1, ...,m2}|g(d{i0,i1}, d{i0,i2}, d{j1,j2}, d{k1,k2}, d{l1,l2}, d{m1,m2}) 6= 0

}
K2 =

{
{i0, i1, ...,m2}|g(d{i0,i1}, d{i0,i2}, d{j1,j2}, d{k1,k2}, d{l1,l2}, d{m1,m2}) = 0

}

This obvious depends purely on P and the cardinality of K2, and there’s nothing that can be said
about it a priori. So depending on how many such bad 11-tuples exist in P , we will either have a
large or a small error. In order to reduce this we can randomly select x such tuples and check all
of if them, and if at least one satisfies g(d{i0,i1}, ..., d{m1,m2}) = 0, we safely conclude that P is not
reconstructible from distances. In the case where all the tuples we selected lie in K1 we will have

a false conclusion, where the error will be
(
|K1|
N

)x
� |K1|

N .

5.2 Generalizing The Results Of [3] For ε-distortions

Theorem 5.1. For a generic P,Q ⊂ R2, where the following conditions hold:

• if dist(P) = dist(Q), where dist(R) = {dist(ri, rj)|ri, rj ∈ R ⊂ R2}

• all
(
n
2

)
distances dist(pi, pj) are distinct and g(U, V,W,X, Y, Z) = 0

• if {e1, ..., e6} ∈ E for E := {(pi, pj)|i, j ∈ {i, ..., n}}, are not the diagonals of a quadrilateral
then g(e1, ..., e6) 6= 0

then P ∼= Q.

15

Definition 5.1. By dist(P) ≈ dist(Q), we mean that for each element in dist(P) there exists only

one element in dist(Q), such that (1− ε) ≤ dpij
dqi′j′

≤ (1 + ε) and vice versa.

For our case, we generalize the theorem as follows:

Theorem 5.2. For a generic P,Q ⊂ R2, if ∃ T ∈ A(D) such that |T (P) − Q| < ε, given ε > 0,
then the following inequalities hold:

• if dist(P) ≈ dist(Q), where dist(R) = {dist(ri, rj)|ri, rj ∈ R ⊂ R2}.

• all
(
n
2

)
distances dist(pi, pj) are distinct and[
g(U ′, ..., Z ′) · (1 + 3ε2)−H

]
≤ g(U, ..., Z) ≤

[
g(U ′, ..., Z ′) · (1 + 3ε2) +H

]
where H depends on ε, the polynomial g(·), and the distances {U ′, ..., Z ′}.

• if {e1, ..., e6} ∈ E for E := {(pi, pj)|i, j ∈ {i, ..., n}} are not the diagonals of a quadrilateral,
then

g(e1, ..., e6) /∈
[[(

g′1 · (1− ε)3 + g′2 · (1 + ε)3
]
,
[(
g′1 · (1 + ε)3 + g′2 · (1− ε)3

]]
.

Proof. We show the derivation of the analogous conditions for the ε-distortions

• The first bullet-point is essentially what we want for the ε-distortions.

• We have:

g(U, V,W,X, Y, Z) :=
[
2U2Z + 2UZ2 + 2V 2Y + 2V Y 2 + 2X2W + 2XW 2+

+ 2UV X + 2UYW + 2VWZ + 2XY Z
]
+

+
[
− 2UV Y − 2UV Z − 2UXW − 2UXZ − 2UY Z − 2UWZ−

− 2V XY − 2V XW − 2V YW − 2V Y Z − 2XYW − 2XWZ
]

=
[
g2

]
+
[
g1

]
and we know that select our 6-distance collections, in order to satisfy

∀α ∈ {U, V,W,X, Y, Z} ⊆ dist(P), ∃α′ ∈ {U ′, V ′,W ′, X ′, Y ′, Z ′} ⊆ dist(Q),

s.t. (1− ε) · α′ ≤ α ≤ (1 + ε) · α′

W.L.O.G., we label and reorder our 6− distance collections in the following way:

{U, V,X,X, Y, Z} 7→ {α1, α2, α3, α4, α5, α6} ⊆ dist(P)

{U ′, V ′, X ′, X ′, Y ′, Z ′} 7→ {α′1, α′2, α′3, α′4, α′5, α′6} ⊆ dist(Q)

We then get the following inequalities:

∀I ⊂ {α1, ..., α6} s.t.
(

2
∏
i∈I

ai

)
is a term of g(·), and the corresponding I’ to I

16

(
2
∏
i′∈I′

a′i′
)
· (1− ε)3 ≤

(
2
∏
i∈I

ai

)
≤
(

2
∏
i′∈I′

a′i′
)
· (1 + ε)3

−
(

2
∏
i′∈I′

a′i′
)
· (1 + ε)3 ≤ −

(
2
∏
i∈I

ai

)
≤ −

(
2
∏
i′∈I′

a′i′
)
· (1− ε)3

and it follows for g(α1, ..., α6) =
[
g2

]
+
[
g1

]
and g(α′1, ..., α

′
6) =

[
g′2

]
+
[
g′1

]
and Iι are the

collection of the 3-tuples of the terms of g(·) for ι ∈ {1, ..., 22} in the order presented above,
that:

10∑
ι=1

(
2
∏
i′∈I′ι

a′i′
)
· (1− ε)3 ≤

10∑
ι=1

(
2
∏
i∈Iι

ai

)
≤

10∑
ι=1

(
2
∏
i′∈I′

a′i′
)
· (1 + ε)3

=⇒ g′1 · (1− ε)3 ≤ g1 ≤ g′1 · (1 + ε)3

22∑
ι=11

(
− 2

∏
i′∈I′ι

a′i′
)
· (1 + ε)3 ≤

22∑
ι=11

(
− 2

∏
i∈Iι

ai

)
≤

22∑
ι=11

(
− 2

∏
i′∈I′

a′i′
)
· (1− ε)3

=⇒ g′2 · (1 + ε)3 ≤ g2 ≤ g′2 · (1− ε)3

=⇒
[
g′1 · (1− ε)3 + g′2 · (1 + ε)3

]
≤ g(U, ..., Z) ≤

[
g′1 · (1 + ε)3 + g′2 · (1− ε)3

]
[
g(U ′, ..., Z ′) · (1 + 3ε2) + (g′2 − g′1) · (3ε+ ε3)

]
≤ g(U, ..., Z) ≤

≤
[
g(U ′, ..., Z ′) · (1 + 3ε2) + (g′1 − g′2) · (3ε+ ε3)

]
g(U ′, ..., Z ′) · (1 + 3ε2)−H ≤ g(U, ..., Z) ≤ g(U ′, ..., Z ′) · (1 + 3ε2) +H

where H = (g′1 − g′2) · (3ε+ ε3)

• Follow the same steps shown in the proof of the second inequality, with the only difference
that the inequality signs are switched, since we want not almost equality. So if in the proof
above we had β1 ≤ α ≤ β2, we would now use : α < β1 or α > β2 ⇔ α /∈ [β1, β2].

17

5.3 Construction Of Points Given Distance Distribution

Question : Given dist(P) and the total volume V of the convex set of points P ⊂ R3, with P
unique, how do we reconstruct P ⊂ R3 upto a rigid motion?

In order to solve this problem, we can take the following steps, which directly relate to the
10-step algorithm:

1. List the distances in increasing order, and call this ordered list D, with E := |D| =
(
n
2

)
. All(

n
2

)
edges correspond to a side of

(
n
3

)
triangles of the P configuration.

2. Find all possible triangles for di ∈ D in increasing order, with di being the smallest edge of
the triangle. So essentially:

i← 1;
h← 1;
while i ≤ (E − 3) do

take all
(
n−i
2

)
ordered 3-tuples

{di, dj>i, dE≥k>j};
if (dk − dj) ≥ di then

T (i)
h ← {di, dj , dk};
T (i) = {T (i), T (i)

h };
h← h+ 1;

else
disregard 3-tuple {di, dj , dk};

end
i← i+ 1;

end

T (i) ←
⋃E−3
i=1 T (i);

T ← |T (i)|;

So T would look like T =
{
{d1, d2, d3}, {d1, d4, d5}, {d2, d4, d5}, ...

}
for instance, which is still

ordered in ascending order of the first element of the 3-tuple, then the second element and
then the third element.

3. Again in ascending order of di ∈ D take all triangle 3-tuples Tι ∈ T for ι ∈ {1, ..., T}, and then
construct all possible 6-tuples of edges which form a tetrahedron with di being the minimum
length of its edges, by essentially combining the triangles. This can be done as follows:

18

take T (i) for all i ∈ {1, ..., E − 3} from above;

i← 1; % index of set T (i), consisting of all triangles with di as its smallest
side
j ← 2; % index of T (j), for E > j > i
while i ≤ (E − 3) do

h← 1; % index for all elements of T (i)

δ ← 1; % index of 6-tuple tetrahedron considering T (i)

d′1 ← 1st element of T (i)
h ; h1 ← d′1’s original index;

d′2 ← 2nd element of T (i)
h ; h2 ← d′2’s original index;

d′3 ← 3rd element of T (i)
h ; h3 ← d′3’s original index;

h← h+ 1;

while h ≤ |T (i)| do

d̃′1 ← 1st element of T (j)
h ; h4 ← d̃′1’s original index;

d̃′2 ← 2nd element of T (j)
h ; h5 ← d̃′2’s original index;

d̃′3 ← 3rd element of T (j)
h ; h6 ← d̃′3’s original index;

if {dh2 , dh3} ∩ {dh4 , dh5} = ∅ then
find the triangles which have one of the following combinations of sides
(both can’t occur simultaneously, and we only need to search in

⋃
η∈Ĥ T

η

for H := {h2, h3, h4h5}, Ĥ := H\max{H}), and their corresponding 3rd

side is assigned below to xι∈{1,2}:
(i){dh2 , dh4 , x1} & {dh3 , dh5 , x2}
(ii){dh2 , dh5 , x1} & {dh3 , dh4 , x2}

if x1 = x2 then
h6 ← x1;

∆
(i)
δ ← {dh1 , dh2 , dh3 , dh4 , dh5 , dh6};

∆(i) ← {∆(i),∆
(i)
δ };

V(i)δ ← |
1

288

√√√√√√√√√det


0 1 1 1 1
1 0 (dh2)2 (dh3)2 (dh6)2

1 (dh2)2 0 (dh1)2 (dh4)2

1 (dh3)2 (dh1)2 0 (dh5)2

1 (dh6)2 (dh4)2 (dh5)2 0

|;
V(i) ← {V(i),V(i)δ };
δ ← δ + 1;

else
disregard current 6-tuple;

end

end
h← h+ 1;

end
i← i+ 1;

end

V ←
⋃E−3
ι=1 V(ι); % Set with all tetrahedron 6-tuples

∆←
⋃E−3
ι=1 ∆(ι); % Set with the corresponding volumes of the tetrahedrons

19

4. Now we want to find the collection of tetrahedrons which have a sum of volume equal to V .
In order to do this, we re-arrange out sets V and ∆ to V̂ and ∆̂, in ascending order with
respect to the mode of the faces of the tetrahedrons. We do this because it will be a lot faster
to identify whether a tetrahedron is not part of the overall n-point configurations, and we
will disregard it. We then go through the following steps:

(a) Take in order the tetrahedron δi ∈ ∆̂ and it’s corresponding volume νi ∈ V̂, and then

it’s 3-tuple ”triangle face” with the smallest mode, t
(i)
1 .

(b) Find the next tetrahedron in the ordered set ∆̂ which has t
(i)
1 as a face, and combine the

two potential tetrahedrons, to get a hexahedron and its volume.

(c) Considering the 6 3-tuple faces of the hexahedron we repeat step (b) and this is done
until we exceed the total volume an n-tuple or we have an n-tuple with a total volume
less than V.

(d) In this case, we take out the last tetrahedron which was added and add the next possible
candidate and check the conditions from step (c) and repeat until all possible candidate
tetrahedrons have been checked. If we are not successful, we then go ”2 steps back” and
take the next possible candidate for the our 2nd most recent selection of a tetrahedron.

(e) We then repeat steps (b)-(d) considering the appropriate shape we have after each iter-
ation.

(f) If we are not successful and have back-traced back to δi, we consider the next appropriate
tetrahedron from ∆̂ and repeat steps (b)-(e).

(g) Given the conditions on our set dist(P), this algorithm will terminate once it success-
fully finds the tuple set of the exterior faces of the overall convex shape formed by the
configuration P , and the set of tetrahedrons ∆final which form it.

5. At this point, we know the triangles on the exterior of the overall convex shape we are looking
for, as well as the which distances from our initial set dist(P) correspond to which point. From
here it is therefore only a matter of selecting an arbitrary tetrahedron from ∆final and placing
it in R3, and based on this initialization we construct 3 points P , consider the tetrahedrons in
∆final adjacent to the one we initially constructed and then construct 4 more points, repeat
this process until we have exhausted all elements of ∆final. This will therefore give us an
orthogonal transformation of P .

The construction of P is unique upto a rigid motion, by the setup of the problem.

Open Question : Given dist(P) for P ⊂ RD, how do we reconstruct P upto a rigid motion?

20

6 Examples And Constructions When P ∼ Q

6.1 Adjacency Matrix

Considering our previous problems from a graph point of view, will make computations a lot
easier. Given the point configurations P and Q, one can easily compute the Adjacency Matrices for
Undirected Graphs GP and GQ respectively. Some of the main properties of these graphs is that
they are symmetric n× n matrices, with zeros throughout their diagonals.

6.2 Congruent Configurations

In the case of congruent configurations, it need hold true:

• GP ∼ GQ ⇒ ∃ a permutation Pπ, s.t. GQ = Pπ
−1GPPπ

• GP ∼ GQ ⇒ λi(GP) = λi(GQ) , for all eigenvalues

Corollary 6.1. If A ∈ Rn×n has an n distinct eigen-values λ1(A) > λ2(A) > ... > λn(A), and
B ∈ Rn×n such that λi(A) = λi(B) ∀i ∈ {1, ..., n}, then A ∼ B.

Considering the eigen-decompositions A = QAΛQA
−1, B = QBΛQB

−1 and the permutation Pπ,
we get

A = PπBPπ
−1

QAΛQA
−1 = Pπ(QBΛQB

−1)Pπ
−1

= (PπQB)Λ(PπQB)−1

⇒ QA = PπQB

so the permutation Pπ is at the same time the change of basis of the eigen-space of A to that of B.

6.3 Find Permutation When GP ∼ GQ

Here we’ll consider the case where no bad points exist in our configurations P and Q, and that
the distance distributions consist of distinct elements. In addition, there exists a transformation
T ∈ O(D) and a translation ~t ∈ RD such that Q = T (P + ~t), for some reordering of the points in
Q, as the points are not initially labeled. The goal is to align the points in P with those in Q, and
the first thing we need to do is to find the permutation matrix between the points in P and Q.
Considering the adjacency matrices GP and GQ, we simply run the following algorithm:

21

G̃P ← sort(GP); % sort columns of the input
G̃Q ← sort(GQ); % sort columns of the input
Pπ = zeros(n, n);
for i = 1 : n do

~vP ← ith column of G̃P ;
for j = 1 : n do

~vQ ← jth column of G̃P ;
if ~vP = ~vQ then

Pπ(i, j) = 1;
end

end

end

Each row in the matrices P and Q are the coordinates of the points in the corresponding config-
urations with the initial orderings (if none is given, they could be assigned randomly). We have
therefore taken care of the unlabelled problem, and the matrices P and Q̂ := PπQ now only differ
by a rigid motion.

6.4 Kabsch’s Algorithm - Find Rotation And Translation [4],[5]

There’s a well known algorithm for finding the optimal rotation which minimizes the root mean
squared deviation between two paired sets of points. In our case there exists an exact rotation, so
by simply running this algorithm we get the exact rotation. This algorithm is broken up into the
following three steps:

• Shift by Center of Mass

CMP
(j) =

1

n

n∑
i=1

Pi
(j) CMQ

(j) =
1

n

n∑
i=1

Q̂
(j)
i j ∈ {1, ..., d}

P̃ = (P −~1CMP) Q̃ = (Q−~1CMQ) for ~1 ∈ Rn and P̃ , Q̃ ∈ Rn×d

• Find the Optimal Rotation
Here we use the singular value decomposition of the covariance matrix H = P̃ T Q̃.

H = UΣV T k = sign(det(V UT)) · 1 D =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 k


R = V DUT

The D matrix is used to take care of any reflections which might have taken place.

• Find the Translation ~t

~t = (−R× CMP
T + CMQ

T)T ~t ∈ Rd

22

6.5 Example Results And Visualization

Below is an example where construct a random 60-point configuration P . Using P we then construct
Q, such that P ∼ Q. We then use the method described in section 6.3 to label the points, and that
in section 6.4 to confirm that the configurations align. Indeed, we got that (P − P−1π QPπ) = 0.

Figure 4: Visualization of Adjacency Matrices for n=60 before relabelling takes place

Figure 5: Visualization of constructed Pπ used for relabelling, using the algorithm in section 6.3

6.6 Alternative Way For Constructing Rotation After Relabelling And Shifting

After shifting our two configurations as shown in section 6.4, we constructed the matrices P̃ and Q̃
with entries the coordinates of all points of P and Q with center of mass being the origin. Assuming
that n ≥ D, we can randomly select D rows of P̃ and the corresponding rows in Q̃ (we have already

23

Figure 6: Plot with P and Q before and after alignment

relabelled them), and construct a change of basis. In order to do this we need to first confirm that
the vectors are linearly independent which is pretty simple using software, as you simply need to
make sure that the D × D matrices consisting of these vectors in their columns have a nonzero
determinant, or are full-rank. So if we have selected D linearly independent vector from P̃ , which
we denote as BP = {~p1, ..., ~pD}, and their corresponding vectors in Q̃, BQ = {~q1, ..., ~qD}, these
form a basis for Rd, and the rotation we are looking for is the change of basis between BP and
BQ. So we essentially do the following to construct the rotation R:

PD =
(
~p1 . . . ~pD

)
∈ RD×D QD =

(
~q1 . . . ~qD

)
∈ RD×D

RPD = QD =⇒ R = QDPD−1

6.7 SVD Approach After Relabelling

An alternative way of computing the permutation R is using the SV D and the fact that the
singular values of a matrix are unique. We are considering the case where n ≥ D and U ∈
RD×D,Σ ∈ RD×n, V ∈ Rn×n, so we can truncate the right singular vectors matrix V , as the first
D right-singular vectors for P =

(
~p1 . . . ~pn

)
∈ RD×n and Q =

(
~q1 . . . ~qn

)
∈ RD×n match up.

24

Notationally we use AD = A(1 : D, 1 : D) to denote the truncation of matrix A, by taking the
submatrix consisting of the columns and rows 1 through D of A.

For P = UPΣPVP
T and Q = UQΣQVQ

T , we know that ΣP = ΣQ and that ∃R ∈ O(D) s.t. RP = Q.
It then follows that for:

VPD := VP (1 : D, 1 : D) VQD := VQ(1 : D, 1 : D) ΣD := ΣP (1 : D, 1 : D) = ΣQ(1 : D, 1 : D)

RP = Q ⇒ R(UPΣPVP
T) = UQΣQVQ

T ⇒ (RUP)ΣDVPD
T = UQΣDVQD

T

If the singular values of P and Q are all distinct, then the SV D of the two matrices are unique.
If they are not distinct, then ∃UP , UQ and M a permutation matrix s.t. MUPD = UQD , which
implies that VPD = VQD . So for simplicity let’s consider this singular value decomposition, where
M = ID×D. It then follows that for all point configurations which are congruent upto a rigid
motion, there exist a singular value decomposition and R ∈ O(D), s.t.:

RUP = UQ VRD = VQD =⇒ R = UQUP
T

6.8 On Matching Point Configurations

Lemma 6.1. [6] Let P,Q ∈ RD×n as defined above. Then PTP = QTQ if and only if ∃A ∈ O(D)
such that AP = Q.

The above Lemma implies that a necessary and sufficient condition for two configurations to be
equivalent, is that their Gramian-matrices are equal, after translating them such that their center
of mass is at the origin.

6.9 Kabsch’s Algorithm On ε-diffeomorphisms

Kabsch’s algorithm also finds the rotation in order to align point configuration P with a point
configuration Q, where ∀i ∈ {1, ..., n} ∃i′ ∈ {1, ..., n} such that ||pi − qi′ || < ε

2 , for pi ∈ P , and
qi′ ∈ Q, with a given error. Note that for ε < 1 and the property required for ε-diffeomorphisms

(1 − ε) ≤ ||pi−pj ||
||qi′−qj′ ||

≤ (1 + ε), we get that
∣∣|pi − pj | − |qi′ − qj′ |∣∣ ≤ ε. Below we justify that the

condition on the points ||pi−qi′ || < ε
2 , satisfy the stated equivalent condition for ε-diffeomorphisms:∣∣|pi − qi′ | − |pj − qj′ |∣∣ =

∣∣εi − εj∣∣ ≤ ε

2
as εi, εj ∈

(
− ε

2
,
ε

2

)

|pi − qi′ | < εi |pj − qj′ | < εj ⇒
∣∣|pi − pj | − |qi′ − qj′ |∣∣ < ∣∣εi + εj

∣∣∣∣|pi − pj | − |qi′ − qj′ |∣∣ ≤ ∣∣|pi − pj |+ |qi′ − qj′ |∣∣
=⇒

∣∣|pi − pj | − |qi′ − qj′ |∣∣ ≤ ∣∣|pi − pj |+ |qi′ − qj′ |∣∣ ≤ ∣∣εi + εj
∣∣ ≤ ε

=⇒
∣∣|pi − pj | − |qi′ − qj′ |∣∣ ≤ ε

25

Since we have exact bounds on the difference |pi−qi′ |, we can easily implement simulation to confirm
that Kabsch’s algorithm works on random n-point configurations P with points in Q which satisfy
the above condition. The alignment will obviously not be exact.

Figure 7: Depiction of inequality
∣∣|pi − pj | − |qi′ − qj′ |∣∣ < ∣∣εi + εj

∣∣

Figure 8: Plot with P and Q before and after alignment, for ε-diffeomorphisms

6.10 Difference In Rotations On ε-diffeomorphisms Using Kabsch’s Algorithm

A simulation over multiple random P and corresponding Q configurations and their alignment
was implemented, which resulted in the error-plots provided on the next page. These were over
ε ∈ {0.01, 0.02, 0.04, .06, 0.08, 0.1} and n ∈ {10, 12, 12, ..., 150}. The error was calculated in means
of sum of squared differences for each coordinate over 30 averaged simulations, and then averaged

26

the coordinates. What the plots reveal is simply that for greater ε we have a greater averaged error
for the same number of points, while there is no obvious trend. This is also justified by figure 10,
where a Least-Squared Fit was used, and it’s obvious that as n increases, the error also tends to
increase.

An alternative, more detailed approach to such configurations, is described in [6].

Figure 9: Error plot over 30 random samples, with values of ε in the legend

Figure 10: Linear Fit on error, using Least-Squares Fit

27

Acknowledgements: Finally, I would like to thank Dr.Damelin and Pr.Speyer for their help,
encouragement and insights, as well as Cyrus Anderson, Michael Lu and Sean Kelly for their
discussions on various aspects of the problems. I would also like to thank the Math Department
for providing me with the opportunity to work on this project.

References

[1] S.B.Damelin, C.Fefferman, Extensions, interpolation and matching in RD

[2] M.Boutin, G.Kemper, On Reconstructing n-Point Configurations from the Distributions of Dis-
tances or Areas

[3] M.Boutin, G.Kemper, Which Point Configurations are Determined bythe Distribution of their
Pairwise Distances?

[4] Nghia Ho. (n.d.). Retrieved June 15, 2016, from http://nghiaho.com/?page id=671

[5] Kabsch algorithm. (n.d.). Retrieved June 15, 2016, from https://en.wikipedia.org/wiki/Kabsch algorithm

[6] D.Jimenez, G.Petrova, On Matching Point Configurations

28

	Procrustes Problem
	Non-Reconstructible Configurations
	Example

	Partition Into Polygons
	Considering Areas Of Triangles - 10-step algorithm
	Graph Point Of View
	Considering Areas Of Quadrilaterals

	Partition Into Polygons For -distortions
	Areas Of Triangles For -distortions
	Considering Areas Of Triangles - Part 2
	Areas Of Quadrilaterals For -distortions
	Considering Areas Of Quadrilaterals - Part 2

	Reconstruction From Distances
	One-Sided Error Algorithm
	Generalizing The Results Of [3] For -distortions
	Construction Of Points Given Distance Distribution

	Examples And Constructions When P Q
	Adjacency Matrix
	Congruent Configurations
	Find Permutation When GP GQ
	Kabsch's Algorithm - Find Rotation And Translation [4],[5]
	Example Results And Visualization
	Alternative Way For Constructing Rotation After Relabelling And Shifting
	SVD Approach After Relabelling
	On Matching Point Configurations
	Kabsch's Algorithm On -diffeomorphisms
	Difference In Rotations On -diffeomorphisms Using Kabsch's Algorithm

